首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined the effect of harvest time (from May to September) and dry matter partitioning on biomethane potential and methane yield per unit area of Phragmites australis cultivation under paludiculture conditions. The experimental site is part of a larger experimental platform (San Niccolò, Pisa) located within the Massaciuccoli Lake Basin in Central Italy (Tuscany, IT). The study also took into account the double cut strategy by evaluating the regrowth from June to September. Biomethane potentials ranged from 384 to 315 and from 412 to 283 NL CH4 kg VS?1 (normal liters of methane per kg of volatile solids) for leaves and stems, respectively. About digestion kinetics, maximum daily production rate (R max) was significantly affected by harvest time and not by plant partitioning. Along the harvest season, biomethane yield per unit area was mostly driven by the biomass yield showing an increasing trend from May (1659 Nm3 ha?1) to September (3817 Nm3 ha?1). The highest value was obtained with the double harvest option (4383 Nm3 ha?1), although it was not statistically different from the single harvest carried out in September. Owing to its remarkably lower yields, P. australis cannot be considered along the same lines as crops conventionally used for biogas production, but it may represent an interesting option for paludiculture cropping systems by coupling peatland restoration with bioenergy production. September harvest management seemed the most feasible option, although further investigation on crop lifespan is needed.  相似文献   

2.
We report the production and characteristics of natural cellulose fibers obtained from the leaves and stems of switchgrass. In this paper, the composition, structure and properties of fibers obtained from the leaves and stem of switchgrass have been studied in comparison to the common natural cellulose fibers, such as cotton, linen and kenaf. The leaves and stems of switchgrass have tensile properties intriguingly similar to that of linen and cotton, respectively. Fibers were obtained from the leaves and stems of switchgrass using a simple alkaline extraction and the structure and properties of the fibers were studied. Fibers obtained from switchgrass leaves have crystallinity of 51%, breaking tenacity of 5.5 g per denier (715 MPa) and breaking elongation of 2.2% whereas the corresponding values for fibers obtained from switchgrass stems are 46%, 2.7 g per denier and 6.8%, respectively. Switchgrass is a relatively easy to grow and high yield biomass crop that can be source to partially substitute the natural and synthetic fibers currently in use. We hope that this research will stimulate interests in using switchgrass as a novel fiber crop in addition to being promoted as a potential source for biofuels.  相似文献   

3.
The aim of this study was to analyze and model how biomass is allocated to the leaves, stems, and roots of perennial grass (reed canary grass, Phalaris arundinacea L., hereafter RCG) under elevated temperature (ET) (+approx. 3 °C) and CO2 (approx. 700 μmol mol?1) and with variable groundwater levels (high to low water levels) in a boreal environment. For this purpose, RCG plants were grown in environmentally controlled chambers over two growing seasons (April–September of 2009 and 2010), and the plant organ biomass (leaves, stems, and roots) was measured seven times over the entire growing season. The results showed that biomass production was mainly allocated to the leaves (LMF) and stems (SMF) early in the growing season, to the stems in the middle of the growing season, and to the roots (RMF) later in the growing season. Compared to ambient conditions, ET treatments increased LMF and SMF, and decreased RMF over the growing season under well-water conditions. Under low groundwater level, ET treatments decreased LMF and increased RMF throughout the growing season, and increased SMF in early periods and then decreased later in the growing season. CO2 enrichment did not significantly affect the seasonal allocation pattern between plant organs. The effect of the groundwater level on biomass allocation was stronger than that of the climatic treatments. In conclusion, plant phenology controlled the seasonal course of biomass allocation in RCG and climatic treatments affected biomass allocation to each of the three plant organs, while the direction and extent of climate-related changes in biomass allocation depended on the availability of groundwater. The influence of groundwater level appeared to be crucial for the carbon gain regarding the production of RCG biomass for energy purpose and the concurrent sequestration of carbon in soils under changing climate in the mire sites used to cultivate RCG.  相似文献   

4.

Purpose

The purpose of this study is to assess and calculate the potential impacts of climate change on the greenhouse gas (GHG) emissions reduction potentials of combined production of whole corn bioethanol and stover biomethanol, and whole soybean biodiesel and stalk biomethanol. Both fuels are used as substitutes to conventional fossil-based fuels. The product system includes energy crop (feedstock) production and transportation, biofuels processing, and biofuels distribution to service station.

Methods

The methodology is underpinned by life cycle thinking. Crop system model and life cycle assessment (LCA) model are linked in the analysis. The Decision Support System for Agrotechnology Transfer – crop system model (DSSAT-CSM) is used to simulate biomass and grain yield under different future climate scenarios generated using a combination of temperature, precipitation, and atmospheric CO2. Historical weather data for Gainesville, Florida, are obtained for the baseline period (1981–1990). Daily minimum and maximum air temperatures are projected to increase by +2.0, +3.0, +4.0, and +5.0 °C, precipitation is projected to change by ±20, 10, and 5 %, and atmospheric CO2 concentration is projected to increase by +70, +210, and +350 ppm. All projections are made throughout the growing season. GaBi 4.4 is used as primary LCA modelling software using crop yield data inputs from the DSSAT-CSM software. The models representation of the physical processes inventory (background unit processes) is constructed using the ecoinvent life cycle inventory database v2.0.

Results and discussion

Under current baseline climate condition, net greenhouse gas (GHG) emissions savings per hectare from corn-integrated biomethanol synthesis (CIBM) and soybean-integrated biomethanol synthesis (SIBM) were calculated as ?8,573.31 and ?3,441 kg CO2-eq. ha?1 yr?1, respectively. However, models predictions suggest that these potential GHG emissions savings would be impacted by changing climate ranging from negative to positive depending on the crop and biofuel type, and climate scenario. Increased atmospheric level of CO2 tends to minimise the negative impacts of increased temperature.

Conclusions

While policy measures are being put in place for the use of renewable biofuels driven by the desire to reduce GHG emissions from the use of conventional fossil fuels, climate change would also have impacts on the potential GHG emissions reductions resulting from the use of these renewable biofuels. However, the magnitude of the impact largely depends on the biofuel processing technology and the energy crop (feedstock) type.  相似文献   

5.
Yield of eight wheat cultivars was evaluated under rainfed and irrigated conditions in a Mediterranean environment. Variation in grain yield resulted from variation in both aboveground biomass production and in harvest index. Under rainfed compared to irrigated conditions, grain yield, biomass and days to heading were decreased, whereas harvest index was increased. Grain yield of the different cultivars under rainfed conditions correlated with that under irrigated conditions in one of the two years. Among cultivars, harvest index under rainfed and irrigated conditions were correlated in both years.Water was used more efficiently for biomass production, and equally efficiently for grain production, under irrigated compared to rainfed conditions. Under rainfed conditions, crop water use efficiency was higher for cultivars developed for rainfed environments than for those developed for high-rainfall or irrigated environments. Cultivars with low-rainfall target environments had the lowest evapotranspiration under rainfed conditions. Under rainfed conditions, differences between the cultivar groups in crop water use efficiency corresponded with trends in water use efficiency of individual plants and with the ratio of photosynthesis to transpiration, measured on plants grown in a growth room.Early in the season, water was used more efficiently for biomass production at high sowing densities than at low sowing densities. Through faster biomass production and ground cover a smaller proportion of the evapotranspired water was lost in soil evaporation and a larger proportion was transpired. However, the net effect was a greater water use in the early phases of growth and consequently a lower water availability later in the season, leading to similar yields regardless of sowing density.  相似文献   

6.
Heavy metal allocation in clonal organs, stems, leaves, and roots has not been systematically studied for rhizomatous perennial plants. Here, pot experiments have been designed to investigate lead (Pb) distribution in different organs of Phragmites australis (Cav.) Trin. ex Steud. Common reed subjected to 0–4500 mg Pb kg?1 under both flood and drought conditions. In either water treatment, Pb concentrations in offspring shoots were lower than in parent shoots; however, the opposite response was observed for biomass allocation for which parent shoots protected offspring shoots. Lower allocation of Pb to leaves rather than stems in offspring shoots could be a protective strategy of leaves under flood conditions. Lower Pb allocation to rhizomes is better for rhizome growth. This further provides energy for the growth of buds and offspring shoots, because the rhizome biomass and the number of buds and offspring shoots were not significantly inhibited by Pb levels of?≤?3000 mg kg?1 in the flooded environment. These Pb allocation strategies could enhance the resistance capacity of reeds to Pb contamination by stabilizing population propagation and productivity, especially at Pb levels of?≤?3000 mg kg?1 under flood conditions.  相似文献   

7.
Shrub willow has great potential as a dedicated bioenergy crop, but commercialization and adoption by growers and end-users will depend upon the identification and selection of high-yielding cultivars with biomass chemistry and quality amenable to conversion to biofuels and bioenergy. In this study, critical traits for biomass production were evaluated among new genotypes of shrub willow produced through hybrid breeding. This study assessed the variation in yield, pest and disease resistance, biomass composition, and wood density in shrub willow, as well as the impact of genotypic and environmental factors on these particular phenotypes. Analysis of clonal genotypes established on two contrasting sites in New York State, Tully and Belleville, showed statistical differences by site for all of the traits. The greatest yield was observed at Belleville, NY, for two cultivars, ‘Fish Creek’ (41 Mg?ha?1) and ‘Onondaga’ (40 Mg?ha?1). Yields of Salix eriocephala genotypes were lowest, and they displayed susceptibility to rust and beetle damage. Variation in cellulose content in the stem biomass was controlled by environmental factors, with the majority of the genotypes displaying greater cellulose content at Belleville compared with Tully. In contrast, wood density was significantly greater at Tully than Belleville, and cellulose content was correlated with wood density. There were no significant correlations between biomass yield and density or any of the composition traits. These trials demonstrate that new genotypes produce improved yield and pest and disease resistance, with diverse compositional traits that can be matched with conversion technologies.  相似文献   

8.
To meet US renewable fuel mandates, perennial grasses have been identified as important potential feedstocks for processing into biofuels. Triploid Miscanthus × giganteus, a sterile, rhizomatous grass, has proven to be a high‐yielding biomass crop over the past few decades in the European Union and, more recently, in the United States. However, high establishment costs from rhizomes are a limitation to more widespread plantings without government subsidies. A recently developed tetraploid cultivar of M. × giganteus producing viable seeds (seeded miscanthus) shows promise in producing high yields with reduced establishment costs. Field experiments were conducted in Urbana, Illinois from 2011 to 2013 to optimize seeded miscanthus establishment by comparing seeding rates (10, 20, and 40 seeds m?2) and planting methods (drilling seeds at 38 and 76 cm row spacing vs. hydroseeding with and without premoistened seeds) under irrigated and rainfed conditions. Drought conditions in 2011 and 2012 coincided with stand establishment failure under rainfed conditions, suggesting that seeded miscanthus may not establish well in water‐stressed environments. In irrigated plots, hydroseeding without premoistening was significantly better than hydroseeding with premoistening, drilling at 38 cm and drilling at 76 cm with respect to plant number (18%, 54%, and 59% higher, respectively), plant frequency (13%, 30%, and 40% better, respectively), and the rate of canopy closure (18%, 33%, and 43% faster, respectively) when averaged across seeding rates. However, differences in second‐year biomass yields among treatments were less pronounced, as plant size partially compensated for plant density. Both hydroseeding and drilling at rates of 20 or 40 seeds m?2 appear to be viable planting options for establishing seeded miscanthus provided sufficient soil moisture, but additional strategies are required for this new biomass production system under rainfed conditions.  相似文献   

9.
A recent alternative strategy to reduce environmental problems associated with P transport from agricultural soils is the use of bioenergy crops to remediate excess soil P. In addition to the positive impacts associated with P mitigation, harvested biomass used as a renewable energy source can also offset the cost associated with plant-based P remediation strategies. The objective of this study was to identify potential crop species that can be used for remediation of soil P and as a cellulosic feedstock for production of renewable energy in South Florida. Fifteen crop entries were investigated for their potential to remove P from a P-enriched soil. Dry matter (DM) yield varied among crop species with greatest yield observed for elephantgrass (Pennisetum purpureum Schum.) and sugarcane (Saccharum spp.) (43 and 39 Mg?ha?1 year?1, respectively). Similarly, greater P removal rates were observed for elephantgrass (up to 126 kg?P?ha?1 year?1 in 2008) followed by sugarcane (62 kg?P?ha?1 year?1 in 2008). Although there was no effect (P?=?0.45) of crop species on P reduction in the soil, soil P concentrations decreased linearly during the 3-year study. Because of its relatively greater DM yield and P removal rates, elephantgrass was shown to be a good candidate for remediation of excess soil P in South Florida Spodosols.  相似文献   

10.
Energy cane varieties are high-fiber sugarcane clones which represent a promising feedstock in the production of alternative biofuels and biobased products. This study explored the crop establishment and whole farm production costs of growing energy cane as a biofuel feedstock in the southeastern USA. More specifically, total production costs on a feedstock dry matter biomass basis were estimated for five perennial energy cane varieties over alternative crop cycle lengths. Variable production costs for energy cane production were estimated to be in the $63 to $76 Mg?1 range of biomass dry matter for crop cycles through harvest of fourth through sixth stubble crops. Total production costs, including charges for fixed equipment costs, general farm overhead, and land rent, were estimated to range between $105 and $127 Mg?1 of feedstock biomass dry matter material.  相似文献   

11.
In French West Indies, the high dependency of the electricity mix on imported fossil fuels has led local authorities to propose the conversion of some land to the production of energy cane. This conversion mainly concerns land polluted by the pesticide chlordecone, where most crops for human consumption have been banned. This molecule has a strong affinity for soil organic matter (SOM). The aims of this study were to assess the impact of crop residue management and compost application on the stocks of SOM and chlordecone in soils cultivated with energy cane and to determine the minimum SOM input required to maintain SOM stocks. A field experiment was conducted to determine the yield and biomass partitioning of energy cane, and laboratory incubations were performed to estimate humification from crop residues. Changes in SOM and chlordecone stocks over a 30-year period were investigated using models already calibrated for the land under study. Non-harvestable biomass left on the field (tops, litterfall and roots) covered >60 % of SOM mineralization. A full offset of mineralization required the return of 10 % of harvestable biomass or the application of compost at a rate of 40 Mg ha?1 every 5 years. With the total removal of harvestable biomass and without compost applications, SOM and chlordecone losses increased by 23 and 13 %, respectively, which was associated with high SOM mineralization and chlordecone leaching under tropical climate. The estimated break-even price for cane biomass indicated that compost application would be more profitable for farmers than the return of a part of the harvestable biomass.  相似文献   

12.
To predict the environmental benefits of energy crop production and use, the nature and fate of biomass residues in the soil need to be quantified. Our objective was to quantify Miscanthus x giganteus biomass recycling to soil and to assess how harvesting time and N fertilization affect their characteristics and subsequent biodegradability. The quantification of aerial and belowground biomass and their sampling were performed on 2- and 3-year-old Miscanthus stands, either fertilized with 120 kg N ha?1 year?1 or not fertilized, in autumn (maximal biomass production) and winter (maturity). Plant biomass was chemically characterized (total sugars, Klason lignin, C/N) and incubated in optimum decomposition conditions (15°C, ?80 kPa) for 263 days, for C and N mineralization. Accumulation of carbon in rhizomes and roots was 7.5 to 10 t C ha?1 and represented about 50% of total plant biomass C. Senescent leaves represented about 1.5 t C ha?1 year?1. All residues, especially the roots, had high lignin contents, while the rhizomes also had a high soluble content due to their nutrient storage function. The C mineralization rates were closely related to the chemical characteristics of the residue, higher sugar and lower lignin contents leading to faster decomposition, as observed for rhizomes.  相似文献   

13.
The influence of mycorrhizal symbiosis, atmospheric CO2 concentration and the interaction between both factors on biomass production and partitioning were assessed in nodulated alfalfa (Medicago sativa L.) associated or not with arbuscular mycorrhizal fungi (AMF) and grown in greenhouse at either ambient (392 μmol?mol?1) or elevated (700 μmol?mol?1) CO2 air concentrations. Measurements were performed at three stages of the vegetative period of plants. Shoot and root biomass achieved by plants at the end of their vegetative period were highly correlated to the photosynthetic rates reached at earlier stages, and there was a significant relationship between CO2 exchange rates and total nodule biomass per plant. In non-mycorrhizal alfalfa, the production of leaves, stems and nodules biomass significantly increased when plants had been exposed to elevated CO2 concentration in the atmosphere for 4 weeks. Regardless CO2 concentration at which alfalfa were cultivated, mycorrhizal symbiosis improved photosynthetic rates and growth of alfalfa at early stages of the vegetative period and then photosynthesis decreased, which suggests that AMF shortened the vegetative period of the host plants. At final stages of the vegetative period, AMF enhanced both area and biomass of leaves as well as the leaves to stems ratio when alfalfa plants were cultivated at ambient CO2. The interaction of AMF with elevated CO2 improved root biomass and slightly increased the leaves to stems ratio at the end of the vegetative growth. Therefore, AMF may favor both the forage quality of alfalfa when grown at ambient CO2 and its perennity for next cutting regrowth cycle when grown under elevated CO2. Nevertheless, this hypothesis needs to be checked under natural conditions in field.  相似文献   

14.
Switchgrass (Panicum virgatum L.), a warm-season perennial grass, is an important bioenergy crop candidate because it produces high biomass yields on marginal lands and on reclaimed surface mined sites. In companion studies, dry matter (DM) yields for Cave-in-Rock, Shawnee, and Carthage cultivars varied from 4.2 to 13.0 Mg ha?1averaged over 6 years at the reclaimed Hampshire site, and fertilization increased yields of Cave-in-Rock at Black Castle and Coal Mac sites from 0.3 to 2 Mg ha?1 during the first 3 years. The objective of these experiments was to compare the impacts of cultivar and soil amendments on biomass quality and theoretical ethanol production of switchgrass grown on surface mines with differing soil characteristics. Biomass quality was determined for fiber, ash, lignin, digestibility, and carbohydrate contents via near-infrared reflectance spectroscopy, and carbohydrates were used to calculate theoretical ethanol yield (TEY; L Mg?1) and multiplied by biomass yield to calculate theoretical ethanol production (TEP; L ha?1). Cultivars at the Hampshire site did not differ in TEY and ranged from 426 to 457 L Mg?1. Theoretical ethanol production from Cave-in-Rock at Hampshire was 7350 L ha?1, which was higher than other cultivars because of its greater biomass production. This TEP was higher than in other studies which predicted 4000 to 5000 L ha?1. At the Black Castle and Coal Mac sites, fertilizer applications slightly affected biomass quality of switchgrass and TEY, but provided greater TEP as a function of increased yield. Similar to other findings, total switchgrass biomass production has more impact than compositional differences on TEP, so maximizing biomass production is critical for maximizing potential biofuel production. With appropriate soil substrates, fertilization, planning, and management, large areas of reclaimed surface mines can be converted to switchgrass stands to produce high biomass quality and yields to support a bioethanol industry.  相似文献   

15.
Soil organic carbon (SOC) is an important soil property and is strongly influenced by management. Changes in SOC stocks are difficult to measure through direct sampling, requiring both long time periods and intensive sampling to detect small changes in the large, highly variable pool. Models have the potential to predict management-induced changes in SOC stocks, but require long-term data sets for validation. CQESTR is a processed-based C model that uses site weather, management, and crop data to estimate changes in SOC stocks. Crop residue removal for livestock feed or future biofuel feedstock use is a management practice that potentially affects SOC stocks. Simulated changes in SOC using CQESTR were compared to measured SOC changes over 10 years for two contrasting residue removal studies in eastern Nebraska. The rainfed study compared SOC changes in no-tillage continuous corn grown under two N fertilizer rates (120 or 180 kg N ha?1) and two residue removal rates (0 or 50 %). The irrigated study compared SOC changes in continuous corn grown under no-tillage or disk tillage and three residue removal rates (0, 35, or 70 %). After 10 years under these management scenarios, CQESTR-estimated SOC stocks agreed well with the measured SOC stocks at both sites (r 2?=?0.93 at the rainfed site and r 2?=?0.82 at the irrigated site). These results are consistent with other CQESTR validation studies and demonstrate that this process-based model can be a suitable tool for supporting current management and long-term planning decisions.  相似文献   

16.
This study reports the annual carbon balance of a drained riparian fen under two‐cut or three‐cut managements of festulolium and tall fescue. CO2 fluxes measured with closed chambers were partitioned into gross primary production (GPP) and ecosystem respiration (ER) for modelling according to environmental factors (light and temperature) and canopy reflectance (ratio vegetation index, RVI). Methodological assessments were made of (i) GPP models with or without temperature functions (Ft) to adjust GPP constraints imposed by low temperature (<10 °C) and (ii) ER models with RVI or GPP parameters as biomass proxies. The sensitivity of the models was also tested on partial datasets including only alternate measurement campaigns and on datasets only from the crop growing period. Use of Ft in GPP models effectively corrected GPP overestimation in cold periods, and this approach was used throughout. Annual fluxes obtained with ER models including RVI or GPP parameters were similar, and also annual GPP and ER fluxes obtained with full and partial datasets were similar. Annual CO2 fluxes and biomass yield were not significantly different in the crop/management combinations although the individual collars (n = 12) showed some variations in GPP (?1818 to ?2409 g CO2‐C m?2), ER (1071 to 1738 g CO2‐C m?2), net ecosystem exchange (NEE, ?669 to ?949 g CO2‐C m?2) and biomass yield (556 to 1044 g CO2‐C m?2). Net ecosystem carbon balance (NECB), as the sum of NEE and biomass carbon export, was only slightly negative to positive in all crop/management combinations. NECBs, interpreted as emission factors, tended to favour the least biomass producing systems as the best management options in relation to climate saving carbon balances. Yet, considering the down‐stream advantages of biomass for fossil fuel replacement, yield‐scaled carbon fluxes are suggested to be given additional considerations for comparison of management options in terms of atmospheric impact.  相似文献   

17.
As an herbaceous perennial, Miscanthus has attracted extensive attention in bioenergy refinery and ecological remediation due to its high yield and superior environmental adaptability. This review summarizes current research advances of Miscanthus in several aspects including biological properties, biofuels production, and phytoremediation of contaminated soil. Miscanthus has relatively high biomass yield, calorific value, and cellulose content compared with other lignocellulosic bioenergy crops, which make it one of the most promising feedstocks for the production of second‐generation biofuels. Moreover, Miscanthus can endure soil pollutions caused by various heavy metals and survive in a variety of adverse environmental conditions. Therefore, it also has potential applications in ecological remediation of contaminated soil, and reclamation of polluted soil and water resources. Nevertheless, more endeavors are still needed in the genetic improvement and elite cultivar breeding, large‐scale cultivation on marginal land, and efficient conversion to biofuels, when utilizing Miscanthus as a bioenergy crop. Furthermore, more efforts should also be undertaken to translate Miscanthus into a bioenergy crop with the phytoremediation potential.  相似文献   

18.
Recently with limited information from intensified grain-based farming systems in developed countries, livestock production is challenged as being huge consumer of freshwater. The smallholder mixed crop-livestock (MCL) system which is predominant in developing countries like Ethiopia, is maintained with considerable contributions of crop residues (CR) to livestock feeding. Inclusion of CR is expected to reduce the water requirement for feed production resulting improvement in livestock water productivity (LWP). This study was conducted to determine feed water productivity (FWP) and LWP in the MCL system. A multistage sampling procedure was followed to select farmers from different wealth status. Wealth status dictated by ownership of key farm resources such as size of cropland and livestock influenced the magnitude of livestock outputs, FWP and LWP. Significant difference in feed collected, freshwater evapotranspired, livestock outputs and water productivity (WP) were observed between wealth groups, where wealthier are relatively more advantaged. Water productivity of CR and grazing land (GL) analyzed separately showed contrasting differences where better-off gained more on CR, whereas vice versa on GL. These counterbalancing of variations may justify the non-significant difference in total FWP between wealth groups. Despite observed differences, low WP on GL indicates the need of interventions at all levels. The variation in WP of CR is attributed to availability of production factors which restrained the capacity of poor farmers most. A linear relationship between the proportion of CR in livestock feed and FWP was evident, but the relationship with LWP was not likely linear. As CR are inherently low in digestibility and nutritive values which have an effect on feed conversion into valuable livestock products and services, increasing share of CR beyond an optimum level is not a viable option to bring improvements in livestock productivity as expressed in terms of LWP. Ensuring land security, installing proper grazing management, improved forage seed supply and application of soil and water conservation are expected to enhance WP on GL. Given the relationship of production factors with crop biomass and associated WP, interventions targeted to improve provision of inputs, credit, extension and training support due emphasis to the poor would increase CR yield and reduce part of water use for feed production. Optimizing feed value of CR with treatment and supplementation, following water efficient forage production methods and maintenance of healthy productive animals are expected to amplify the benefits from livestock and eventually improve LWP.  相似文献   

19.
Yields of willow biomass crops have large impacts on production, economic, energy, and environmental assessments of these systems. Studies that report data for three or more rotations show various yield quantities and patterns, and few of these studies investigate North American cultivars. This study reports yield data from 18 willow cultivars over three rotations at two research sites (Belleville and Tully) in New York State, USA. Mean yields of the top five cultivars after three rotations were 12.5 Mg ha?1 year?1 (Belleville) and 10.8 Mg ha?1 year?1 (Tully). Seven cultivars had statistically higher yields at Belleville than at Tully. Repeated measures modeling indicated that site by cultivar by time interaction was present, with 13 out of 36 site-cultivar combinations showing quadratic yield trends over time, three showing linear trends, and 20 showing no trend. The large proportion of site-cultivar combinations with consistent yields indicates stability in biomass production over time. Spearman rank correlation coefficients analyzing cultivar rank after one and three rotations were 0.91 (Belleville) and 0.83 (Tully), though the highest yielding cultivars varied by site. Planting a suite of five cultivars evaluated for high yield after the first rotation led to 1.6–1.7 % losses in potential yield compared to the highest producing suite evaluated after three rotations at the same site. However, planting a suite of cultivars evaluated for high yield after the first rotation at a different site led to 10.7–13.6 % losses in potential yield with considerable economic consequences.  相似文献   

20.
Weeds are both harmful for agricultural production and an essential component of biodiversity in agricultural landscapes. Therefore, new cropping systems aiming at both maximising weed-related biodiversity and minimising weed harmfulness are needed. New cropping systems are now increasingly designed with weed dynamics models but these usually only consider weed densities or crop yield losses. The present paper proposed a set of indicators for assessing the impact on crop production and biodiversity of weed communities simulated with a cropping system model. Five harmfulness indicators were developed to take account of the criteria most frequently listed by farmers via an internet survey: (1) crop yield loss, (2) harvest pollution by weed seeds, stems and leaves, (3) harvesting problems due to green weed biomass blocking the combine, and (4) field infestation represented by weed biomass averaged over cropping seasons. A fifth indicator was added, i.e. (5) the increase in crop disease (i.e. take-all disease of cereals) in the presence of weeds. The biodiversity indicators were chosen in collaboration with ecologists. Two indicators reflect the weed contribution to vegetal biodiversity: (1) species richness and (2) Pielou's index for species equitability. Three other indicators were developed to assess weeds as a trophic resource for other organisms in the agro-ecosystems: (3) the number of weed seeds present on soil surface in autumn and winter to feed field birds, (4) lipid-rich seeds on soil surface in summer to feed insects such as carabids, and (5) weed flowers in spring and summer to feed domestic bees. These indicators were tested in a series of contrasted cropping systems identified in farm surveys and simulated with FlorSys. Analyses of variance showed that the cropping system and the crop sequence presented the highest impact on indicator values. Weather scenario and pedoclimate had little effect. Antagonisms and synergies between weed-related harmfulness and biodiversity were identified with Spearman correlations. Harmfulness indicators were all positively correlated, except for additional disease risk which was at best poorly correlated with other indicators. Most weed-related biodiversity indicators were also positively correlated, except species richness which was negatively correlated with species equitability, bird resource and insect resource. Weed harmfulness generally increased with increasing weed-related biodiversity. These correlations were though weak, and others were negative, showing that increased biodiversity could occur with decreased harmfulness (e.g. trophic resource for insects vs. yield loss or field infestation). Consequently, there are cropping systems that reconcile agricultural production and biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号