首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repair of amino acid radicals by a vitamin E analogue   总被引:3,自引:0,他引:3  
Free radicals derived from one-electron oxidation of the amino acids tryptophan, tyrosine, methionine and histidine have been found to be rapidly (k = 10(7) -10(9) dm3 mol-1 s-1) and efficiently repaired by Trolox C, a vitamin E analogue. The reactions form a relatively stable phenoxyl radical of Trolox C (lambda max = 440 nm; epsilon = 5.4 X 10(3) mol dm-3 cm-1). The radical cation of tryptophan is more rapidly repaired than the neutral tryptophan radical. Repair of tryptophanyl radicals in the enzyme lysozyme has also been observed. The results suggest that a function of alpha-tocopherol in membranes may be the repair of radicals of integral membrane proteins.  相似文献   

2.
Direct reactions of peroxidases with Trolox C (a vitamin E analogue) and vitamin E were observed in 50% (v/v) methanol. The kinetic results revealed that the reaction of horseradish peroxidase intermediate Compound II with Trolox C and vitamin E was the rate-determining step, and the rate constants were estimated to be 1.7 x 10(3) and 5.1 x 10(2) M-1.s-1, respectively. Peroxidases catalyzed the one-electron oxidation of Trolox C and vitamin E, and the vitamin E phenoxyl radicals resulting from the peroxidase reactions were detected by continuous-flow ESR spectroscopy.  相似文献   

3.
E Cadenas  G Merényi  J Lind 《FEBS letters》1989,253(1-2):235-238
The reaction between the phenoxyl radical of Trolox C, a water-soluble vitamin E analogue, and superoxide anion radical was examined by using the pulse radiolysis technique. The results indicate that the Trolox C phenoxyl radical may undergo a rapid one-electron transfer from superoxide radical [k = (4.5 +/- 0.5) x 10(8) M-1.S-1] to its reduced form. This finding indicates that superoxide radical might play a role in the repair of vitamin e phenoxyl radical.  相似文献   

4.
One-electron oxidation of Trolox C (a vitamin E analogue) by peroxidases   总被引:1,自引:0,他引:1  
The oxidation mechanism of Trolox C (a vitamin E analogue) by peroxidases was examined by stopped flow and ESR techniques. The results revealed that during the oxidation of Trolox C, peroxidase Compound II was the catalytic intermediate. The rate constants for the reaction of Compound II with Trolox C, which should be the rate-determining step, were estimated to be 2.1 X 10(4) and 7.2 X 10(3) M-1.s-1 for horseradish peroxidase and lactoperoxidase, respectively, at pH 6.0. The formation of the Trolox C radical was followed by ESR. The time course of the signal was similar to that of the optical absorbance changes at 440 nm, assigned as the peak of the Trolox C radical. The signal exhibited a hyperfine structure characteristic of phenoxyl radicals. From an estimation of the radical concentration in the steady state and the velocity of the radical formation, the dismutation constant was calculated to be 5 X 10(5) M-1.s-1. The concentration of the signal in the steady state was reduced by the addition of GSH. The spectrum changed from that of the Trolox C radical to that of the ascorbate radical when the reaction was carried out in the presence of ascorbate.  相似文献   

5.
Linoleic acid peroxyl radicals (LOO.) can be viewed as model intermediates occurring during lipid peroxidation processes. Formation and reactions of these species were investigated in aqueous alkaline solution using the technique of pulse radiolysis combined with kinetic spectroscopy. Irradiation of linoleic acid in N2O/O2-saturated solutions leads to a mixture of peroxyl radical isomers, whereas reaction of 13-hydroperoxylinoleic acid (13-LOOH) with azide radicals in N2O-saturated solution produces 13-LOO. radicals specifically. These peroxyl radicals cannot be observed directly, but their reactions with the two flavonols, kaempferol and quercetin, acting as radical-scavenging antioxidants, produced strongly absorbing aroxyl radicals (ArO.). The same aroxyl radicals were generated by .OH and N3. with rate constants exceeding 10(9) dm3 mol-1 s-1. Applying a reaction scheme that includes competing generation and decay reactions of both LOO. and ArO. radicals, we derived individual rate constants for LOO. reactions with the phenols (greater than 10(7) dm3 mol-1 s-1), with the aroxyl radicals to form covalent adducts (greater than 10(8) dm3 mol-1 s-1), as well as for their bimilecular decay (3.0 X 10(8) dm3 mol-1 s-1). These results demonstrate the high reactivity of both fatty acid peroxyl radicals and the flavone antioxidants in aqueous solution.  相似文献   

6.
Lipid peroxyl radicals resulting from the peroxidation of polyunsaturated fatty acids by soybean lipoxygenase were directly detected by the method of rapid mixing, continuous-flow electron spin resonance spectroscopy. When air-saturated borate buffer (pH 9.0) containing linoleic acid or arachidonate acid was mixed with lipoxygenase, fatty acid-derived peroxyl free radicals were readily detected; these radicals have a characteristic g-value of 2.014. An organic free radical (g = 2.004) was also detected; this may be the carbon-centered fatty acid free radical that is the precursor of the peroxyl free radical. The ESR spectrum of this species was not resolved, so the identification of this free radical was not possible. Fatty acids without at least two double bonds (e.g. stearic acid and oleic acid) did not give the corresponding peroxyl free radicals, suggesting that the formation of bisallylic carbon-centered radicals precedes peroxyl radical formation. The 3.8-G doublet feature of the fatty acid peroxyl spectrum was proven (by selective deuteration) to be a hyperfine coupling due to a gamma-hydrogen that originated as a vinylic hydrogen of arachidonate. Arachidonate peroxyl radical formation was shown to be dependent on the substrate, active lipoxygenase, and molecular oxygen. Antioxidants are known to protect polyunsaturated fatty acids from peroxidation by scavenging peroxyl radicals and thus breaking the free radical chain reaction. Therefore, the peroxyl signal intensity from micellar arachidonate solutions was monitored as a function of the antioxidant concentration. The reaction of the peroxyl free radical with Trolox C was shown to be 10 times slower than that with vitamin E. The vitamin E and Trolox C phenoxyl radicals that resulted from scavenging the peroxyl radical were also detected.  相似文献   

7.
Using the technique of pulse radiolysis it has been demonstrated that the interaction of SO4.- with deoxynucleosides (k approximately less than 2 X 10(8)-2.3 X 10(9) dm3 mol-1 s-1) in aqueous solution at pH 7.0 results in the formation of the corresponding one-electron oxidized radicals which either deprotonate or hydrate to yield OH adducts. Based upon the ease of oxidation of the deoxynucleosides, dG, dA, dC, dT, by SO4.-, the apparent redox potentials are in the order dG much greater than dA approximately equal to dC greater than dT. With the exception of deoxyuridine, the deoxynucleoside radicals produced on interaction with SO4.- have been shown to have oxidizing properties based upon the interactions with tetranitromethane and the nitroxyls, TMPN and NPPN. The deoxynucleoside radicals (dG, dA and dC) do not interact with oxygen (k less than 10(6) dm3 mol-1 s-1) in contrast to the interaction observed with the thymidine radical (k = 2.5 X 10(7) dm3 mol-1 s-1). The implications of these findings are presented in terms of the properties of the discussed radicals as relating to those of potential DNA base radicals (positive centres) produced by direct energy deposition within DNA. The use of SO4.- to mimic, to some extent, the effects of direct energy deposition in DNA may assist in our understanding of the resulting molecular processes relevant to radiobiological studies.  相似文献   

8.
Oxidation processes of radiation-generated three-electron-bonded intermediates derived from methionine Met2[S+...S] and Met[S...X] (X=Cl,Br) were investigated through reaction with tryptophan and tyrosine, using the optical pulse radiolysis method. Bimolecular rate constants have been measured for the reactions Met2[S+...S] with TrpH(k=3.8 x 10(8) dm3 mol-1 s-1 and k = 4.9 X 10(8) dm3 mol-1 s-1 at at ph 1 and 4.3, respectively) and Met2[S+...S] with tyrosine, k=3.8 x 10(7) dm3 mol-1 s-1. Rate constants for intermolecular transformation of Met[S...Br] and Met[S...Cl] into TrpH+. or Trp. were also estimated. They varied from 4.7 X 10(8) dm3 mol-1 s-1 (bromide species) to 1.0 X 10(9)dm3 mol-1 s-1 (chloride species). It has also been established azide radicals N-6, N.3 in contrast to dihalide radicals (X-2) do not form transients of Met[S...X] (X = N3)-type. However, oxidation of N-3 by Met2[S+...S] occurs with a bimolecular rate constant of 2.8 X 10(8) dm3 mol-1 s-1. These results are discussed in the light of some equilibria which have been proposed earlier for methionine-halide systems.  相似文献   

9.
The azide radical N3 reacts selectively with amino acids, in neutral solution preferentially with tryptophan (k (N3 + TrpH) = 4.1 X 10(9) dm3 mol(-1s-1) and in alkaline solution also with cysteine and tyrosine (k(N3 + CyS-) = 2.7 X 10(9) dm3 mol-1s-1) and k(N3 + TyrO-) equals 03.6 X 10(9) dm3 mol-1s-1). Oxidation of the enzyme yADH by N3 involves primary attacks, mainly at tryptophan residues, and subsequent slow secondary reactions. N3-induced inactivation of yADH is likely to occur upon oxidation of tryptophan residues in the substrate binding pocket (58-TrpH and 93-TrpH) since the substrate ethanol although unreactive with N3, protects yADH and since elADH, which does not contain tryptophan in the substrate pocket, is comparatively resistant against N3-attack. N3 exhibits low reactivity with nucleic acid derivatives and it is inert towards aliphatic compounds such as methanol and sodium dodecylsulphate.  相似文献   

10.
T Wei  C Chen  F Li  B Zhao  J Hou  W Xin  A Mori 《Biophysical chemistry》1999,77(2-3):153-160
Scavenging effects of L-ascorbic acid 2-[3,4-dihydro-2,5,7,8- tetramethyl-2-(4,8,12-trimethytridecyl)-2H-1-benzopyran- 6-yl-hydrogen phosphate] potassium salt (EPC-K1) on hydroxyl radicals, alkyl radicals and lipid radicals were studied with ESR spin trapping techniques. The inhibition effects of EPC-K1 on lipid peroxidation were assessed by TBA assay. The kinetics of EPC-K1 reacting with hydroxyl radicals and linoleic acid radicals were studied by pulse radiolysis. The active site of EPC-K1 and the structure-antioxidative activity relationships were discussed. The superoxide radicals scavenging capacity of the brain homogenate of EPC-K1-treated rats was measured. The results revealed that in comparison with Trolox and vitamin C, EPC-K1 showed better overall antioxidative capacity in vitro and in vivo. EPC-K1 was a moderate scavenger on hydroxyl radicals and alkyl radicals, a potent scavenger on lipid radicals, and an effective inhibitor on lipid peroxidation. EPC-K1 could react with hydroxyl radicals with a rate constant of 7.1 x 10(8) dm3 mol-1 s-1 and react with linoleic acid radicals with a rate constant of 2.8 x 10(6) dm3 mol-1 s-1. The active site of EPC-K1 was the enolic hydroxyl group. After administration of EPC-K1, the ability of rat brain to scavenge superoxide radicals was significantly increased. The potent scavenging effects of EPC-K1 on both hydrophilic and hydrophobic radicals were relevant with its molecular structure, which consisted of both hydrophilic and hydrophobic groups.  相似文献   

11.
Thiyl radicals (RS) formed by the reaction of radiolytically generated OH radicals with thiols, e.g. 1,4-dithiothreitol (DTT), react with cis- and trans-2,5-dimethyltetrahydrofuran by abstracting an H atom in the alpha-position to the ether function (k approximately equal to 5 X 10(3) dm3 mol-1 s-1). The so-formed planar ether radical is 'repaired' by the thiol (k = 6 X 10(8) dm3 mol-1 s-1) thereby regenerating a cis- or trans-2,5-dimethyltetrahydrofuran molecule. In this reaction a thiyl radical is reproduced. Thus trans-2,5-Me2THF from cis-2,5-Me2THF and vice versa are formed in a chain reaction: at a dose rate of 2.8 X 10(-3) Gys-1 and a trans-2,5-Me2THF concentration of 1 X 10(-2) mol dm-3 using DTT as the thiol, G(cis-2,5-Me2THF) = 160 has been found. The chain reaction is very sensitive to impurities and also to disulphides such as those radiolytically formed. 2,5-Me2THF can be regarded as a model for the sugar moiety of DNA where the C(4')-radical is known to lead to DNA strand breakage. The possible role of cellular thiols in the repair of the C(4') DNA radical, and also the conceivable role of thiyl radicals inducing DNA strand breakage, are discussed.  相似文献   

12.
Peroxyl radicals of poly(U), poly(A), and single- and double-stranded DNA have been produced by photolysing H2O2 in oxygenated aqueous solution in presence of the substrates. The peroxyl radicals are formed by the reaction of OH radicals with the polynucleotides followed by addition of oxygen. The lifetime of the peroxyl radicals and the rate constant of their reactions with the thiols cysteamine, glutathione and dithiothreithol have been measured by time-resolved e.s.r. spectroscopy. The unusually long lifetimes range from 0.2 to 3.3 s. The activation energy for the decay for all four substrates is 10.3 +/- 1 kcal/mol (43 kJ mol-1). The reaction rate constants with the thiols range from k = 0.8 X 10(4) to 1.3 X 10(5) dm3 mol-1 s-1. The reactions of the thiols with the peroxyl radical of poly(U) are known to prevent strand break formation. This shows that the peroxyl radicals of poly(U) observed by e.s.r. are intermediates in the pathway leading to strand break formation.  相似文献   

13.
One-electron oxidation of TyrOH-TrpH or TrpH-TyrOH in aqueous solutions by N3 radicals occurs predominantly at the tryptophyl residue. The corresponding indolyl radicals (absorbing at 510 nm) are subsequently transformed into phenoxyl radicals (absorbing at 390/405 nm): TyrOH-Trp leads to TyrO-TrpH, k5 = 5.4 x 10(4)s-1, (5), Trp-TyrOH leads to TrpH-TyrO, k7 = 7.3 x 10(4)s-1. (7) The first-order radical transformation rates are independent of the (initial) concentration of N3 or peptide and unaffected by urea (as a modifier of hydrogen bond structures). Intermolecular conversion of indolyl into phenoxyl radicals, e.g. by reaction of GlyH-Trp with TyrOH-GlyH, is very slow and inefficient. It is concluded that reactions (5) and (7) occur by intramolecular charge transfer across the peptide bond.  相似文献   

14.
The oxidation of methyl linoleate in solution initiated with azo compounds has been studied in the absence and presence of vitamin E and vitamin C. Both vitamin E and vitamin C acted as a chain-breaking antioxidant and they suppressed the oxidation and produced an induction period. The inhibition rate constant for the scavenging of peroxy radical was calculated at 37 degrees C as kinh = 5.1 X 10(5) M-1 s-1 and 7.5 X 10(4) M-1 s-1 for vitamin E and vitamin C, respectively. It was suggested that each vitamin E could trap two peroxy radicals, whereas vitamin C could trap only one peroxy radical under the reaction conditions employed in this study. When both vitamin E and vitamin C were present, the oxidation was suppressed quite efficiently and the apparent inhibition rate constant was obtained as kinh = 4.0 X 10(5) M-1 s-1. Furthermore, vitamin E remained almost unchanged and only vitamin C was consumed at the initial stage and vitamin E was consumed after vitamin C was exhausted. It was concluded that vitamin E trapped the peroxy radical and the resulting alpha-chromanoxy radical reacted with vitamin C to regenerate vitamin E.  相似文献   

15.
Histone H2B from calf thymus was irradiated with 50 or 100 ns pulses of 16 MeV electrons in N2O-saturated aqueous solution at pH 9 in the presence of NaN3. All tyrosine moieties in the histone were found to be freely accessible to the attack of .N3 radicals (formed by the reaction .OH + N3(-)----OH- + .N3). At sufficiently high concentrations of H2B, tyrosyl radicals were formed with G(TyrO.) = 5.4/100 eV and dityrosine groups with G(dityr) = 1.6/100 eV, indicating that about 60 per cent of tyrosyl radicals formed bisphenolic products. There is no polymer effect with respect to G(dityr) as inferred from comparison with other authors' data obtained with low molecular weight compounds. Kinetic measurements revealed that tyrosyl radicals reacted in two modes, a fast one with a value of tau 1/2 of about several milliseconds and a slow second order process also in the millisecond range. The fast process is assigned to intramolecular reactions of tyrosyl radicals generated in close proximity to each other and the slow process to intermolecular self reactions of isolated tyrosyl radicals distributed statistically in the solution. There is a polymer effect with respect to the rate constant of the slow process: 2k8 = 4.8 X 10(7) dm3 mol-1 s-1 (H2B) and 2k8 = 4 X 10(8) dm3 mol-1 s-1 (Lys-Tyr-Lys, Prütz et al. (1983)). The five histones contained in calf thymus were isolated chromatographically with the aid of two gels, Bio-Gel P-60 (BioRad) and Sephadex G100 (Pharmacia).  相似文献   

16.
A study is made of the effect of GSH as a co-antioxidant with vitamin E during free radical chain autoxidation inhibition studies of dilinoleoylphosphatidylcholine (DLPC) liposomes. Oxidations are initiated in the aqueous phase with azobis(2-amidinopropane hydrochloride) and in the bilayer phase of DLPC with azobis(2,4-dimethylvaleronitrile) under known conditions of the rate of free radical chain initiation (Ri). In reactions initiated in the aqueous phase, GSH is not an efficient antioxidant when acting alone; however, in cooperation with vitamin E in the bilayers, it does effect significant extensions of the efficient induction period of vitamin E. Quantitative studies show that GSH "spares" 0.4 molecules of vitamin E in the bilayer/molecule of GSH and therefore terminates approximately 0.8 peroxyl radical chains as a co-antioxidant with vitamin E. In contrast, GSH is not an effective co-antioxidant with an efficient water-soluble antioxidant, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylate (Trolox). GSH spares only 0.08 molecules of Trolox/molecule of GSH during autoxidation initiated in the aqueous phase with azobis(2-amidinopropane hydrochloride). The inhibition rate constant for GSH in trapping aqueous phase peroxyls is at least an order of magnitude less than that of Trolox. When peroxidation is initiated in the bilayer phase of DLPC with azobis(2,4-dimethylvaleronitrile), GSH is not an effective co-antioxidant with either vitamin E in the bilayer or Trolox in the water. Comparatively higher ratios of GSH to E (GSH/E = 50) or Trolox (GSH/Trolox = 30) are required to give significant extensions of the E or Trolox induction periods. GSH is estimated to preserve only approximately one vitamin E or Trolox molecule for a hundred GSH for peroxidations initiated in the DLPC bilayers. From the kinetic studies and GSH decay studies during inhibition periods, it is concluded that GSH does not act synergistically by regenerating ArOH from the phenoxyl, ArO, radical of vitamin E or Trolox. The mode of antioxidant action of GSH is concluded to be that of trapping peroxyl radicals in the aqueous phase and thereby indirectly sparing vitamin E in the bilayer.  相似文献   

17.
Absolute rate constants for the addition of oxygen to thiyl radicals, i.e. RS. + O2----RSOO., have been determined by applying a new competition method based on RS. formation via one-electron reduction of the corresponding disulphides, and the competition between RS. reacting with O2 and an electron donor such as ascorbate. Bimolecular rate constants have been obtained for the thiyl radicals derived from cysteine (6.1 X 10(7) mol-1 dm3 s-1), penicillamine (2.5 X 10(7) mol-1 dm3 s-1), homocysteine (8.0 X 10(7) mol-1 dm3 s-1), cysteamine (2.8 X 10(7) mol-1 dm3 s-1), 3-thiopropionic acid (2.2 X 10(8) mol-1 dm3 s-1) and glutathione (3.0 X 10(7) mol-1 dm3 s-1), respectively. The values obtained for the O2 addition to the thiyl radicals from glutathione and cysteine are considerable lower (by about two orders of magnitude) than those previously published. This indicates that the RS. + O2 reaction may be of complex nature and is generally a process which is not solely controlled by the diffusion of the reactants.  相似文献   

18.
The use of antioxidants to prevent intracellular free radical damage is an area currently attracting considerable research interest. The compound 2',7'-dichlorofluorescin diacetate (DCFH-DA) is a probe for intracellular peroxide formation commonly used in such studies. During our studies we unexpectedly found that incubation of Trolox, a water soluble vitamin E analog, with DCFH-DA in cell-free physiological buffers resulted in the deacetylation and oxidation of DCFH-DA to form the fluorescent compound, 2',7'-dichlorofluororescein (DCF). The reaction was time-, temperature-, and pH-dependent. Fluorescence intensity increased with an increase in either Trolox or DCFH-DA concentration. These results indicate that even at physiological pH, DCFH-DA can be deacetylated to form 2',7'-dichlorofluorescin (DCFH). DCFH can then be oxidized to DCF by abstraction of a hydrogen atom by the phenoxyl radical of Trolox. Exposure of the reaction mixture to 10 Gy of 60Co gamma radiation greatly increased production of DCF. Antioxidant compounds reported to “repair” the Trolox phenoxyl radical (e.g., ascorbic acid, salicylate) can also prevent the Trolox-induced DCFH-DA fluorescence. However, compounds that cannot repair the Trolox phenoxyl radical (e.g., catechin) or can themselves form a radical (e.g., uric acid, TEMPOL) either have no effect or can increase levels of DCF. These results demonstrate that experimental design must be carefully considered when using DCFH-DA to measure peroxide formation in combination with certain antioxidants.  相似文献   

19.
Thiyl free radicals have been shown to react with polyunsaturated fatty acids via abstraction of bisallylic hydrogen, forming pentadienyl radicals, and via addition to the double bonds. In the absence of oxygen, the latter pathway leads to regeneration of thiyl radicals through beta-elimination or "repair" of the adduct radicals by thiols. In the presence of oxygen, fixation of thiyl-induced damage occurs through reaction of O2 with the pentadienyl radical (yielding conjugated dienyl peroxyl radicals) and also with the thiyl-to-double bond adduct radical. A quantitative reaction scheme evaluated from these data considers abstraction, addition, rearrangement, and repair reactions, and the evaluation of rate constants for the individual steps. Absolute rate constants have been measured, in particular, for reactions of thiyl free radicals from glutathione, cysteine, homocysteine, N-acetylcysteine, cysteine ethyl ester, penicillamine, captopril, mercaptoethanol, and dithiothreitol with polyunsaturated fatty acids (PUFAs) ranging from 18:2 to 22:6, and the lipids trilinolein and trilinolenin. The rate constants for hydrogen abstraction were found to be typically of the order of 10(7) mol-1 dm3 s-1 and to increase with increasing lipophilicity of the attacking thiyl radical. Thioperoxyl radicals, RSOO., were found to be rather unreactive toward PUFAs, in contrast to the isomer sulfonyl radicals, RSO2., which not only abstract hydrogen from the bisallylic methylene groups of the PUFAs (although only at relatively small yield) but also readily add to the PUFA double bonds (major pathway). Specific information was obtained on the optical properties of the thiyl radical derived from the ACE inhibitor captopril, CpS. (lambda max = 340 nm, epsilon = 460 +/- 50 mol-1 dm3 cm-1), and its conjugate disulfide radical anion (CpS:.SCp) (lambda max = 420 nm).  相似文献   

20.
Vitamins C and E donate single hydrogen atoms in vivo.   总被引:5,自引:0,他引:5  
D Njus  P M Kelley 《FEBS letters》1991,284(2):147-151
The antioxidant vitamins, C and E, eliminate cytotoxic free radicals by redox cycling. Energetic and kinetic considerations suggest that cycling of vitamin C and vitamin E between their reduced and free radical forms occurs via the transfer of single hydrogen atoms rather than via separate electron transfer and protonation reactions. This may enable these vitamins to reduce many of the damaging free radicals commonly encountered by biological systems while minimizing the reduction of molecular oxygen to superoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号