首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
An Escherichia coli strain producing human tumor necrosis factor (TNF-α) was obtained using a semisynthetic gene partially optimized in respect of codon composition and a phage T7 promoter. The expression product was accumulated in cells as inclusion bodies in a yield of 50–70 mg/l of culture medium. The recombinant TNF-α in the form of inclusion bodies was used for immunization of rats to give a polyclonal antiserum. The resulting antibodies were specific under the immunoblotting conditions to the antigen used for the immunization. A dilution-based refolding procedure was developed; it provided a yield of soluble protein exceeding 85%.  相似文献   

3.
Bacterial lipoproteins comprise a subset of membrane proteins that are covalently modified with lipids at the amino-terminal Cys. Lipoproteins are involved in a wide variety of functions in bacterial envelopes. Escherichia coli has more than 90 species of lipoproteins, most of which are located on the periplasmic surface of the outer membrane, while others are located on that of the inner membrane. In order to elucidate the mechanisms by which outer-membrane-specific lipoproteins are sorted to the outer membrane, biochemical, molecular biological and crystallographic approaches have been taken. Localization of lipoproteins on the outer membrane was found to require a lipoprotein-specific sorting machinery, the Lol system, which is composed of five proteins (LolABCDE). The crystal structures of LolA and LolB, the periplasmic chaperone and outer-membrane receptor for lipoproteins, respectively, were determined. On the basis of the data, we discuss here the mechanism underlying lipoprotein transfer from the inner to the outer membrane through Lol proteins. We also discuss why inner membrane-specific lipoproteins remain on the inner membrane.  相似文献   

4.
Although Escherichia coli does not have a natural transformation process, strains of E. coli can incorporate extracellular plasmids into cytoplasm 'naturally' at low frequencies. A standard method was developed in which stationary phase cells were concentrated, mixed with plasmids, and then plated on agar plates with nutrients which allowed cells to grow. Transformed cells could then be selected by harvesting cells and plating again on selective agar plates. Competence developed in the lag phase, but disappeared during exponential growth. As more plasmids were added to the cell suspension, the number of transformants increased, eventually reaching a plateau. Supercoiled monomeric or linear concatemeric DNA could transform cells, while linear monomeric DNA could not. Plasmid transformation was not related to conjugation and was recA-independent. Most of the E. coli strains surveyed had this process. All tested plasmids, except pACYC184, could transform E. coli. Insertion of a DNA fragment containing the ampicillin resistance gene into pACYC184 made the plasmid transformable. By inserting random 20-base-pair oligonucleotides into pACYC184 and selecting for transformable plasmids, a most frequent sequence was identified. This sequence resembled the bacterial interspersed medium repetitive sequence of E. coli, suggesting the existence of a recognition sequence. We conclude that plasmid natural transformation exists in E. coli.  相似文献   

5.
DNA microarrays were used to study the gene expression profile of Escherichia coli JM109 and K12 biofilms. Both glass wool in shake flasks and mild steel 1010 plates in continuous reactors were used to create the biofilms. For the biofilms grown on glass wool, 22 genes were induced significantly (p0.05) compared to suspension cells, including several genes for the stress response (hslS, hslT, hha, and soxS), type I fimbriae (fimG), metabolism (metK), and 11 genes of unknown function (ybaJ, ychM, yefM, ygfA, b1060, b1112, b2377, b3022, b1373, b1601, and b0836). The DNA microarray results were corroborated with RNA dot blotting. For the biofilm grown on mild steel plates, the DNA microarray data showed that, at a specific growth rate of 0.05/h, the mature biofilm after 5 days in the continuous reactors did not exhibit differential gene expression compared to suspension cells although genes were induced at 0.03/h. The present study suggests that biofilm gene expression is strongly associated with environmental conditions and that stress genes are involved in E. coli JM109 biofilm formation.  相似文献   

6.
Corn cob hydrolysates, with xylose as the dominant sugar, were fermented to ethanol by recombinant Escherichia coli KO11. When inoculum was grown on LB medium containing glucose, fermentation of the hydrolysate was completed in 163 h and ethanol yield was 0.50 g ethanol/g sugar. When inoculum was grown on xylose, ethanol yield dropped, but fermentation was faster (113 h). Hydrolysate containing 72.0 g/l xylose and supplemented with 20.0 g/l rice bran was readily fermented, producing 36.0 g/l ethanol within 70 h. Maximum ethanol concentrations were not higher for fermentations using higher cellular concentration inocula. A simulation of an industrial process integrating pentose fermentation by E. coli and hexose fermentation by yeast was carried out. At the first step, E. coli fermented the hydrolysate containing 85.0 g/l xylose, producing 40.0 g/l ethanol in 94 h. Baker's yeast and sucrose (150.0 g/l) were then added to the spent fermentation broth. After 8 h of yeast fermentation, the ethanol concentration reached 104.0 g/l. This two-stage fermentation can render the bioconversion of lignocellulose to ethanol more attractive due to increased final alcohol concentration. Journal of Industrial Microbiology & Biotechnology (2002) 29, 124–128 doi:10.1038/sj.jim.7000287 Received 20 February 2002/ Accepted in revised form 04 June 2002  相似文献   

7.
A special Escherichia coli strain capable of producing a leaderless lacZ mRNA from the chromosomal lac promoter was constructed to study the mechanism of the leaderless mRNA translation. The translation efficiency of this noncanonical mRNA is very low in comparison with the canonical cellular templates, but it increases by one order of magnitude in the presence of chromosomal mutations in the genes encoding ribosomal S1 and S2 proteins. The new strain possesses obvious advantages over the commonly used plasmid constructs (first of all, due to the constant dosage of lacZ gene in the cell) and opens the possibilities of investigation of the specific conditions for the leaderless mRNA translation in vivo using the molecular genetic approaches.  相似文献   

8.
The phenylalanine pathway flux is controlled by two types of regulators, those that are specific to the pathway, as well as by global regulators. In order to demonstrate the importance of these global regulators, we first removed the pathway-specific regulators using all possible combinations of gene knockouts and knockins. We found that genes like aroG fbr performed best individually as well as in combination with other genes, while other genes like tyrA and tyrR worked only in combination with other modifications. Knocking in the tktA gene under a tyrR promoter and knocking out pykF further increased phenylalanine production demonstrating that the supply of precursor via PEP and E4P is also a rate-limiting step. Finally, we tested the role of global regulators on this deregulated pathway and found that Fis overexpression helps in both enhancing and sustaining the flux through this pathway. This work opens up the possibility of using global regulators in synergy with pathway-specific modifications to enhance product yields.  相似文献   

9.
Park JS  Han KY  Song JA  Ahn KY  Seo HS  Lee J 《Biotechnology letters》2007,29(10):1513-1518
Using 2-dimensional gel electrophoresis, the Escherichia coli proteome response to a heat-shock stress was analyzed and a 1.6-fold increase of malate dehydrogenase was observed even under the heat-shock condition where the total number of soluble proteins decreased by about 5%. We subsequently demonstrated that, as an N-terminus fusion expression partner, malate dehydrogenase facilitated the folding of, and dramatically increased the solubility of, many aggregation-prone heterologous proteins in E. coli cytoplasm. Therefore, malate dehydrogenase is well suited for production of a biologically active fusion mutant of cutinase (Pseudomonas putida origin) that is currently of considerable to biotechnology and commercial industries.  相似文献   

10.
Escherichia coli-expressed a hybrid xylanase, Btx, encoded by a designed hybrid xylanase gene btx was purified. The molecular mass of the enzyme was estimated to be 22 kDa. The K m and k cat values for Btx were 1.9 mg/ml and 140 s−1, respectively. It hydrolyzed xylan principally to xylobiose and xylotriose, and was functionally similar to family 11 xylanases. As some differences were found in the hydrolytic products between birchwood xylan and wheat bran insoluble xylan, the xylan binding domains in xylanase Btx must have different effects on soluble and insoluble xylan.  相似文献   

11.
The ATP pool in Escherichia coli is a magnetic-dependent characteristic of microorganism vital activity. It depends on the values of the external static magnetic field and the existence of magnetic moment of magnesium isotopes nuclei added to the growth nutrient medium. The combined effects of the magnetic field 70–95 mT and magnesium magnetic isotope 25Mg on E. coli bacteria leads to increase intracellular concentration of ATP. Magnetic-field effects in the range of 0.8–16 mT, registered for all bacteria regardless of the magnesium-isotopic enrichment of nutrient medium, evidence about the sensitivity of intracellular processes to weak magnetic fields.  相似文献   

12.
The lipopolysaccharide (LPS) of Escherichia coli M-17 was isolated, studied, chemically identified, and shown to be an apyrogenic compound of low toxicity. Investigation of the effect of this LPS on T- and B-lymphocytes suggests that it can be used as a mitogen in blast transformation reactions, as it is only slightly less active than the commercial preparation. Double immunodiffusion in agar by Ouchterlony revealed that the LPS of E. coli M-17 in a homologous system exhibited an antigenic activity and did not interact with the antisera against representatives of other Enterobacteriaceae species (Budvicia aquatica, Rahnella aquatilis, and Pragia fontium) in serological cross-reactions. Mild acid hydrolysis yielded the following structural components of the lipopolysaccharide molecule: lipid A, core oligosaccharide, and O-specific polysaccharide. The structure of the O-specific polysaccharide determined using the data on the monosaccharide composition and the 1H and 13NMR spectra was found to be typical of representatives of the E. coli serogroup O2:   相似文献   

13.
Ge B  Tang Z  Lin L  Ren Y  Yang Y  Qin S 《Biotechnology letters》2005,27(11):783-787
A recombinant allophycocyanin (rAPC), used for treatment of tumors, has been expressed in E. coli which was grown in glucose fed-batch culture in a 30 l fermentor. Recombinant allophycocyanin was purified from soluble E. coli cell lysate using hydrophobic interaction chromatography followed by chromatography using amylose affinity column. The purity of product was greater than 98% and yielded an average of 5.5 g kg−1 dry cells. Recombinant allophycocyanin significantly inhibited H22 hepatoma (p ( 0.01) in mice with inhibition rates ranging from 36% to 62% with doses from 6.25 to 50 mg kg−1 d−1.  相似文献   

14.
Sokawa et al. suggest that rel- strains of Escherichia coli possess abnormal protein synthesizing machinery, which cannot carry out normal protein synthesis when the supply of amino-acids is limited.  相似文献   

15.
Cytochrome bd from Escherichia coli is able to oxidize such substrates as guaiacol, ferrocene, benzohydroquinone, and potassium ferrocyanide through the peroxidase mechanism, while none of these donors is oxidized in the oxidase reaction (i.e. in the reaction that involves molecular oxygen as the electron acceptor). Peroxidation of guaiacol has been studied in detail. The dependence of the rate of the reaction on the concentration of the enzyme and substrates as well as the effect of various inhibitors of the oxidase reaction on the peroxidase activity have been tested. The dependence of the guaiacol-peroxidase activity on the H2O2 concentration is linear up to the concentration of 8 mM. At higher concentrations of H2O2, inactivation of the enzyme is observed. Guaiacol markedly protects the enzyme from inactivation induced by peroxide. The peroxidase activity of cytochrome bd increases with increasing guaiacol concentration, reaching saturation in the range from 0.5 to 2.5 mM, but then starts falling. Such inhibitors of the ubiquinol-oxidase activity of cytochrome bd as cyanide, pentachlorophenol, and 2-n-heptyl 4-hydroxyquinoline-N-oxide also suppress its guaiacol-peroxidase activity; in contrast, zinc ions have no influence on the enzyme-catalyzed peroxidation of guaiacol. These data suggest that guaiacol interacts with the enzyme in the center of ubiquinol binding and donates electrons into the di-heme center of oxygen reduction via heme b 558, and H2O2 is reduced by heme d. Although the peroxidase activity of cytochrome bd from E. coli is low compared to peroxidases, it might be of physiological significance for the bacterium itself and plays a pathophysiological role for humans and animals.  相似文献   

16.
Solvent stress occurs during whole-cell biocatalysis of organic chemicals. Organic substrates and/or products may accumulate in the cellular membranes of whole cells, causing structural destabilization of the membranes, which leads to disturbances in cellular carbon and energy metabolism. Here, we investigate the effect of cyclohexanone on carbon metabolism in Escherichia coli BL21 and Corynebacterium glutamicum ATCC13032. Adding cyclohexanone to the culture medium (i.e., glucose mineral medium) resulted in a decreased specific growth rate and increased cellular maintenance energy in both strains of bacteria. Notably, carbon metabolism, which is mainly involved to increase cellular maintenance energy, was very different between the bacteria. Carbon flux into the acetic acid fermentation pathway was dominantly enhanced in E. coli, whereas the TCA cycle appeared to be activated in C. glutamicum. In fact, carbon flux into the TCA cycle in E. coli appeared to be reduced with increasing amounts of cyclohexanone in the culture medium. Metabolic engineering of E. coli cells to maintain or improve TCA cycle activity and, presumably, that of the electron transport chain, which are involved in regeneration of cofactors (e.g., NAD(P)H and ATP) and formation of toxic metabolites (e.g., acetic acid), may be useful in increasing solvent tolerance and biotransformation of organic chemicals (e.g., cyclohexanone).  相似文献   

17.
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.  相似文献   

18.
Treponema denticola is a small anaerobic spirochete often isolated from periodontal lesions and closely associated with periodontal diseases. This bacterium possesses a particular arginine peptidase activity (previously called BANA-peptidase or trypsin-like enzyme) that is common to the three cultivable bacterial species most highly associated with severe periodontal disease. We recently reported the identification of the opdB locus that encodes the BANA-peptidase activity of T. denticola through DNA sequencing and mutagenesis studies. In the present study, we report expression of T. denticola OpdB peptidase in Escherichia coli. The opdB PCR product was cloned into pET30b and then transformed into the E. coli BL21 (DE3)/pLysS expression strain. Assays of enzymatic activities in E. coli containing T. denticola opdB showed BANA-peptidase activity similar to that of T. denticola. Availability of this recombinant expression system producing active peptidase will facilitate characterization of the potential role of this peptidase in periodontal disease etiology.  相似文献   

19.
In this study, we developed a microplate sandwich analysis of Escherichia coli and Staphylococcus aureus bacterial pathogens based on the interaction of their cell wall carbohydrates with natural receptors called lectins. An immobilized lectin-cell-biotinylated lectin complex was formed in this assay. Here, we studied the binding specificity of several plant lectins to E. coli and S. aureus cells, and pairs characterized by high-affinity interactions were selected for the assay. Wheat germ agglutinin and Ricinus communis agglutinin were used to develop enzyme-linked lectinosorbent assays for E. coli and S. aureus cells with the detection limits of 4 × 106 and 5 × 105 cells/mL, respectively. Comparison of the enzyme-linked immonosorbent assay and the enzyme-linked lectinosorbent assay demonstrated no significant differences in detection limit values for E. coli. Due to the accessibility and universality of lectin reagents, the proposed approach is a promising tool for the control of a wide range of bacterial pathogens.  相似文献   

20.
Plasmids pKS5 and pKSrec30 carrying normal and mutant alleles of the Deinococcus recA gene controlled by the lactose promoter slightly increase radioresistance of Escherichia coli cells with mutations in genes recA and ssb. The RecA protein of D. radiodurans is expressed in E. coli cells, and its synthesis can be supplementary induced. The radioprotective effect of the xenologic protein does not exceed 1.5 fold and yields essentially to the contribution of plasmid pUC19-recA1.1 harboring the E. coli recA + gene in the recovery of resistance of the ΔrecA deletion mutant. These data suggest that the expression of D. radiodurans recA gene in E. coli cells does not complement mutations at gene recA in the chromosome possibly due to structural and functional peculiarities of the D. radiodurans RecA protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号