共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite a long and valuable history, human-animal chimera research has often been questioned. Among the moral issues raised by chimeras is the concept that integration of human cells into anatomical locations such as the brain might endow animals with "human-like" capacities including self-awareness. We present a justification for one type of human-animal chimera experiment: the evaluation of hES cell developmental potency via teratoma formation in immunodeficient mice. We argue that this experiment raises no significant moral concerns and should be the jurisdiction of animal care and use committees and exempt from formal review by the stem cell research oversight process. 相似文献
2.
All cultured cells develop chromosome changes over time, including cultures of human embryonic stem cells (hESC), but only those cells with adaptive chromosomes changes survive. The most frequent chromosome changes in hESC cultures are trisomy 12 and trisomy 17. Cells with these trisomies are indistinguishable from normal cells by appearance and also demonstrate typical markers of pluripotency, making them difficult to identify without cytogenetic analysis. Early detection of these cells is essential since cells with trisomy 12 and 17 can replace the normal cell population in 5-10 passages. Cytogenetic analysis using G-banding is considered to be the gold standard for detecting chromosome abnormalities and, when used in combination with interphase FISH, provides a sensitive method for early detection of cytogenetic aberrations, such as full and partial trisomies of chromosomes 12 and 17. The following discussion describes the cytogenetic methods used in our laboratory to study cultured hESCs, along with recommendations for integrating these methods into a plan for routine cell line quality control. 相似文献
3.
Jie Hao Jiani Cao Lei Wang Aijin Ma Si Chen Jinfeng Ding Liu Wang Boqiang Fu Yu Zhang Xuetao Pei Peng Xiang Qiyuan Li Yong Zhang Jiaxi Zhou Shijun Hu Junying Yu Jun Wei Huanxin Zhu Glyn Stacey Tongbiao Zhao Qi Zhou 《Cell proliferation》2020,53(12)
‘Requirements for Human Embryonic Stem Cells’ is the first set of guidelines on human embryonic stem cells in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the technical requirements, test methods, test regulations, instructions for use, labelling requirements, packaging requirements, storage requirements and transportation requirements for human embryonic stem cells, which is applicable to the quality control for human embryonic stem cells. It was originally released by the China Society for Cell Biology on 26 February 2019 and was further revised on 30 April 2020. We hope that publication of these guidelines will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of human embryonic stem cells for applications. 相似文献
4.
Mayte Suárez-Fariñas Scott Noggle Michael Heke Ali Hemmati-Brivanlou Marcelo O Magnasco 《BMC genomics》2005,6(1):1-11
Background
The human genome carries a high load of proviral-like sequences, called Human Endogenous Retroviruses (HERVs), which are the genomic traces of ancient infections by active retroviruses. These elements are in most cases defective, but open reading frames can still be found for the retroviral envelope gene, with sixteen such genes identified so far. Several of them are conserved during primate evolution, having possibly been co-opted by their host for a physiological role.Results
To characterize further their status, we presently sequenced 12 of these genes from a panel of 91 Caucasian individuals. Genomic analyses reveal strong sequence conservation (only two non synonymous Single Nucleotide Polymorphisms [SNPs]) for the two HERV-W and HERV-FRD envelope genes, i.e. for the two genes specifically expressed in the placenta and possibly involved in syncytiotrophoblast formation. We further show - using an ex vivo fusion assay for each allelic form - that none of these SNPs impairs the fusogenic function. The other envelope proteins disclose variable polymorphisms, with the occurrence of a stop codon and/or frameshift for most - but not all - of them. Moreover, the sequence conservation analysis of the orthologous genes that can be found in primates shows that three env genes have been maintained in a fully coding state throughout evolution including envW and envFRD.Conclusion
Altogether, the present study strongly suggests that some but not all envelope encoding sequences are bona fide genes. It also provides new tools to elucidate the possible role of endogenous envelope proteins as susceptibility factors in a number of pathologies where HERVs have been suspected to be involved. 相似文献5.
Skeletal myogenesis by human embryonic stem cells 总被引:4,自引:0,他引:4
We have examined the myogenic potential of human embryonic stem (hES) cells in a xeno-transplantation animal model. Here we show that precursors differentiated from hES cells can undergo myogenesis in an adult environment and give rise to a range of cell types in the myogenic lineage. This study provides direct evidences that hES cells can regenerate both muscle and satellite cells in vivo and are another promising cell type for treating muscle degenerative disorders in addition to other myogenic cell types. 相似文献
6.
Nuclear reprogramming by human embryonic stem cells 总被引:3,自引:0,他引:3
Embryonic stem cells have two unique properties. They are capable of indefinite self-renewal and, being pluripotent, they can differentiate into all possible cell types, including germ cells. A new study by Cowan et al. (2005) published in Science shows that human embryonic stem cells are able to reprogram the nuclei of fully differentiated human somatic cells, apparently conferring on them a pluripotent state. 相似文献
7.
Tremoleda JL Forsyth NR Khan NS Wojtacha D Christodoulou I Tye BJ Racey SN Collishaw S Sottile V Thomson AJ Simpson AH Noble BS McWhir J 《Cloning and stem cells》2008,10(1):119-132
Although the use of embryonic stem cells in the assisted repair of musculoskeletal tissues holds promise, a direct comparison of this cell source with adult marrow-derived stem cells has not been undertaken. Here we have compared the osteogenic differentiation potential of human embryonic stem cells (hESC) with human adult-derived stem cells in vivo. hESC lines H7, H9, the HEF-1 mesenchymal-like, telomerized H1 derivative, the human embryonic kidney epithelial cell line HEK293 (negative control), and adult human mesenchymal stem cells (hMSC) were either used untreated or treated with osteogenic factors for 4 days prior to injection into diffusion chambers and implantation into nude mice. After 11 weeks in vivo chambers were removed, frozen, and analyzed for evidence of bone, cartilage, and adipose tissue formation. All hESCs, when pretreated with osteogenic (OS) factors gave rise exclusively to bone in the chambers. In contrast, untreated hESCs (H9) formed both bone and cartilage in vivo. Untreated hMSCs did not give rise to bone, cartilage, or adipose tissue in vivo, while pretreatment with OS factors engendered both bone and adipose tissue. These data demonstrate that hESCs exposed to OS factors in vitro undergo directed differentiation toward the osteogenic lineage in vivo in a similar fashion to that produced by hMSCs. These findings support the potential future use of hESC-derived cells in regenerative medicine applications. 相似文献
8.
The fetus has pluripotent stem cells that when transferred to mature individuals can generate tumors. However, for reasons yet unknown, tumors form rarely in the fetus and/or the mother during normal gestation. We questioned whether the complement system might protect against tumor formation by pluripotent stem cells. Murine embryonic stem cells were notably more susceptible than cardiomyocytes differentiated from those cells to lysis by complement in heterologous and homologous sera. Treatment of embryonic stem cells with heterologous serum averted tumor formation after residual cells were transplanted into mice. Confirming the importance of homologous complement in preventing formation of tumors, untreated embryonic stem cells formed tumors more quickly in C3-deficient than in wild-type mice. Susceptibility of embryonic stem cells to complement required an intact alternative pathway and was owed at least in part to a relative deficiency of sialic acid on cell surfaces compared with differentiated cells. Susceptibility to complement and resistance to tumors was inversely related to the number of cells transferred. These findings show that formation of tumors from embryonic stem cells is controlled in part by the alternative pathway of complement and suggest that susceptibility to complement might represent a general property of pluripotent stem cells that can be exploited to prevent tumor formation. 相似文献
9.
10.
The ability of human embryonic stem cells to self-renew and differentiate into all cell types of the body suggests that they hold great promise for both medical applications and as a research tool for addressing fundamental questions in development and disease. Here, we provide a concise, step-by-step protocol for the derivation of human embryonic stem cells from embryos by immunosurgical isolation of the inner cell mass. 相似文献
11.
Customized human embryonic stem cells 总被引:1,自引:0,他引:1
Daley GQ 《Nature biotechnology》2005,23(7):826-828
12.
13.
14.
15.
Medawar A Virolle T Rostagno P de la Forest-Divonne S Gambaro K Rouleau M Aberdam D 《PloS one》2008,3(10):e3441
In vivo studies have demonstrated that p63 plays complex and pivotal roles in pluristratified squamous epithelial development, but its precise function and the nature of the isoform involved remain controversial. Here, we investigate the role of p63 in epithelial differentiation, using an in vitro ES cell model that mimics the early embryonic steps of epidermal development. We show that the DeltaNp63 isoform is activated soon after treatment with BMP-4, a morphogen required to commit differentiating ES cells from a neuroectodermal to an ectodermal cell fate. DeltaNp63 gene expression remains high during epithelial development. P63 loss of function drastically prevents ectodermal cells to commit to the K5/K14-positive stratified epithelial pathway while gain of function experiments show that DeltaNp63 allows this commitment. Interestingly, other epithelial cell fates are not affected, allowing the production of K5/K18-positive epithelial cells. Therefore, our results demonstrate that DeltaNp63 may be dispensable for some epithelial differentiation, but is necessary for the commitment of ES cells into K5/K14-positive squamous stratified epithelial cells. 相似文献
16.
Michael E. Breimer Karin Säljö Angela Barone Susann Teneberg 《Glycoconjugate journal》2017,34(6):713-723
The application of human stem cell technology offers theoretically a great potential to treat various human diseases. However, to achieve this goal a large number of scientific issues remain to be solved. Cell surface carbohydrate antigens are involved in a number of biomedical phenomena that are important in clinical applications of stem cells, such as cell differentiation and immune reactivity. Due to their cell surface localization, carbohydrate epitopes are ideally suited for characterization of human pluripotent stem cells. Amongst the most commonly used markers to identify human pluripotent stem cells are the globo-series glycosphingolipids SSEA-3 and SSEA-4. However, our knowledge regarding human pluripotent stem cell glycosphingolipid expression was until recently mainly based on immunological assays of intact cells due to the very limited amounts of cell material available. In recent years the knowledge regarding glycosphingolipids in human embryonic stem cells has been extended by biochemical studies, which is the focus of this review. In addition, the distribution of the human pluripotent stem cell glycosphingolipids in human tissues, and glycosphingolipid changes during human stem cell differentiation, are discussed. 相似文献
17.
Human embryonic stem cells (HESC) are pluripotent stem cells isolated from the inner cell mass of human blastocysts. With
the first successful culturing of HESC, a new era of regenerative medicine was born. HESC can differentiate into almost any
cell type and, in the future, might replace solid organ transplantation and even be used to treat progressive degenerative
diseases such as Parkinson’s disease. Although this sounds promising, certain obstacles remain with regard to their clinical
use, such as culturing HESC under well-defined conditions without exposure to animal proteins, the risk of teratoma development
and finally the avoidance of immune rejection. In this review, we discuss the immunological properties of HESC and various
strategic solutions to circumvent immune rejection, such as stem cell banking, somatic cell nuclear transfer and the induction
of tolerance by co-stimulation blockade and mixed chimerism. 相似文献
18.
Most cells are coated by a dense glycocalyx composed of glycoconjugates such as glycosphingolipids, glycoproteins, and proteoglycans. The overall glycomic profile is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that regulate cell-cell adhesion, the immune response, microbial pathogenesis, and other cellular events. Many cell surface markers were discovered and identified as glycoconjugates such as stage-specific embryonic antigen, Tra-1-60/81 and various other cell surface molecules (e.g., cluster of differentiation). Recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). The glycomic profiles of these cells are highly cell type-specific and reflect cellular alterations, such as development, differentiation and cancerous change. In this mini review, we briefly summarize the glycosylation spectra specific to hESCs and hiPSCs, which cover glycans of all major glycoconjugates (i.e., glycosphingolipids, N- and O-glycans of glycoproteins, and glycosaminoglycans) and free oligosaccharides. 相似文献
19.
Human feeder layers for human embryonic stem cells 总被引:39,自引:0,他引:39
Amit M Margulets V Segev H Shariki K Laevsky I Coleman R Itskovitz-Eldor J 《Biology of reproduction》2003,68(6):2150-2156
Human embryonic stem (hES) cells hold great promise for future use in various research areas, such as human developmental biology and cell-based therapies. Traditionally, these cells have been cultured on mouse embryonic fibroblast (MEF) feeder layers, which permit continuous growth in an undifferentiated stage. To use these unique cells in human therapy, an animal-free culture system must be used, which will prevent exposure to mouse retroviruses. Animal-free culture systems for hES cells enjoy three major advantages in the basic culture conditions: 1). the ability to grow these cells under serum-free conditions, 2). maintenance of the cells in an undifferentiated state on Matrigel matrix with 100% MEF-conditioned medium, and 3). the use of either human embryonic fibroblasts or adult fallopian tube epithelial cells as feeder layers. In the present study, we describe an additional animal-free culture system for hES cells, based on a feeder layer derived from foreskin and a serum-free medium. In this culture condition, hES cells maintain all embryonic stem cell features (i.e., pluripotency, immortality, unlimited undifferentiated proliferation capability, and maintenance of normal karyotypes) after prolonged culture of 70 passages (>250 doublings). The major advantage of foreskin feeders is their ability to be continuously cultured for more than 42 passages, thus enabling proper analysis for foreign agents, genetic modification such as antibiotic resistance, and reduction of the enormous workload involved in the continuous preparation of new feeder lines. 相似文献
20.
《Biochemical and biophysical research communications》2020,521(1):84-90
Current cerebral organoid technology provides excellent in vitro models mimicking the structure and function of the developing human brain, which enables studies on normal and pathological brain; however, further improvements are necessary to overcome the problems of immaturity and dearth of non-parenchymal cells. Vascularization is one of the major challenges for recapitulating processes in the developing human brain. Here, we examined the formation of blood vessel-like structures in cerebral organoids induced by vascular endothelial growth factor (VEGF) in vitro. The results indicated that VEGF enhanced differentiation of vascular endothelial cells (ECs) without reducing neuronal markers in the embryonic bodies (EBs), which then successfully developed into cerebral organoids with open-circle vascular structures expressing an EC marker, CD31, and a tight junction marker, claudin-5, characteristic of the blood-brain barrier (BBB). Further treatment with VEGF and Wnt7a promoted the formation of the outer lining consisting of pericyte-like cells, which surrounded the vascular tubes. RNA sequencing revealed that VEGF upregulated genes associated with tube formation, vasculogenesis, and the BBB; it also changed the expression of genes involved in brain embryogenesis, suggesting a role of VEGF in neuronal development. These results indicate that VEGF treatment can be used to generate vessel-like structures with mature BBB characteristics in cerebral organoids in vitro. 相似文献