首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perturbations in body weight have been shown to affect energy expenditure and efficiency during physical activity. The separate effects of weight loss and exercise training on exercise efficiency or the proportion of energy derived from fat oxidation during physical activity, however, are not known. The purpose of this study was to determine the separate and combined effects of exercise training and weight loss on metabolic efficiency, economy (EC), and fat oxidation during steady-state moderate submaximal exercise. Sixty-four sedentary older (67 +/- 0.5 yr) overweight to obese (30.7 +/- 0.4 kg/m(2)) volunteers completed 4 mo of either diet-induced weight loss (WL; n = 11), exercise training (EX; n = 36), or the combination of both interventions (WLEX; n = 17). Energy expenditure, gross efficiency (GE), EC, and proportion of energy expended from fat (EF) were determined during a 1-h submaximal (50% of peak aerobic capacity) cycle ergometry exercise before the intervention and at the same absolute work rate after the intervention. We found that EX increased GE by 4.7 +/- 2.2%. EC was similarly increased by 4.2 +/- 2.1% by EX. The addition of concomitant WL to EX (WLEX) resulted in greater increases in GE (9.0 +/- 3.3%) compared with WL alone but not compared with EX alone. These effects remained after adjusting for changes in lean body mass. The proportion of energy derived from fat during the bout of moderate exercise increased with EX and WLEX but not with WL. From these findings, we conclude that exercise training, either alone or in combination with weight loss, increases both exercise efficiency and the utilization of fat during moderate physical activity in previously sedentary, obese older adults. Weight loss alone, however, significantly improves neither efficiency nor utilization of fat during exercise.  相似文献   

2.
Caloric restriction (CR) results in fat loss; however, it may also result in loss of muscle and thereby reduce strength and aerobic capacity (VO2 max). These effects may not occur with exercise-induced weight loss (EX) because of the anabolic effects of exercise on heart and skeletal muscle. We tested the hypothesis that CR reduces muscle size and strength and VO2 max, whereas EX preserves or improves these parameters. Healthy 50- to 60-yr-old men and women (body mass index of 23.5-29.9 kg/m2) were studied before and after 12 mo of weight loss by CR (n = 18) or EX (n = 16). Lean mass was assessed by dual-energy X-ray absorptiometry, thigh muscle volume by MRI, isometric and isokinetic knee flexor strength by dynamometry, and treadmill VO2 max by indirect calorimetry. Both interventions caused significant decreases in body weight (CR: -10.7 +/- 1.4%, EX: -9.5 +/- 1.5%) and lean mass (CR: -3.5 +/- 0.7%, EX: -2.2 +/- 0.8%), with no significant differences between groups. Significant decreases in thigh muscle volume (-6.9 +/- 0.8%) and composite knee flexion strength (-7.2 +/- 3%) occurred in the CR group only. Absolute VO2 max decreased significantly in the CR group (-6.8 +/- 2.3%), whereas the EX group had significant increases in both absolute (+15.5 +/- 2.4%) and relative (+28.3 +/- 3.0%) VO2 max. These data provide evidence that muscle mass and absolute physical work capacity decrease in response to 12 mo of CR but not in response to a similar weight loss induced by exercise. These findings suggest that, during EX, the body adapts to maintain or even enhance physical performance capacity.  相似文献   

3.
Visceral fat has been associated with multiple cardiovascular disease (CVD) risk factors. The aim of this study was to identify anthropometrical measures most closely associated with some well-known CVD risk factors. Because most Asians at risk have normal body mass index (BMI) according to Western standards, we studied healthy nonobese Korean males (n = 102; age: 36.5 +/- 0.8 years, BMI: 23.8 +/- 0.2 kg/m2). Visceral fat area (VFA) at the fourth lumbar vertebra was associated with increased postprandial triglyceride (TG) response (r = 0.53, P < 0.001) and with plasma malondialdehyde (MDA) (r = 0.36, P < 0.01) and PGF2alpha (r = 0.24, P < 0.05). When matched for BMI and age, men with high VFA (HVFA) (>/=100 cm2; n = 27) had higher blood pressure (P < 0.01), increased consumption of cigarettes (P < 0.01), and lower ratio of energy expenditure to calorie intake (P < 0.01) as compared with low VFA men (<100 cm2; n = 27). Men with HVFA showed higher TG, glucose, and insulin responses following fat and oral glucose tolerance tests respectively higher plasma concentrations of MDA (P < 0.001), urinary PGF2alpha (P < 0.05), and lymphocytes deoxyribonucleic acid tail moments (P < 0.01). Conversely, HVFA was associated with lower testosterone, insulin-like growth factor-1, and brachial artery flow-mediated dilation (P < 0.001). In conclusion, our data indicate that visceral fat accumulation, even in nonobese men, is a major factor contributing to increased CVD risk.  相似文献   

4.
Lifespan in rodents is prolonged by caloric restriction (CR) and by mutations affecting the somatotropic axis. It is not known if CR can alter the age‐associated decline in growth hormone (GH), insulin‐like growth factor (IGF)‐1 and GH secretion. To evaluate the effect of CR on GH secretory dynamics; forty‐three young (36.8 ± 1.0 years), overweight (BMI 27.8 ± 0.7) men (n = 20) and women (n = 23) were randomized into four groups; control = 100% of energy requirements; CR = 25% caloric restriction; CR + EX = 12.5% CR + 12.5% increase in energy expenditure by structured exercise; LCD = low calorie diet until 15% weight reduction followed by weight maintenance. At baseline and after 6 months, body composition (DXA), abdominal visceral fat (CT) 11 h GH secretion (blood sampling every 10 min for 11 h; 21:00–08:00 hours) and deconvolution analysis were measured. After 6 months, weight (control: ?1 ± 1%, CR: ?10 ± 1%, CR + EX: ?10 ± 1%, LCD: ?14 ± 1%), fat mass (control: ?2 ± 3%, CR: ?24 ± 3%, CR + EX: ?25 ± 3%, LCD: ?31 ± 2%) and visceral fat (control: ?2 ± 4%, CR: ?28 ± 4%, CR + EX: ?27 ± 3%, LCD: ?36 ± 2%) were significantly (P < 0.001) reduced in the three intervention groups compared to control. Mean 11 h GH concentrations were not changed in CR or control but increased in CR + EX (P < 0.0001) and LCD (P < 0.0001) because of increased secretory burst mass (CR + EX: 34 ± 13%, LCD: 27 ± 22%, P < 0.05) and amplitude (CR + EX: 34 ± 14%, LCD: 30 ± 20%, P < 0.05) but not to changes in secretory burst frequency or GH half‐life. Fasting ghrelin was significantly increased from baseline in all three intervention groups; however, total IGF‐1 concentrations were increased only in CR + EX (10 ± 7%, P < 0.05) and LCD (19 ± 4%, P < 0.001). A 25% CR diet for 6 months does not change GH, GH secretion or IGF‐1 in nonobese men and women.  相似文献   

5.
Intermuscular adipose tissue (IMAT) and visceral adipose tissue (VAT) are associated with insulin resistance. We sought to determine whether exercise-induced weight loss (EX) results in greater reductions in IMAT and VAT compared with similar weight loss induced by calorie restriction (CR) and whether these changes are associated with improvements in glucoregulation. Sedentary men and women (50-60 yr; body mass index of 23.5-29.9 kg/m(2)) were randomized to 1 yr of CR (n = 17), EX (n = 16), or a control group (CON; n = 6). Bilateral thigh IMAT and VAT volumes were quantified using multi-slice magnetic resonance imaging. Insulin sensitivity index (ISI) was determined from oral glucose tolerance test glucose and insulin levels. Weight loss was comparable (P = 0.25) in the CR (-10.8 ± 1.4%) and EX groups (-8.3 ± 1.5%) and greater than in the control group (-2.0 ± 2.4%; P < 0.05). IMAT and VAT reductions were larger in the CR and EX groups than in the CON group (P ≤ 0.05). After controlling for differences in total fat mass change between the CR and EX groups, IMAT and VAT reductions were nearly twofold greater (P ≤ 0.05) in the EX group than in the CR group (IMAT: -45 ±5 vs. -25 ± 5 ml; VAT: -490 ± 64 vs. -267 ± 61 ml). In the EX group, the reductions in IMAT were correlated with increases in ISI (r = -0.71; P = 0.003), whereas in the CR group, VAT reductions were correlated with increases in ISI (r = -0.64; P = 0.006). In conclusion, calorie restriction and exercise-induced weight loss both decrease IMAT and VAT volumes. However, exercise appears to result in preferential reductions in these fat depots.  相似文献   

6.
We investigated whether markers of inflammation, including a cytokine (IL-6), acute-phase reactants [C-reactive protein (CRP) and fibrinogen], and white blood cell (WBC) count are associated with maximal O(2) consumption (Vo(2 max)) in men without coronary heart disease (CHD). In asymptomatic men (n = 172, 51 +/- 9.3 yr old), Vo(2 max) was measured during a symptom-limited graded treadmill exercise test. Physical activity level was assessed by a standardized questionnaire. IL-6 and CRP were measured by immunoassays, fibrinogen by the Clauss method, and WBC count with a Coulter counter. IL-6 and CRP were logarithmically transformed to reduce skewness. Multivariable regression was used to assess whether markers of inflammation were associated with Vo(2 max) after adjustment for age, body mass index, CHD risk factors, and lifestyle variables (physical activity level, percent body fat, and alcohol intake). Vo(2 max) was 34.5 ml.kg(-1).min(-1) (SD 6.1). Log IL-6 (r = -0.38, P < 0.001), log CRP (r = -0.40, P < 0.001), fibrinogen (r = -0.42, P < 0.001), and WBC count (r = -0.22, P = 0.004) were each correlated with Vo(2 max). In separate multivariable linear regression models that adjusted for age, body mass index, CHD risk factors, and lifestyle variables, log IL-6 [beta-coeff = -1.66 +/- 0.63 (SE), P = 0.010], log CRP [beta-coeff = -0.99 +/- 0.33 (SE), P = 0.003], fibrinogen [beta-coeff = -1.51 +/- 0.44 (SE), P = 0.001], and WBC count [beta-coeff = -0.52 +/- 0.30 (SE), P = 0.088] were each inversely associated with Vo(2 max). In conclusion, higher circulating levels of IL-6, CRP, and fibrinogen are independently associated with lower Vo(2 max) in asymptomatic men.  相似文献   

7.
We studied the effect of regular physical activity on cardiac and vascular autonomic modulation during a 5-yr controlled randomized training intervention in a representative sample of older Finnish men. Heart rate variability (HRV) and blood pressure variability (BPV) are markers of cardiac and vascular health, reflecting cardiac and vascular autonomic modulation. One hundred and forty randomly selected 53- to 63-yr-old men were randomized into two identical groups: an intervention (EX) group and a reference (CO) group, of which 89 men remained until the final analysis (EX: n = 47; CO: n = 42). The EX group trained for 30-60 min three to five times a week with an intensity of 40-60% of maximal oxygen consumption. The mean weekly energy expenditure of the training program for the 5-yr training period was 3.80 MJ, and 71% of the EX group exceeded the mean. The EX group had a significantly (P < 0.01) higher oxygen consumption at ventilatory aerobic threshold (VO2VT) than the CO group at the 5-yr time point. VO2VT had a tendency to increase in the EX group and decrease in the CO group (interaction P < 0.001) from the baseline to the 5-yr time point. Peak performance did not change. Low-frequency power of R-R interval variability decreased in the EX group (P < 0.01, by 6%) from the baseline to the 5-yr time point. BPV did not change. In conclusion, low-intensity regular exercise training did not prevent HRV from decreasing or change BPV in 5 yr in older Finnish men.  相似文献   

8.
Abdominal obesity is associated with metabolic risk factors for coronary heart disease (CHD). Although we previously found that using liposuction surgery to remove abdominal subcutaneous adipose tissue (SAT) did not result in metabolic benefits, it is possible that postoperative inflammation masked the beneficial effects. Therefore, this study provides a long-term evaluation of a cohort of subjects from our original study. Body composition and metabolic risk factors for CHD, including oral glucose tolerance, insulin resistance, plasma lipid profile, and blood pressure were evaluated in seven obese (39 +/- 2 kg/m(2)) women before and at 10, 27, and 84-208 weeks after large-volume liposuction. Liposuction surgery removed 9.4 +/- 1.8 kg of body fat (16 +/- 2% of total fat mass; 6.1 +/- 1.4 kg decrease in body weight), primarily from abdominal SAT; body composition and weight remained the same from 10 through 84-208 weeks. Metabolic endpoints (oral glucose tolerance, homeostasis model assessment of insulin resistance, blood pressure and plasma triglyceride (TG), high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol concentrations) obtained at 10 through 208 weeks were not different from baseline and did not change over time. These data demonstrate that removal of a large amount of abdominal SAT by using liposuction does not improve CHD metabolic risk factors associated with abdominal obesity, despite a long-term reduction in body fat.  相似文献   

9.
Dietary carbohydrate restriction (CR) presents a challenge to glucose homeostasis. Despite the popularity of CR diets, little is known regarding the metabolic effects of CR. The purpose of this study was to examine changes in whole body carbohydrate oxidation, glucose availability, endogenous glucose production, and peripheral glucose uptake after dietary CR, without the confounding influence of a negative energy balance. Postabsorptive rates of glucose appearance in plasma (R(a); i.e., endogenous glucose production) and disappearance from plasma (R(d); i.e., glucose uptake) were measured using isotope dilution methods after a conventional diet [60% carbohydrate (CHO), 30% fat, and 10% protein; kcals = 1.3 x resting energy expenditure (REE)] and after 2 days and 7 days of CR (5% CHO, 60% fat, and 35% protein; kcals = 1.3 x REE) in eight subjects (means +/- SE; 29 +/- 4 yr; BMI 24 +/- 1 kg/m(2)) during a 9-day hospital visit. Postabsorptive plasma glucose concentration was reduced (P = 0.01) after 2 days but returned to prediet levels the next day and remained at euglycemic levels throughout the diet (5.1 +/- 0.2, 4.3 +/- 0.3, and 4.8 +/- 0.4 mmol/l for prediet, 2 days and 7 days, respectively). Glucose R(a) and glucose R(d) were reduced to below prediet levels (9.8 +/- 0.6 micromol x kg(-1) x min(-1)) after 2 days of CR (7.9 +/- 0.3 micromol x kg(-1) x min(-1)) and remained suppressed after 7 days (8.3 +/- 0.4 micromol x kg(-1) x min(-1); both P < 0.001). A greater suppression in carbohydrate oxidation, compared with the reduction in glucose R(d), led to an increased (all P 相似文献   

10.
White adipose tissue is the principal site for lipid accumulation. Males and females maintain distinctive white adipose tissue distribution patterns. Specifically, males tend to accumulate relatively more visceral fat, whereas females accumulate relatively more subcutaneous fat. The phenomenon of maintaining typical sex-specific fat distributions suggests sex-specific mechanisms that regulate energy balance and adiposity. We used two distinct approaches to reduce fat mass, caloric restriction (CR), and surgical fat removal (termed lipectomy) and assessed parameters involved in the regulation of energy balance. We found that male and female mice responded differentially to CR- and to lipectomy-induced fat loss. Females decreased energy expenditure during CR or after lipectomy. In contrast, males responded by eating more food during food return after CR or after lipectomy. Female CR mice conserved subcutaneous fat, whereas male CR mice lost adiposity equally in the subcutaneous and visceral depots. In addition, female mice had a reduced capability to restore visceral fat after fat loss. After CR, plasma leptin levels decreased in male but not in female mice. The failure to increase food intake after returning to ad libitum intake in females could be due to the relatively stable levels of leptin. In summary, we have found sexual dimorphisms in the response to fat loss that point to important underlying differences in the strategies by which male and female mice regulate body weight.  相似文献   

11.
Post-meal energy expenditure (TEM) was compared for 14 healthy obese (body fat = 45.3%, body mass index, BMI = 35.9 kg m-2) and 9 healthy nonobese (body fat = 20.7%, BMI = 17.8 kg m-2) adolescent girls. The test meal for both groups was a standard 3348.8-kJ, 0.473-1 chocolate milkshake of 15% protein (casein), 40% fat (polyunsaturated/saturated ratio = 0.05; 75 mg cholesterol) and 45% carbohydrate (lactose and sucrose). Glucose, insulin and resting energy expenditure (RMR) were measured at rest prior to meal consumption and 20, 40, 60, 90, and 120 min after the meal. Cumulative net TEM was calculated as the integrated area under the TEM curve with RMR as baseline. Reliability was assessed by retesting 4 subjects, and a placebo effect was tested by administering a flavored energy-free drink. Results indicated high reliability and no placebo effect. The meal resulted in a greater rise in insulin and glucose for the obese compared to the nonobese subjects (P < or = 0.05), and a significant TEM for both groups (P < or = 0.05). The cumulative TEM (W kg-1) was 61.9% greater for the nonobese (P < 0.01) when expressed relative to body mass, and 33.2% greater for the nonobese (P < or = 0.01) when expressed relative to the fat-free body mass. Expressed relative to the meal, the TEM was 25.5% less for the obese (P < 0.01). The data support an energy conservation hypothesis for obese female adolescents.  相似文献   

12.
Objective: It is unclear if resting metabolic rate (RMR) and spontaneous physical activity (SPA) decrease in weight‐reduced non‐obese participants. Additionally, it is unknown if changes in SPA, measured in a respiratory chamber, reflect changes in free‐living physical activity level (PAL). Research Methods and Procedures: Participants (N = 48) were randomized into 4 groups for 6 months: calorie restriction (CR, 25% restriction), CR plus structured exercise (CR+EX, 12.5% restriction plus 12.5% increased energy expenditure via exercise), low‐calorie diet (LCD, 890 kcal/d supplement diet until 15% weight loss, then weight maintenance), and control (weight maintenance). Measurements were collected at baseline, Month 3, and Month 6. Body composition and RMR were measured by DXA and indirect calorimetry, respectively. Two measures of SPA were collected in a respiratory chamber (percent of time active and kcal/d). Free‐living PAL (PAL = total daily energy expenditure by doubly labeled water/RMR) was also measured. Regression equations at baseline were used to adjust RMR for fat‐free mass and SPA (kcal/d) for body weight. Results: Adjusted RMR decreased at Month 3 in the CR group and at Month 6 in the CR+EX and LCD groups. Neither measure of SPA decreased significantly in any group. PAL decreased at Month 3 in the CR and LCD groups, but not in the CR+EX group, who engaged in structured exercise. Changes in SPA in the chamber and free‐living PAL were not related. Discussion: Body weight is defended in non‐obese participants during modest caloric restriction, evidenced by metabolic adaptation of RMR and reduced energy expenditure through physical activity.  相似文献   

13.
Increased total fat mass (FM) and visceral fat (VF) may account in part for age-associated decrease in hepatic insulin action. This study determined whether preventing the changes in body fat distribution abolished this defect throughout aging. We studied the F(1) hybrid of Brown Norway-Fischer 344 rats (n = 29), which we assigned to caloric restriction (CR) or fed ad libitum (AL). CR (55% of the calories consumed by AL) was initiated and used at 2 mo to prevent age-dependent increases in FM and VF. AL rats were studied at 2, 8, and 20 mo; CR rats were studied at 8 and 20 mo. VF and FM remained unchanged throughout aging in CR rats. AL-fed rats at 8 and 20 mo had over fourfold higher FM and VF compared with both CR groups. Insulin clamp studies (3 mU. kg(-1). min(-1) with somatostatin) were performed to assess hepatic insulin sensitivity. Prevention of fat accretion resulted in a marked improvement in insulin action in the suppression of hepatic glucose production (HGP) (6.3 +/- 0.3 and 7.2 +/- 1.2 mg. kg(-1). min(-1) in 8- and 20-mo CR rats vs. 8.3 +/- 0.5 and 10.8 +/- 0.9 mg. kg(-1). min(-1) in 8- and 20-mo AL rats, respectively). The rate of gluconeogenesis (by enrichment of hepatic uridine diphosphate glucose and phosphoenolpyruvate pools by [(14)C]lactate) was unchanged in all groups. The improvement in hepatic insulin action in the CR group was mostly due to effective suppression of glycogenolysis (4.4 +/- 0.3 and 4.9 +/- 0.3 mg. kg(-1). min(-1) in 8- and 20-mo CR rats vs. 5.8 +/- 0.6 and 8.2 +/- 1.0 mg. kg(-1). min(-1) in 8- and 20-mo AL rats, respectively). The results demonstrated the preservation of hepatic insulin action in aging CR rats. Therefore, body fat and its distribution are major determinants of age-associated hepatic insulin resistance.  相似文献   

14.
The purpose of this study was to compare 24-h substrate oxidation in older (OM; 60-75 yr, n = 7) and younger (YM; 20-30 yr, n = 7) men studied on sedentary day (Con) and on a day with exercise (Ex; net energy expenditure = 300 kcal). Plasma glucose and free fatty acids were also measured at several time points during the 24-h measurement. Weight was not different in OM and YM (means +/- SD; 84.8 +/- 16.9 vs. 81.4 +/- 10.4 kg, respectively), although percent body fat was slightly higher in OM (25.9 +/- 3.5 vs. 21.9 +/- 9.7%; P = 0.17).Values of 24-h energy expenditure did not differ in OM and YM on the Con (means +/- SE; 2,449 +/- 162 vs. 2,484 +/- 104 kcal/day, respectively) or Ex (2,902 +/- 154 vs. 2,978 +/- 122 kcal/day) days. Under both conditions, 24-h respiratory quotient was significantly lower and fat oxidation significantly higher in OM. Glucose concentrations were not different at any time point, but plasma free fatty acid concentrations were higher in OM, particularly following meals. Thus, under these controlled conditions, 24-h fat oxidation was not reduced and was in fact greater in OM. We speculate that differences in the availability of circulating free fatty acids in the postprandial state contributed to the observed differences in 24-h fat oxidation in OM and YM.  相似文献   

15.
Seven nonobese adult females (40 +/- 8 years) were studied in a room calorimeter on a day that resistance exercise (REX) was performed (4 sets of 10 exercises) and on a nonexercise control day (CON). Twenty-four-hour energy expenditure (EE) on the REX day (mean +/- SD, 2,328 +/- 327 kcal.d(-1)) was greater than CON (2,001 +/- 369 kcal.d(-1), p < 0.001). The net increase in EE during and immediately after (30 minutes) exercise represented 76 +/- 12% of the total increase in 24-hour EE. Twenty four-hour RQ on the REX day (0.86 +/- 0.06) did not differ from CON (0.87 +/- 0.02). Twenty four-hour carbohydrate oxidation was elevated on the REX day, but 24-hour fat and protein oxidation were not different. Thus, in women, the increase in EE due to resistance exercise is largely seen during and immediately after the exercise. The increased energy demand is met by increased carbohydrate oxidation, with no increase in 24-hour fat oxidation.  相似文献   

16.
The effects of prolonged caloric restriction (CR) on protein kinetics in lean subjects has not been investigated previously. The purpose of this study was to test the hypotheses that 21 days of CR in lean subjects would 1) result in significant losses of lean mass despite a suppression in leucine turnover and oxidation and 2) negatively impact exercise performance. Nine young, normal-weight men [23 +/- 5 y, 78.6 +/- 5.7 kg, peak oxygen consumption (Vo2 peak) 45.2 +/- 7.3 ml.kg(-1).min(-1), mean +/- SD] were underfed by 40% of the calories required to maintain body weight for 21 days and lost 3.8 +/- 0.3 kg body wt and 2.0 +/- 0.4 kg lean mass. Protein intake was kept at 1.2 g.kg(-1).day(-1). Leucine kinetics were measured using alpha-ketoisocaproic acid reciprocal pool model in the postabsorptive state during rest and 50 min of exercise (EX) at 50% of Vo2 peak). Body composition, basal metabolic rate (BMR), and exercise performance were measured throughout the intervention. At rest, leucine flux (approximately 131 micromol.kg(-1).h(-1)) and oxidation (R(ox); approximately 19 micromol.kg(-1).h(-1)) did not differ pre- and post-CR. During EX, leucine flux (129 +/- 6 vs. 121 +/- 6) and R(ox) (54 +/- 6 vs. 46 +/- 8) were lower after CR than they were pre-CR. Nitrogen balance was negative throughout the intervention ( approximately 3.0 g N/day), and BMR declined from 1,898 +/- 262 to 1,670 +/- 203 kcal/day. Aerobic performance (Vo2 peak, endurance cycling) was not impacted by CR, but arm flexion endurance decreased by 20%. In conclusion, 3 wk of caloric restriction reduced leucine flux and R(ox) during exercise in normal-weight young men. However, despite negative nitrogen balance and loss of lean mass, whole body exercise performance was well maintained in response to CR.  相似文献   

17.
This study aimed to determine the effect of supplementation with conjugated linoleic acids (CLAs) plus n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) on body composition, adiposity, and hormone levels in young and older, lean and obese men. Young (31.4+/-3.9 years) lean (BMI, 23.6+/-1.5 kg/m2; n=13) and obese (BMI, 32.4+/-1.9 kg/m2; n=12) and older (56.5+/-4.6 years) lean (BMI, 23.6+/-1.5 kg/m2; n=20) and obese (BMI, 32.0+/-1.6 kg/m2; n=14) men participated in a double-blind placebo-controlled, randomized crossover study. Subjects received either 6 g/day control fat or 3 g/day CLA (50:50 cis-9, trans-11:trans-10, cis-12) and 3 g/day n-3 LC-PUFA for 12 weeks with a 12-week wash-out period between crossovers. Body composition was assessed by dual-energy X-ray absorptiometry. Fasting adiponectin, leptin, glucose, and insulin concentrations were measured and insulin resistance estimated by homeostasis model assessment for insulin resistance (HOMA-IR). In the younger obese subjects, CLA plus n-3 LC-PUFA supplementation compared with control fat did not result in increased abdominal fat and raised both fat-free mass (2.4%) and adiponectin levels (12%). CLA plus n-3 LC-PUFA showed no significant effects on HOMA-IR in any group but did increase fasting glucose in older obese subjects. In summary, supplementation with CLA plus n-3 LC-PUFA prevents increased abdominal fat mass and raises fat-free mass and adiponectin levels in younger obese individuals without deleteriously affecting insulin sensitivity, whereas these parameters in young and older lean and older obese individuals were unaffected, apart from increased fasting glucose in older obese men.  相似文献   

18.
We tested the hypothesis that reductions in total body and abdominal visceral fat with energy restriction would be associated with increases in cardiovagal baroreflex sensitivity (BRS) in overweight/obese older men. To address this, overweight/obese (25 < or = body mass index < or = 35 kg/m(2)) young (OB-Y, n = 10, age = 32.9 +/- 2.3 yr) and older (OB-O, n = 6, age = 60 +/- 2.7 yr) men underwent 3 mo of energy restriction at a level designed to reduce body weight by 5-10%. Cardiovagal BRS (modified Oxford technique), body composition (dual-energy X-ray absorptiometry), and abdominal fat distribution (computed tomography) were measured in the overweight/obese men before weight loss and after 4 wk of weight stability at their reduced weight and compared with a group of nonobese young men (NO-Y, n = 13, age = 21.1 +/- 1.0 yr). Before weight loss, cardiovagal BRS was approximately 35% and approximately 60% lower (P < 0.05) in the OB-Y and OB-O compared with NO-Y. Body weight (-7.8 +/- 1.1 vs. -7.3 +/- 0.7 kg), total fat mass (-4.1 +/- 1.0 vs. -4.4 +/- 0.8 kg), and abdominal visceral fat (-27.6 +/- 6.9 vs. -43.5 +/- 10.1 cm(2)) were reduced (all P < 0.05) after weight loss, but the magnitude of reduction did not differ (all P > 0.05) between OB-Y and OB-O, respectively. Cardiovagal BRS increased (11.5 +/- 1.9 vs. 18.5 +/- 2.6 ms/mmHg and 6.7 +/- 1.2 vs. 12.8 +/- 4.2 ms/mmHg) after weight loss (both P < 0.05) in OB-Y and OB-O, respectively. After weight loss, cardiovagal BRS in the obese/overweight young and older men was approximately 105% and approximately 73% (P > 0.05) of NO-Y (17.5 +/- 2.2 ms/mmHg). Therefore, the results of this study indicate that weight loss increases the sensitivity of the cardiovagal baroreflex in overweight/obese young and older men.  相似文献   

19.
In this study, the authors investigated the physiologic effects of the altered body composition that results from surgical removal of large amounts of subcutaneous adipose tissue. Fourteen women with body mass indexes of greater than > 27 kg/m2 underwent measurements of fasting plasma insulin, triglycerides, cholesterol, body composition by dual-energy x-ray absorptiometry (DXA), resting energy expenditure, and blood pressure before and after undergoing large-volume ultrasound-assisted liposuction.There were no significant intraoperative complications. Body weight had decreased by 5.1 kg (p < 0.0001) by 6 weeks after liposuction, with an additional 1.3-kg weight loss (p < 0.05) observed between 6 weeks and 4 months after surgery, for a total weight loss of 6.5 kg (p < 0.00006). Body mass index decreased from (mean +/- SEM) 28.8 +/- 2.3 to 26.8 +/- 1.5 kg/m2 (p < 0.0001). This change in body weight was primarily the result of decreases in body fat mass: as assessed by DXA, lean body mass did not change (43.8 +/- 3.1 kg to 43.4 +/- 3.6 kg, p = 0.80), whereas DXA total body fat mass decreased from 35.7 +/- 6.3 to 30.1 +/- 6.5 kg (p < 0.0001). There were significant decreases in fasting plasma insulin levels (14.9 +/- 6.5 mIU/ml before liposuction versus 7.2 +/- 3.2 mIU/ml 4 months after liposuction, p < 0.007), and systolic blood pressure (132.1 +/- 7.2 versus 120.5 +/- 7.8 mmHg, p < 0.0002). Total cholesterol, high-density lipoprotein cholesterol, plasma triglycerides, and resting energy expenditure values were not significantly altered after liposuction.In conclusion, over a 4-month period, large-volume liposuction decreased weight, body fat mass, systolic blood pressure, and fasting insulin levels without detrimental effects on lean body mass, bone mass, resting energy expenditure, or lipid profiles. Should these improvements be maintained over time, liposuction may prove to be a valuable tool for reducing the comorbid conditions associated with obesity.  相似文献   

20.
The purpose of this study is to find out the differences in physical activity (PA), energy expenditure (EE) and energy intake (EI) under free-living conditions between Japanese prepubertal obese and nonobese boys. The subjects were 15 prepubertal obese boys (Age: 11.7+/-0.4 years old, Body fat: 35.2+/-1.6%) who do not have obese parents and siblings and 15 prepubertal nonobese boys (Age: 11.8+/-0.4 years old, Body fat: 18.5+/-0.8%). We assessed their daily PA by heart rate (HR) monitoring, pedometer step counts (PSC) and time for sedentary activities (SA). We also examined calculated EE from HR-VO(2) regression, EI and percentage of macronutrient EI. Results are as follows: Percentage of body fat had significant correlation with weight, BMI, time for SA, percentage EI of protein (positive, p<0.001), VO(2max), VO(2max) per body weight, VO(2max) per LBM, PSC, TEE per body weight, TEI per body weight (negative, p<0.001), percentage of EI of carbohydrate (negative, p<0.01). The values of the obese were significantly lower in total EE per body weight and in total EI per body weight. EI from dinner was significantly higher in the obese group. The values of the obese were significantly higher in percentage EI from protein and that from carbohydrate. The results of this study showed prepubertal obese boys who do not have obese parents and siblings have low PA and spend much time for sedentary activities. Obese boys consume higher percentage energy of protein and lower percentage of carbohydrate though differences in EE and EI were found only in total EE per body weight and total EI per body weight between obese boys and nonobese boys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号