首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtiter plates with integrated optical sensing of dissolved oxygen were developed by immobilization of two fluorophores at the bottom of 96-well polystyrene microtiter plates. The oxygen-sensitive fluorophore responded to dissolved oxygen concentration, whereas the oxygen-insensitive one served as an internal reference. The sensor measured dissolved oxygen accurately in optically well-defined media. Oxygen transfer coefficients, k(L)a, were determined by a dynamic method in a commercial microtiter plate reader with an integrated shaker. For this purpose, the dissolved oxygen was initially depleted by the addition of sodium dithionite and, by oxygen transfer from air, it increased again after complete oxidation of dithionite. k(L)a values in one commercial reader were about 10 to 40 h(-1). k(L)a values were inversely proportional to the filling volume and increased with increasing shaking intensity. Dissolved oxygen was monitored during cultivation of Corynebacterium glutamicum in another reader that allowed much higher shaking intensity. Growth rates determined from optical density measurement were identical to those observed in shaking flasks and in a stirred fermentor. Oxygen uptake rates measured in the stirred fermentor and dissolved oxygen concentrations measured during cultivation in the microtiter plate were used to estimate k(L)a values in a 96-well microtiter plate. The resulting values were about 130 h(-1), which is in the lower range of typical stirred fermentors. The resulting maximum oxygen transfer rate was 26 mM h(-1). Simulations showed that the errors caused by the intermittent measurement method were insignificant under the prevailing conditions.  相似文献   

2.
The aim of this study was to gain a better understanding of orbitally shaken bioreactors (OSRs) operated without controllers for pH and dissolved oxygen (DO) concentration. We used cylindrical OSRs with working volumes ranging from 250mL to 200L to determine that the volumetric mass transfer coefficient of oxygen (k(L)a) is a good predictor of the performance of OSRs at different scales. We showed that k(L)a values of 7-10hour(-1) were required to avoid DO limitations and to prevent conditions of low pH during the cultivation of CHO cells. Overall, cell cultures in probe-independent OSRs of different nominal volumes ranging from 250mL to 200L achieved similar cell densities, recombinant protein concentrations, and pH and DO profiles when having the same k(L)a. We conclude that k(L)a is a key parameter for probe-independent bioprocesses in OSRs and can be used as a scale-up factor for their operation.  相似文献   

3.
Oxygen limitation is one of the most frequent problems associated with the application of shaking bioreactors. The gas-liquid oxygen transfer properties of shaken 48-well microtiter plates (MTPs) were analyzed at different filling volumes, shaking diameters, and shaking frequencies. On the one hand, an optical method based on sulfite oxidation was used as a chemical model system to determine the maximum oxygen transfer capacity (OTR(max)). On the other hand, the Respiration Activity Monitoring System (RAMOS) was applied for online measurement of the oxygen transfer rate (OTR) during growth of the methylotropic yeast Hansenula polymorpha. A proportionality constant between the OTR(max) of the biological system and the OTR(max) of the chemical system were indicated from these data, offering the possibility to transform the whole set of chemical data to biologically relevant conditions. The results exposed "out of phase" shaking conditions at a shaking diameter of 1 mm, which were confirmed by theoretical consideration with the phase number (Ph). At larger shaking diameters (2-50 mm) the oxygen transfer rate in MTPs shaken at high frequencies reached values of up to 0.28 mol/L/h, corresponding to a volumetric mass transfer coefficient (k(L)a) of 1,600 1/h. The specific mass transfer area (a) increases exponentially with the shaking frequency up to values of 2,400 1/m. On the contrary, the mass transfer coefficient (k(L)) is constant at a level of about 0.15 m/h over a wide range of shaking frequencies and shaking diameters. However, at high shaking frequencies, when the complete liquid volume forms a thin film on the cylindric wall of the well, the mass transfer coefficient (k(L)) increases linearly to values of up to 0.76 m/h. Essentially, the present investigation demonstrates that the 48-well plate outperforms the 96-well MTP and shake flasks at widely used operating conditions with respect to oxygen supply. The 48-well plates emerge, therefore, as an excellent alternative for microbial cultivation and expression studies combining the advantages of both the high-throughput 96-well MTP and the classical shaken Erlenmeyer flask.  相似文献   

4.
This study demonstrates the applicability of pressurized stirred tank bioreactors for oxygen transfer enhancement in aerobic cultivation processes. The specific power input and the reactor pressure was employed as process variable. As model organism Escherichia coli, Arxula adeninivorans, Saccharomyces cerevisiae and Corynebacterium glutamicum were cultivated to high cell densities. By applying specific power inputs of approx. 48kWm(-3) the oxygen transfer rate of a E. coli culture in the non-pressurized stirred tank bioreactor was lifted up to values of 0.51moll(-1)h(-1). When a reactor pressure up to 10bar was applied, the oxygen transfer rate of a pressurized stirred tank bioreactor was lifted up to values of 0.89moll(-1)h(-1). The non-pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities of more than 40gl(-1) cell dry weight (CDW) of E. coli, whereas the pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities up to 225gl(-1) CDW of A. adeninivorans, 89gl(-1) CDW of S. cerevisiae, 226gl(-1) CDW of C. glutamicum and 110gl(-1) CDW of E. coli. Compared to literature data, some of these cell densities are the highest values ever achieved in high cell density cultivation of microorganisms in stirred tank bioreactors. By comparing the specific power inputs as well as the k(L)a values of both systems, it is demonstrated that only the pressure is a scaleable tool for oxygen transfer enhancement in industrial stirred tank bioreactors. Furthermore, it was shown that increased carbon dioxide partial pressures did not remarkably inhibit the growth of the investigated model organisms.  相似文献   

5.
Effect of oxygen supply on cordycepin production was investigated in submerged cultivation of Cordyceps militaris, a famous traditional Chinese medicinal mushroom, in a 5-L turbine-agitated bioreactor (TAB). Initial volumetric oxygen transfer coefficient (kLa) within the range of 11.5-113.8 h(-1) had significant influence on cordycepin production. The highest cordycepin concentration of 167.5 mg/L was obtained at an initial kLa value of 54.5 h(-1), where a moderate dissolved oxygen (DO) pattern was observed throughout cultivation. The possible correlation between cordycepin production and DO level was explored by DO control experiments, and the results showed that DO within the range of 10-80% of air saturation greatly affected the cultivation process. To obtain a high specific cordycepin formation rate (rho) throughout cultivation, a two-stage DO control strategy was developed based on the analysis of the relationship of rho and DO. That is, DO was controlled at 60% from the beginning of cultivation and then shifted to a lower control level of 30% when rho started to decrease. As a result, a high cordycepin production of 201.1 mg/L and a high productivity of 15.5 mg/(L.d) were achieved, which was enhanced by about 15% and 30% compared to the highest titers obtained in conventional DO control experiments, respectively. The proposed DO control strategy was also applied to a recently developed 5-L centrifugal impeller bioreactor (CIB) with cordycepin production and productivity titers of 188.3 mg/L and 14.5 mg/(L.d). Furthermore, the scale-up of the two-stage DO control process from 5-L CIB to 30-L CIB was successfully demonstrated. The work is useful for the efficient large-scale production of bioactive metabolites by mushroom cultures.  相似文献   

6.
A new scalable reactor was developed by applying a novel mixing principle that allows the large-scale cultivation of mammalian cells simply with surface aeration using air owing to increased liquid-gas transfer compared to standard stirred-tank bioreactors. In the cylindrical vessels (50 mL-1500 L) with a helical track attached to the inside wall, the liquid moved upward onto the track as the result of orbital shaking to increase the liquid-gas interface area significantly. This typically resulted in a 5-10-fold improvement in the volumetric mass transfer coefficient (k(L)a). In a 1500-L helical track vessel with a working volume of 1000 L, a k(L)a of 10h(-1) was obtained at a shaking speed of 39 rpm. Cultivations of CHO cells in a shaken 55-L helical track bioreactor resulted in improved cell growth profiles compared to control cultures in standard systems. These results demonstrated the possibility of using these new bioreactors at scales of 1000 L or more.  相似文献   

7.
The Wave Bioreactor is widely used in cell culture due to the benefits of disposable technology and ease of use. A novel cellbag was developed featuring a frit sparger to increase the system's oxygen transfer. The purpose of this work was to evaluate the sparged cellbag for yeast cultivation. Oxygen mass transfer studies were conducted in simulated culture medium and the sparged system's maximum oxygen mass transfer coefficient (kLa) was 38 h(-1). These measurements revealed that the sparger was ineffective in increasing the oxygen transfer capacity. Cultures of Saccharomyces cerevisiae were successfully grown in oxygen-blended sparged and oxygen-blended standard cellbags. Under steady state conditions for both cellbag designs, kLa values as high as 60 h(-1) were obtained with no difference in growth characteristics. This is the first report of a successful cultivation of a microbe in a Wave Bioreactor comparing conventional seed expansion in shake flasks and stirred tank bioreactors.  相似文献   

8.
A new experimental technique, called oxygen programmed fermentation (OPF), was used to study microbial cultures of the years Pichia stipitis and Candida utilis growing on xylose as carbon and energy source. In the oxygen programmed fermentation, the inlet oxygen mole fraction was continuously changed to scan through a wide range of oxygen uptake rates in a continuous culture. The largest ethanol yields and productivities of P. stipitis were found at oxygen transfer rates below 1.5 mmol L(-1) h(-1). It was found that the ratio between the culture fluorescence and near-IR absorbance increased at oxygen transfer rates lower than 1.5 mmol L(-1) h(-1). Small amounts of ethanol were produced also by C. utilis when the oxygen transfer rate was between 0 and 3 mmol L(-1) h(-1). It is suggested that OPF will form a nice complement to ordinary, microaerobic chemostat experiments, by making the identification of interesting regions of oxygen transfer rates possible in an efficient and time-saving initial experiment. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.

Background

Small-scale micro-bioreactors have become the cultivation vessel of choice during the first steps of bioprocess development. They combine high cultivation throughput with enhanced cost efficiency per cultivation. To gain the most possible information in the early phases of process development, online monitoring of important process parameters is highly advantageous. One of these important process parameters is the oxygen transfer rate (OTR). Measurement of the OTR, however, is only available for small-scale fermentations in shake flasks via the established RAMOS technology until now. A microtiter plate-based (MTP) μRAMOS device would enable significantly increased cultivation throughput and reduced resource consumption. Still, the requirements of miniaturization for valve and sensor solutions have prevented this transfer so far. This study reports the successful transfer of the established RAMOS technology from shake flasks to 48-well microtiter plates. The introduced μRAMOS device was validated by means of one bacterial, one plant cell suspension culture and two yeast cultures.

Results

A technical solution for the required miniaturized valve and sensor implementation for an MTP-based μRAMOS device is presented. A microfluidic cover contains in total 96 pneumatic valves and 48 optical fibers, providing two valves and one optical fiber for each well. To reduce costs, an optical multiplexer for eight oxygen measuring instruments and 48 optical fibers is introduced. This configuration still provides a reasonable number of measurements per time and well. The well-to-well deviation is investigated by 48 identical Escherichia coli cultivations showing standard deviations comparable to those of the shake flask RAMOS system. The yeast Hansenula polymorpha and parsley suspension culture were also investigated.

Conclusions

The introduced MTP-based μRAMOS device enables a sound and well resolved OTR monitoring for fast- and slow-growing organisms. It offers a quality similar to standard RAMOS in OTR determination combined with an easier handling. The experimental throughput is increased 6-fold and the media consumption per cultivation is decreased roughly 12.5-fold compared to the established eight shake flask RAMOS device.
  相似文献   

10.

Background

Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation.

Results

A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures.

Conclusion

The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/? 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.
  相似文献   

11.
After screening potential beta-lactamase producers in a medium containing penicillin G, an inducible (Bacillus subtilis NRS 1125) and a constitutive (Bacillus licheniformis 749/C ATCC 25972) beta-lactamase producer were selected. As the highest enzyme activity was obtained with B. licheniformis 749/C, the effects of the concentration of carbon sources, i.e., glucose, fructose, sucrose, citric acid, and glycerol, and nitrogen sources, i.e., (NH(4))(2)HPO(4), NH(4)Cl, yeast extract, casamino acids and peptone, pH, and temperature on beta-lactamase production were investigated with B. licheniformis 749/C in laboratory scale bioreactors. Among the investigated media, the highest volumetric activity was obtained as 270 U cm(-)(3) in the medium containing 10.0 kg m(-)(3) glucose, 1.18 kg m(-)(3) (NH(4))(2)HPO(4), 8.0 kg m(-)(3) yeast extract, and the salt solution at 32 degrees C and pH(0) = 6.0. By using the designed medium, fermentation and oxygen transfer characteristics of the bioprocess were investigated at V = 3.0 dm(3) bioreactor systems with a V(R) = 1.65 dm(3) working volume at Q(O)/V(R) = 0.5 vvm and N = 500 min(-1). At the beginning of the process the Damk?hler number was <1, indicating that the process was at biochemical reaction limited condition; at t = 2-5 h both mass-transfer and biochemical reaction resistances were effective; and at t = 6-10 h (Da >1) the bioprocess was at mass transfer limited condition. Overall oxygen transfer coefficients (K(L)a) varied between 0.01 and 0.03 s(-)(1), enhancement factor (K(L)a/K(L)a(O)) varied between 1.2 and 2.3, and volumetric oxygen uptake rate varied between 0.001 and 0.003 mol m(-)(3) s(-)(1) throughout the bioprocess. The specific oxygen uptake and the specific substrate consumption rates were the highest at t = 2 h and then decreased with the cultivation. The maximum yield of cells on substrate and the maximum yield of cells on oxygen values were obtained, respectively, as Y(X/S) = 0.34 and Y(X/O) = 1.40, at t = 5 h, whereas the highest yield of substrate on oxygen was obtained as Y(S/O) = 6.94 at t = 3.5 h. The rate of oxygen consumption for maintenance and the rate of substrate consumption for maintenance values were found, respectively, as m(O) = 0.13 kg kg(-)(1) h(-)(1) and m(S) = 3.02 kg kg(-)(1) h(-)(1).  相似文献   

12.
Oxygen transfer performances in intensive microbial cultures are compared with those occuring in coalescing and non-coalescing mineral media. E. coli fed-batch cultures are carried out in a 22 L bioreactor. Biomass concentrations of 80 g(DW) L(-1) are reached, with oxygen consumption rates of up to 0.6 mol L(-1) h(-1). To achieve these high transfer performances, dissipated power e reaches 35 kW m(-3). The hold-up in the culture broth and in the corresponding supernatant matches the non-coalescing mineral medium. Oxygen transfer coefficients, K (L) a in mineral media, and K (T) in the culture broth, are compared. K (T), calculated online from a gas balance method, excesses 1 s(-1). Yet, for given values of e, K (T) is 4-8 times lower than K (L) a determined in the non-coalescing mineral medium. The cell activity modifies the chemical medium properties and reduces the oxygen transfer conductance, as in a non-coalescing ionic medium containing surfactant.  相似文献   

13.
A diffusion-based microreactor system operated with a reaction volume of 8 μL is presented and characterized to intensify the process understanding in microscale cultivations. Its potential as screening tool for biological processes is evaluated. The advantage of the designed microbioreactor is the use for the continuous cultivation mode by integrating online measurement technique for dissolved oxygen (DO) and optical density (OD). A further advantage is the broaden application for biological systems. The bioreactor geometry was chosen to achieve homogeneous flow during continuous process operation. The device consisted of a microstructured top layer made of poly(dimethylsiloxane) (PDMS), which was designed and fabricated using UV-depth and soft lithography assembled with a glass bottom. CFD simulation data used for geometry design were verified via microparticle-image-velocimetry (μPIV). In the used microreactor geometry no concentration gradients occurred along the entire reaction volume because of rapid diffusive mixing, the homogeneous medium flow inside the growth chamber of the microreactor could be realized. Undesirable bubble formation before and during operation was reduced by using degassed medium as well as moistened and moderate incident air flow above the gas permeable PDMS membrane. Because of this a passive oxygen supply of the culture medium in the device is ensured by diffusion through the PDMS membrane. The oxygen supply itself was monitored online via integrated DO sensors based on a fluorescent dye complex. An adequate overall volumetric oxygen transfer coefficient K(L)a as well as mechanical stability of the device were accomplished for a membrane thickness of 300 μm. Experimental investigations considering measurements of OD (online) and several metabolite concentrations (offline) in a modified Verduyn medium. The used model organism Saccharomyces cerevisiae DSM 2155 tended to strong reactor wall growth resembling a biofilm.  相似文献   

14.
The immobilization of living Acetobacter cells by adsorption onto a large-surface-area ceramic support was studied in a pulsed flow reactor. The high oxygen transfer capability of the reactor enabled acetic acid production rates up to 10.4 g L(-1) h(-1) to be achieved. Using a simple mathematical model incorporating both internal and external mass transfer coefficients, it was shown that oxygen transfer in the microbial film controls the reactor productivity.  相似文献   

15.
Based on an integrated approach of genetic engineering, fermentation process development, and downstream processing, a fermentative chymotrypsinogen B production process using recombinant Pichia pastoris is presented. Making use of the P. pastoris AOX1-promotor, the demand for methanol as the single carbon source as well as an inducer of protein secretion enforced the use of an optimized feeding strategy by help of on-line analysis and an advanced controller algorithm. By using an experimental system of six parallel sparged column bioreactors, proteolytic product degradation could be minimized while also optimizing starting conditions for the following downstream processing. This optimization of process conditions resulted in the production of authentic chymotrypsinogen at a final concentration level of 480 mg.L(-)(1) in the whole broth and a biomass concentration of 150 g.L(-)(1) cell dry weight, thus comprising a space-time yield of 5.2 mg.L(-)(1).h(-)(1). Alternatively to the high cell density fermentation approach, a continuous fermentation process was developed to study the effects of reduced cell density toward oxygen demand, cooling energy, and biomass separation. This development led to a process with a highly increased space-time yield of 25 mg.L(-)(1).h(-)(1) while reducing the cell dry weight concentration from 150 g.L(-)(1) in fed-batch to 65 g.L(-)(1) in continuous cultivation.  相似文献   

16.
Monitoring the specific respiration rate (Q(O2)) is a valuable tool to evaluate cell growth and physiology. However, for low Q(O2) values the accuracy may depend on the measurement methodology, as it is the case in animal cell culture. The widely used "Dynamic Method" imposes serious difficulties concerning oxygen transfer cancellation, especially through membrane oxygenation. This paper presents an improved procedure to this method, through an automated control of the gas inlet composition that can minimize the residual oxygen transfer driving force during the Q(O2) measurement phase. The improved technique was applied to animal cell cultivation, particularly three recombinant S2 (Drosophila melanogaster) insect cell lines grown in a membrane aeration bioreactor. The average measurements of the proposed method reached 98% of stationary liquid phase balance method, taken as a reference, compared to 21% when the traditional method was used. Furthermore, this methodology does not require knowledge of the volumetric transfer coefficient k(L)a, which may vary during growth.  相似文献   

17.
A bubble column fitted with an ejector has been tested for its physical and biological performance. The axial diffusion coefficient of the liquid phase in the presence of electrolytes and ethanol was measured by a stimulus-response technique with subsequent evaluation by means of a diffusion model. In contrast to ordinary bubble columns, the coefficient of axial mixing is inversely dependent on the superficial air velocity. The liquid velocity acts in an opposite direction to the backmixing flow in the column. The measurement of volumetric oxygen transfer coefficient in the presence of electrolytes and ethanol was performed using a dynamic gassing-in method adapted for a column. The data were correlated with the superficial air and liquid velocities, total power input, and power for aeration and mixing; the economy coefficient of oxygen transfer was used for finding an optimum ratio of power for aeration and pumping. Growth experiments with Candida utilis on ethanol confirmed some of the above results. Biomass productivity of 2.5 g L(-1) h(-1) testifies about a good transfer capability of the column. Columns fitted with pneumatic and/or hydraulic energy input may be promising for aerobic fermentations considering their mass transfer and mixing characteristics.  相似文献   

18.
Hydrogen-oxidizing bacterium, Alcaligenes eutrophus autotrophically produces biodegradable plastic material, poly(D-3-hydroxybutyrate), P(3HB), from carbon dioxide, hydrogen, and oxygen. In autotrophic cultivation of the microorganism, it is essential to eliminate possible occurrence of gas explosions from the fermentation process. We developed a bench-plant scale, recycled-gas, closed-circuit culture system equipped with several safety features to perform autotrophic cultivation of A. eutrophus by maintaining the oxygen concentration in the substrate gas phase below the lower limit for a gas explosion (6.9%). The culture vessel utilized a baskettype agitator, resulting in a K(L) a value of 2970 h(-1). Oxygen gas was also directly fed to the fermentor separately from the other gases. As a result, 91.3 g . dm(-3) of the cells and 61.9 g . dm(-3) of P(3HB) were obtained after 40 h of cultivation under this oxygen-limited condition. The results compared favorably with those reported for mass production of P(3HB) by heterotrophic fermentation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
Fibronectin splice variant ED B (extracellular domain B) is a promising marker for angiogenesis in growing solid tumors. Currently, recombinant antibodies against ED B are being investigated concerning their potential use, for either therapeutic or diagnostic purposes. Single-chain antibody fragments directed against the ED B can be efficiently expressed in Pichia pastoris; thus, a recombinant strain of the methylotropic yeast P. pastoris was used for this work. Three different forms of scFv antibody fragment are found in the supernatant from this fermentation: covalent homodimer, associative homodimer, and monomer. Both homodimeric forms can be converted to the monomeric form (under reducing conditions) and be efficiently radiolabeled, whereas the monomeric form of scFv already present in the supernatant cannot. It was also found that the fraction of protein in the monomeric form is highly dependent on the mode of induction rather than scFv concentration. This suggests that the monomeric form of the scFv present in the supernatant might be a result of events occurring at the expression, secretion, or folding level. A high cell density fermentation protocol was developed by optimizing methanol induction, yielding the highest scFv antibody fragment production rate and product quality; cell concentration at the induction point and specific methanol uptake rate were found to be the most important control variables. A decrease in specific methanol uptake rate led to a higher specific production rate for the scFv antibody fragment (5.4 microg g(cell) h(-1)). Product quality, i.e., percentage of product in a homodimeric form, also increased with the decrease in methanol uptake rate. Furthermore, the volumetric productivity depended on cell concentration at the induction point, increasing with the increase of cell concentration up to 320 g L(-1) wet cell weight (WCW). The reduction of the methanol feeding rate for induction, and consequently of the oxygen uptake rate, have important consequences for optimizing product titers and quality and thus on the scale-up of this production process; hence one of the major limitations upon high cell density cultivation in bioreactors is keeping the high oxygen transfer rate required. From the results obtained, a scale-up strategy was developed based on the available oxygen transfer rates at larger scales, allowing the definition of the optimum biomass concentration for induction and methanol feeding strategy for maximization of product titer and quality.  相似文献   

20.
The scope of this study included the biodegradation performance and the rate of oxygen transfer in a pilot-scale immobilized soil bioreactor system (ISBR) of 10-L working volume. The ISBR was inoculated with an acclimatized population of contaminant degrading microorganisms. Immobilization of microorganisms on a non-woven polyester textile developed the active biofilm, thereby obtaining biodegradation rates of 81 mg/L x h and 40 mg/L x h for p-xylene and naphthalene, respectively. Monod kinetic model was found to be suitable to correlate the experimental data obtained during the course of batch and continuous operations. Oxygen uptake and transfer rates were determined during the batch biodegradation process. The dynamic gassing-out method was used to determine the oxygen uptake rate (OUR) and volumetric oxygen mass transfer, K(L) a. The maximum volumetric OUR of 255 mg O(2)/L x h occurred approximately at 720-722 h after inoculation, when the dry weight of biomass concentration was 0.67 g/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号