首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial cell surface components can be important determinants of virulence. At least three gene clusters important for extracellular polysaccharide (EPS) biosynthesis have been previously identified in the plant pathogen Pseudomonas solanacearum. We have found that one of these gene clusters, named ops, is also required for lipopolysaccharide (LPS) biosynthesis. Mutations in any complementation unit of this cluster decreased EPS production, prevented the binding of an LPS-specific phage, and altered the mobility of purified LPS in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, restoration of LPS biosynthesis alone was not sufficient to restore virulence to the wild-type level, suggesting that EPS is important for pathogenesis.  相似文献   

2.
C C Kao  E Barlow    L Sequeira 《Journal of bacteriology》1992,174(3):1068-1071
Several Pseudomonas solanacearum strains which produced no detectable extracellular polysaccharide (EPS) in planta had been reported to remain highly virulent when tested at high inoculum concentrations (P. Xu, M. Iwata, S. Leong, and L. Sequeira, J. Bacteriol. 172:3946-3951, 1990; P. Xu, S. Leong, and L. Sequeira, J. Bacteriol. 170:617-622, 1988). Two of these mutants, KD700 and KD710, have now been molecularly and genetically mapped to the EPSI gene cluster described by Denny and Baek (Mol. Plant-Microbe Interact. 4:198-206, 1991). When a range of inoculum concentrations was used, these two mutants and all other EPS-defective mutants tested were found to be reduced in virulence to eggplants and tobacco relative to the wild-type strain. Thus, EPS consistently is required for the wild-type level of virulence in P. solanacearum.  相似文献   

3.
4.
We isolated and identified mutant strains of Kluyveromyces lactis that are defective for the Leloir pathway enzymes galactokinase, transferase, and epimerase, and we termed these loci GAL1 , GAL7 , and GAL10 , respectively. Genetic data indicate that these three genes are tightly linked, having an apparent order of GAL7 - GAL10 - GAL1 . This same gene order has been observed in Saccharomyces cerevisiae. Strains harboring gal7 mutations have elevated levels of beta-galactosidase, coded by an unlinked gene, galactokinase, and epimerase activities under uninduced conditions. We investigated the genetic basis of this constitutive gene expression and found no recombinants between the constitutive and Gal- phenotypes among 76 tetrads, suggesting that either GAL7 or a tightly linked gene codes for a regulatory function. This is the second gene that has been shown to specifically coregulate expression of the genes coding for beta-galactosidase and the Leloir pathway enzymes.  相似文献   

5.
6.
The genetic control of viscosin production was examined in a strain of Pseudomonas fluorescens (PfA7B) that causes broccoli head rot. Viscosin is a potent lipopeptide biosurfactant that enables the bacteria to come into intimate contact with the difficult-to-wet waxy heads of broccoli. Tn5 mutagenesis completely disrupted viscosin production as shown by HPLC analysis of the mutagenized cell lysates. The Vis- mutants retained their pectolytic capability and were able to decay potato slices. On broccoli, however, the Vis- mutants caused decay of wounded florets, but the decay failed to spread to adjacent nonwounded florets as had occurred with the wild-type PfA7B. Triparental matings of the Vis- mutants with their corresponding wild-type clones and the helper Escherichia coli HB101 carrying the mobilization plasmid pPK2013 resulted in three stable viscosin-producing transconjugants that caused typical decay of broccoli tissue. Linkage maps of clones and protein profiles showed that a 25-kb chromosomal DNA region of PfA7B affected the production of three high molecular mass proteins required for viscosin synthesis. These proteins, approximately 218, 215, and 137 kDa in size, likely compose a synthetase complex that assembles the nine amino acid peptide of viscosin and subsequently attaches this to the hydrophobic fatty acid component of the molecule. A probe made from this DNA region hybridized with DNA fragments of other phytopathogenic pseudomonads to varying degrees.  相似文献   

7.
8.
P Sommer  C Bormann    F Gtz 《Applied microbiology》1997,63(9):3553-3560
Streptomyces cinnamomeus Tü89 secretes a 30-kDa esterase and a 50-kDa lipase. The lipase-encoding gene, lipA, was cloned from genomic DNA into Streptomyces lividans TK23 with plasmid vector pIJ702. Two lipase-positive clones were identified; each recombinant plasmid had a 5.2-kb MboI insert that contained the complete lipA gene. The two plasmids differed in the orientation of the insert and the degree of lipolytic activity produced. The lipA gene was sequenced; lipA encodes a proprotein of 275 amino acids (29,213 Da) with a pI of 5.35. The LipA signal peptide is 30 amino acids long, and the mature lipase sequence is 245 amino acids long (26.2 kDa) and contains six cysteine residues. The conserved catalytic serine residue of LipA is in position 125. Sequence similarity of the mature lipases (29% identity, 60% similarity) was observed mainly in the N-terminal 104 amino acids with the group II Pseudomonas lipases; no similarity to the two Streptomyces lipase sequences was found. lipA was also expressed in Escherichia coli under the control of lacZ promoter. In the presence of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG), growth of the E. coli clone was severely affected, and the cells lysed in liquid medium. Lipase activity in the E. coli clone was found mainly in the pellet fraction. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, three additional protein bands of 50, 29, and 27 kDa were visible. The 27-kDa protein showed lipolytic activity and represents the mature lipase; the 29- and 50-kDa forms showed no activity and very probably represent the unprocessed form and a dimeric misfolded form, respectively. For higher expression of lipA in S. lividans, the gene was cloned next to the strong aphII promoter. In contrast to the lipA-expressing E. coli clone, S. cinnamomeus and the corresponding S. lividans clone secreted only an active protein of 50 kDa. The lipase showed highest activity with C6 and C18 triglycerides; no activity was observed with phospholipids, Tween 20, or p-nitrophenylesters. Upstream of lipA and in the same orientation, an open reading frame, orfA, is found whose deduced protein sequence (519 amino acids) shows similarity to various membrane-localized transporters. Downstream of lipA and in the opposite orientation, an open reading frame, orfB (encoding a 199-amino-acid protein) is found, which shows no conspicuous sequence similarity to known proteins, other than an NAD and flavin adenine dinucleotide binding-site sequence.  相似文献   

9.
Colanic acid (CA) is an extracellular polysaccharide produced by most Escherichia coli strains as well as by other species of the family Enterobacteriaceae. We have determined the sequence of a 23-kb segment of the E. coli K-12 chromosome which includes the cluster of genes necessary for production of CA. The CA cluster comprises 19 genes. Two other sequenced genes (orf1.3 and galF), which are situated between the CA cluster and the O-antigen cluster, were shown to be unnecessary for CA production. The CA cluster includes genes for synthesis of GDP-L-fucose, one of the precursors of CA, and the gene for one of the enzymes in this pathway (GDP-D-mannose 4,6-dehydratase) was identified by biochemical assay. Six of the inferred proteins show sequence similarity to glycosyl transferases, and two others have sequence similarity to acetyl transferases. Another gene (wzx) is predicted to encode a protein with multiple transmembrane segments and may function in export of the CA repeat unit from the cytoplasm into the periplasm in a process analogous to O-unit export. The first three genes of the cluster are predicted to encode an outer membrane lipoprotein, a phosphatase, and an inner membrane protein with an ATP-binding domain. Since homologs of these genes are found in other extracellular polysaccharide gene clusters, they may have a common function, such as export of polysaccharide from the cell.  相似文献   

10.
Three exopolysaccharide (EPS)- and virulence-deficient mutants of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of rice, were isolated by Tn5 mutagenesis. These insertions are not located within the gum gene cluster. A 40-kb cosmid clone that restored EPS production and virulence to all three mutants was isolated, and the three transposon insertions were localized to contiguous 4.3- and 3.5-kb EcoRI fragments that are included in this clone. Sequence data indicate that two of the transposon insertions are in genes that encode a putative sugar nucleotide epimerase and a putative glycosyl transferase, respectively; the third insertion is located between the glycosyl transferase gene and a novel open reading frame (ORF). A 5.5-kb genomic region in which these three ORFs are located has a G+C content of 5-1.7%, quite different from the G+C content of approximately 65.0% that is typical of X. oryzae pv. oryzae. Homologues of this locus have not yet been reported in any other xanthomonad.  相似文献   

11.
In both plant and mammalian Gram-negative pathogenic bacteria, type III secretion systems (TTSSs) play a crucial role in interactions with the host. All these systems share conserved proteins (called Hrc in plant pathogens), but each bacterium also produces a variable number of additional type III proteins either unique or with counterparts only in a limited number of related systems. In order to investigate the role of the different proteins encoded by the hrp gene cluster of the phytopathogenic bacterium Ralstonia solanacearum, non-polar mutants in all hrp genes (except for hrcQ) were analysed for their interactions with plants, their ability to secrete the PopA protein and their production of the Hrp pilus. In addition to Hrc proteins and the HrpY major component of the Hrp pilus, four additional Hrp proteins are indispensable for type III secretion and for interactions with plants. We also provide evidence that hrpV and hrpX mutants can still target the HrpY pilin outside the bacterial cell but are impaired in the production of Hrp pili, indicating that HrpV and HrpX proteins are involved in the assembly of this appendage.  相似文献   

12.
The suicide plasmid pSUP2021 was used to introduce Tn5 into the Pseudomonas solanacearum wild-type strain K60. We isolated eight avirulent mutants after screening 6,000 kanamycin-resistant transconjugants by inoculating eggplant (Solanum melongena L. cv. Black Beauty) and tobacco (Nicotiana tabacum L. cv. Bottom Special) seedlings. The Tn5-containing EcoRI fragments from the eight mutants were unique, suggesting that numerous genes specify virulence in this species. These EcoRI fragments were cloned into pBR322 or pUC12, and one of the clones, pKD810, was transformed into K60. All of the kanamycin-resistant, ampicillin-sensitive transformants were avirulent. Three randomly selected avirulent transformants were shown to carry the Tn5-containing fragment in place of the wild-type fragment and to exhibit the same hybridization pattern as the original KD810 mutant did. With pKD810 as a probe, we identified cosmids carrying the wild-type virulence genes by using a genomic library of K60 prepared in pLAFR3. Two of the homologous cosmids, pL810A and pL810C, when introduced into KD810 by transformation, restored virulence and normal growth of this mutant in tobacco. Altogether, these data indicate that the gene(s) interrupted by Tn5 insertion in KD810 is essential for the virulence of P. solanacearum. Further characterization of this gene is now being completed by subcloning, transposon mutagenesis, and complementation analysis.  相似文献   

13.
14.
The nucleotide sequences of the 27,939-bp-long upstream and 9,448-bp-long downstream regions of the carAaAaBaBbCAc(ORF7)Ad genes of carbazole-degrading Pseudomonas sp. strain CA10 were determined. Thirty-two open reading frames (ORFs) were identified, and the car gene cluster was consequently revealed to consist of 10 genes (carAaAaBaBbCAcAdDFE) encoding the enzymes for the three-step conversion of carbazole to anthranilate and the degradation of 2-hydroxypenta-2,4-dienoate. The high identities (68 to 83%) with the enzymes involved in 3-(3-hydroxyphenyl)propionic acid degradation were observed only for CarFE. This observation, together with the fact that two ORFs are inserted between carD and carFE, makes it quite likely that the carFE genes were recruited from another locus. In the 21-kb region upstream from carAa, aromatic-ring-hydroxylating dioxygenase genes (ORF26, ORF27, and ORF28) were found. Inductive expression in carbazole-grown cells and the results of homology searching indicate that these genes encode the anthranilate 1,2-dioxygenase involved in carbazole degradation. Therefore, these ORFs were designated antABC. Four homologous insertion sequences, IS5car1 to IS5car4, were identified in the neighboring regions of car and ant genes. IS5car2 and IS5car3 constituted the putative composite transposon containing antABC. One-ended transposition of IS5car2 together with the 5' portion of antA into the region immediately upstream of carAa had resulted in the formation of IS5car1 and ORF9. In addition to the insertion sequence-dependent recombination, gene duplications and presumed gene fusion were observed. In conclusion, through the above gene rearrangement, the novel genetic structure of the car gene cluster has been constructed. In addition, it was also revealed that the car and ant gene clusters are located on the megaplasmid pCAR1.  相似文献   

15.
The genes lemA (which we here redesignate gacS ) and gacA encode members of a widely conserved two-component regulatory system. In Pseudomonas syringae strain B728a, gacS and gacA are required for lesion formation on bean, as well as for the production of protease and the toxin syringomycin. A gene, designated salA , was discovered that restored syringomycin production to a gacS mutant when present on a multiple-copy plasmid. Disruption of chromosomal salA resulted in loss of syringomycin production and lesion formation in laboratory assays. Sequence analysis of salA suggests that it encodes a protein with a DNA-binding motif but without other significant similarity to proteins in current databases. Chromosomal reporter fusions revealed that gacS and gacA positively regulate salA , that salA upregulates its own expression and that salA positively regulates the expression of a syringomycin biosynthetic gene, syrB . Loss of syringomycin production does not account for the salA mutant's attenuated pathogenicity, as a syrB mutant was found to retain full virulence. The salA gene did not similarly suppress the protease deficient phenotype of gacS mutants, nor were salA mutants affected for protease production. A gacS/gacA -dependent homoserine lactone activity as detected by bioassay was also unaffected by the disruption of salA . Thus, salA appears to encode a novel regulator that activates the expression of at least two separate genetic subsets of the gacS/gacA regulon, one pathway leading to syringomycin production and the other resulting in plant disease.  相似文献   

16.
Q Huang  C Allen 《Journal of bacteriology》1997,179(23):7369-7378
Ralstonia solanacearum, which causes bacterial wilt disease of many plant species, produces several extracellular plant cell wall-degrading enzymes that are suspected virulence factors. These include a previously described endopolygalacturonase (PG), PehA, and two exo-PGs. A gene encoding one of the exo-PGs, pehB, was cloned from R. solanacearum K60. The DNA fragment specifying PehB contained a 2,103-bp open reading frame that encodes a protein of 74.2 kDa with a typical N-terminal signal sequence. The cloned pehB gene product cleaves polygalacturonic acid into digalacturonic acid units. The amino acid sequence of pehB resembles that of pehX, an exo-PG gene from Erwinia chrysanthemi, with 47.2% identity at the amino acid level. PehB also has limited similarity to plant exo-PGs from Zea mays and Arabidopsis thaliana. The chromosomal pehB genes in R. solanacearum wild-type strain K60 and in an endo-PG PehA- strain were replaced with an insertionally inactivated copy of pehB. The resulting mutants were deficient in the production of PehB and of both PehA and PehB, respectively. The pehB mutant was significantly less virulent than the wild-type strain in eggplant virulence assays using a soil inoculation method. However, the pehA mutant was even less virulent, and the pehA pehB double mutant was the least virulent of all. These results suggest that PehB is required for a wild-type level of virulence in R. solanacearum although its individual role in wilt disease development may be minor. Together with endo-PG PehA, however, PehB contributes substantially to the virulence of R. solanacearum.  相似文献   

17.
18.
The Ralstonia solanacearum hrpB-regulated gene lrpE (hpx5/brg24) encodes a PopC-like leucine-rich repeat (LRR) protein that carries 11 tandem LRR in the central region. Defects in the lrpE gene slightly reduced the virulence of R. solanacearum on host plants and changed the bacterial morphology leading to the formation of large aggregates in a minimal medium. The aggregation in the deltalrpE background required the presence of a functional Hrp type III secretion system. In wild-type R. solanacearum, Hrp pili disappeared from the bacterial surface at the end of the exponential growth phase, when the pili form into long bundles. However, even in the late growth phase, bundled Hrp pili were still observed on the cell surface of the deltalrpE mutant. Such bundles were entangled and anchored the mutant cells in the aggregates. In contrast to PopC, LrpE accumulated in bacterial cells and did not translocate into plant cells as an effector protein. The expression levels of hrp genes increased three- to fivefold in the deltalrpE background compared with those in the wild type. We propose that LrpE may negatively regulate the production of Hrp pili on the cell surface of R. solanacearum to disperse bacterial cells from aggregates. In turn, dispersal may contribute to the movement of the pathogen in the plant vascular system and, as a consequence, the pathogenicity of R. solanacearum.  相似文献   

19.
Exopolysaccharides contribute significantly to attachment and biofilm formation in the opportunisitc pathogen Pseudomonas aeruginosa . The Psl polysaccharide, which is synthesized by the p olysaccharide s ynthesis l ocus ( psl ), is required for biofilm formation in non-mucoid strains that do not rely on alginate as the principal biofilm polysaccharide. In-frame deletion and complementation studies of individual psl genes revealed that 11 psl genes, pslACDEFGHIJKL , are required for Psl production and surface attachment. We also present the first structural analysis of the psl -dependent polysaccharide, which consists of a repeating pentasaccharide containing d -mannose, d -glucose and l -rhamnose:

In addition, we identified the sugar nucleotide precursors involved in Psl generation and demonstrated the requirement for GDP- d -mannose, UDP- d -glucose and dTDP- l -rhamnose in Psl production and surface attachment. Finally, genetic analyses revealed that wbpW restored Psl production in a pslB mutant and pslB promoted A-band LPS synthesis in a wbpW mutant, indicating functional redundancy and overlapping roles for these two enzymes. The structural and genetic data presented here provide a basis for further investigation of the Psl proteins and potential roles for Psl in the biology and pathogenesis of P. aeruginosa .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号