首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Several studies have demonstrated the hybrid origin of Squalius alburnoides , a complex of diploid, triploid and tetraploid fish, with Squalius pyrenaicus as the maternal ancestor and an Anaecypris hispanica -like species as the paternal ancestor. The aim of this study was to assess patterns of genetic diversity and similarity between sympatric forms of the different ploidy levels of S. alburnoides and related parental species in the two largest basins that are part of its southern Iberian distribution, the Tejo and Guadiana, using microsatellites. High levels of genetic diversity were found in populations of S. alburnoides from both basins, reflecting the hybrid origin, the high diversity of forms in these river basins and the different modes of reproduction of the complex. Microsatellites indicated low values of genetic differentiation between the non-hybrid all-male form of S. alburnoides and A. hispanica , supporting the view that these forms share a common ancestor. In some instances, diploid and triploid hybrids from the same river basin were more closely related to each other than to their counterparts in the other basins, suggesting an ancient origin for the complex in these Iberian southern basins.  相似文献   

2.
The karyotype of the endangered fish Anaecypris hispanica was revisited using advanced cytogenetic techniques to elucidate its putative relationship with the paternal ancestor of the hybrid complex Squalius alburnoides and to clarify some of the recently described cytogenetic patterns of the complex. The results of chromomycin A3 and Ag staining, as well as fluorescent in situ hybridization with 28S and 5S rDNA and the (TTAGGG)n telomeric probes, were compared with the patterns observed in specimens of the all-male nonhybrid lineage of S. alburnoides complex, which is considered to reconstitute the nuclear genome of the probably extinct paternal ancestor. Several cytogenetic features observed in A. hispanica specimens were indeed shared by S. alburnoides nuclear nonhybrid males, supporting the hypothesis of a close evolutionary link between A. hispanica and the paternal ancestor of the complex. The genomic rearrangements involving 28S rDNA sites previously described in the S. alburnoides complex and in its maternal ancestor (S. pyrenaicus) were not detected in A. hispanica; they are, therefore, probably due to mechanisms related to hybridization and polyploidy.  相似文献   

3.
Chromosomal locations of major ribosomal sites, i.e. NOR-phenotypes, were assigned in Squalius alburnoides complex using sequential chromomycin A3 (CMA3)- and silver (Ag)-staining. This hybridogenetic Iberian minnow comprises diploid, triploid and tetraploid forms that arose by interspecific hybridisation between S. pyrenaicus and an unknown species. Inheritance of NOR patterns was studied by means of crossing experiments involving most diploid–polyploid forms of the S. alburnoidescomplex with identified specific genotype constitution. In all the specimens studied, the NORs were localised in the short arms of submetacentric chromosomes. Although S. pyrenaicus presented only one pair of NOR-bearing chromosomes, the data from experimental crosses evidenced that S. alburnoides complex was characterised by a multiple NOR phenotype composed of one chromosome pair with stable NORs and two chromosome pairs with NOR site polymorphism of presence/absence type. These data suggest that the karyotype of the unknown parental species of the S. alburnoidescomplex should have a multiple NOR pattern and emphasised the role of the all-male diploid linage in the dynamics and evolutionary potential of the S.alburnoidescomplex allowing the preservation of the missing ancestor genome. Cross-analyses evidenced that in spite of the high polymorphic nature of NORs in this fish complex, we have no reason to reject the hypothesis that their inheritance patterns were in accordance with Mendelian segregation.  相似文献   

4.
Evidence accumulated over the last decade has shown that allopolyploid genomes may undergo drastic reorganization. However, timing and mechanisms of structural diploidization over evolutionary timescales are still poorly known. As transposable elements (TEs) represent major and labile components of plant genomes, they likely play a pivotal role in fuelling genome changes leading to long-term diploidization. Here, we exploit the 4.5 MY old allopolyploid Nicotiana section Repandae to investigate the impact of TEs on the evolutionary dynamics of genomes. Sequence-specific amplified polymorphisms (SSAP) on seven TEs with expected contrasted dynamics were used to survey genome-wide TE insertion polymorphisms. Comparisons of TE insertions in the four allopolyploid species and descendents of the diploid species most closely related to their actual progenitors revealed that the polyploids showed considerable departure from predicted additivity of the diploids. Large numbers of new SSAP bands were observed in polyploids for two TEs, but restructuring for most TE families involved substantial loss of fragments relative to the genome of the diploid representing the paternal progenitor, which could be due to changes in allopolyploids, diploid progenitor lineages or both. The majority of non-additive bands were shared by all polyploid species, suggesting that significant restructuring occurred early after the allopolyploid event that gave rise to their common ancestor. Furthermore, several gains and losses of SSAP fragments were restricted to N. repanda, suggesting a unique evolutionary trajectory. This pattern of diploidization in TE genome fractions supports the hypothesis that TEs are central to long-term genome turnover and depends on both TE and the polyploid lineage considered.  相似文献   

5.
Iberian minnows collectively known as the Tropidophoxinellus alburnoides STEINDACHNER complex comprise diploid and polyploid forms with highly female biased sex ratios. Previous investigators suggested that all-female clonal reproduction and interspecific hybridization may occur in this complex. We examined nuclear (allozymes) and cytoplasmic genes (mtDNA) to assess the evolutionary origins, relationships, and reproductive modes of T. alburnoides from western Spain. The multi-locus allozyme data clearly revealed the hybrid nature of all polyploid forms of this fish and some diploid forms as well. Diagnostic markers identified fish from the genus Leuciscus as the paternal ancestor of hybrids in the Duero and Guadiana River Basins. Additionally, analysis of nuclear markers revealed that hybridogenetic reproduction occurs in the diploid and triploid hybrids. The hybrids fully express the paternal Leuciscus genome and then discard it during oogenesis. Hybridogenetic ova contain only maternal nuclear genes and mtDNA from a non-hybrid T. alburnoides ancestor. Apparently diploid and triploid hybrids of T. alburnoides persist as sperm parasites on males of a sexually reproducing Leuciscus host species.  相似文献   

6.
The origin, the phylogeographical structure and divergence times of hybridrogenetic Squalius alburnoides complex were analysed based on the complete mitochondrial cytochrome b gene (1140 pb). The molecular phylogenetic analyses suggest that the S. alburnoides complex has at least five asexual lineages of independent origin. The events that produced this ancestral hybridization took place over a long period of time. There have been multiple hybridization events throughout time, beginning in the upper Pliocene and probably continuing into the present. Increased humidity caused by climate changes in the Pliocene, along with tectonic lifting and vasculation of the Iberian Peninsula, led to the formation of current river drainages which, in turn, contributed to these hybridization events. We postulate that the Northwestern (Mondego and Douro) and the Southwest (Quarteira) drainages of the Iberian Peninsula delimited the border of the maternal ancestral distribution and that vicariant events led to the disappearance of the maternal ancestor in these regions, leaving today only the hybrid species. Two hypotheses have been suggested to explain the similarities between the mtDNA diversity observed in S. alburnoides and its maternal ancestor (S. pyrenaicus). The first hypothesizes that mtDNA similarity results from the recent extinction of the paternal ancestor, while the other postulates that: 'reconstituted non hybrid males' assumed the place of the extinct bisexual paternal ancestor and produced new hybridizations with S. pyrenaicus females.  相似文献   

7.
The first occurrence of massive mitochondrial introgression of Squalius aradensis genes in Squalius alburnoides , a hybridogenetic complex that usually carries mtDNA of its maternal ancestor ( Squalius pyrenaicus ) is reported. Possible implications of such introgressions for the history of the complex are discussed.  相似文献   

8.
? Premise of the study: The evolutionary history of Leucaena has been impacted by polyploidy, hybridization, and divergent allopatric species diversification, suggesting that this is an ideal group to investigate the evolutionary tempo of polyploidy and the complexities of reticulation and divergence in plant diversification. ? Methods: Parsimony- and ML-based phylogenetic approaches were applied to 105 accessions sequenced for six sequence characterized amplified region-based nuclear encoded loci, nrDNA ITS, and four cpDNA regions. Hypotheses for the origin of tetraploid species were inferred using results derived from a novel species tree and established gene tree methods and from data on genome sizes and geographic distributions. ? Results: The combination of comprehensively sampled multilocus DNA sequence data sets and a novel methodology provide strong resolution and support for the origins of all five tetraploid species. A minimum of four allopolyploidization events are required to explain the origins of these species. The origin(s) of one tetraploid pair (L. involucrata/L. pallida) can be equally explained by two unique allopolyploidizations or a single event followed by divergent speciation. ? Conclusions: Alongside other recent findings, a comprehensive picture of the complex evolutionary dynamics of polyploidy in Leucaena is emerging that includes paleotetraploidization, diploidization of the last common ancestor to Leucaena, allopatric divergence among diploids, and recent allopolyploid origins for tetraploid species likely associated with human translocation of seed. These results provide insights into the role of divergence and reticulation in a well-characterized angiosperm lineage and into traits of diploid parents and derived tetraploids (particularly self-compatibility and year-round flowering) favoring the formation and establishment of novel tetraploids combinations.  相似文献   

9.
The parental investment in angiosperms comprises the endosperm, a nutrient reserve that is used during seed development. The endosperm contains genes from both parents. The most common endosperm form is the 3n Polygonum -type with more maternal genetic influence than paternal, i.e. with two maternal nuclei and one paternal nucleus. The evolutionary original state is thought to be a diploid endosperm with equal influence of the parents. We focus on the evolution of the triploid endosperm and show that a gene for triploid endosperm would have an initial advantage in a population of diploid endosperm type plants, and increase to fixation. We assume that endosperm amount is controlled by endosperm genes. Then a gene causing triploid endosperm will increase the influence of the mother plant on parental investment. The production of endosperm with two copies of the maternal genes will modify the inheritance of endosperm amount and cause an increased production of seeds.  相似文献   

10.
Estimation of population parameters for the common ancestors of humans and the great apes is important in understanding our evolutionary history. In particular, inference of population size for the human-chimpanzee common ancestor may shed light on the process by which the 2 species separated and on whether the human population experienced a severe size reduction in its early evolutionary history. In this study, the Bayesian method of ancestral inference of Rannala and Yang (2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics. 164:1645-1656) was extended to accommodate variable mutation rates among loci and random species-specific sequencing errors. The model was applied to analyze a genome-wide data set of approximately 15,000 neutral loci (7.4 Mb) aligned for human, chimpanzee, gorilla, orangutan, and macaque. We obtained robust and precise estimates for effective population sizes along the hominoid lineage extending back approximately 30 Myr to the cercopithecoid divergence. The results showed that ancestral populations were 5-10 times larger than modern humans along the entire hominoid lineage. The estimates were robust to the priors used and to model assumptions about recombination. The unusually low X chromosome divergence between human and chimpanzee could not be explained by variation in the male mutation bias or by current models of hybridization and introgression. Instead, our parameter estimates were consistent with a simple instantaneous process for human-chimpanzee speciation but showed a major reduction in X chromosome effective population size peculiar to the human-chimpanzee common ancestor, possibly due to selective sweeps on the X prior to separation of the 2 species.  相似文献   

11.
The Squalius alburnoides complex was produced by hybridization between female S. pyrenaicus (PP genome) and an hypothetical paternal ancestor related with Anaecypris hispanica (AA genome). This study examined a diversity of mating types and found that there is the potential for considerable gene exchange among diploid, triploid and tetraploid hybrids. Using microsatellites, genomes were attributed to Squalius pyrenaicus (P) or reconstituted “nuclear non-hybrid” S. alburnoides (A), and subsequently confirmed in hybrids. Recombination of AA genomes in the “nuclear non-hybrid males” and recombination of the homogametic genomes (AA or PP) after exclusion of the heterogametic genome in triploid females (PAA) were observed by analysing parents and progeny of breeding experiments. Reproduction of tetraploids, generating a symmetric tetraploid genotype (PPAA) in the progeny, suggests a process that could potentially lead to the formation of a new bisexual species. Present results also support: (i) previously hypothesized pathways, in which PPA S. alburnoides females exclude the A genome, exhibit meiotic recombination between the P genomes and generate haploid eggs; (ii) reconstitution of the diploid maternal ancestor genome (PP) as well as of the unknown paternal ancestor (AA); (iii) the occurrence of the same genomic reproductive mechanisms when Anaecypris hispanica is involved; and (iv) the existence of an A. hispanica-like ancestor as the paternal ancestor of S. alburnoides.  相似文献   

12.
The relative advantages of sexual and parthenogenetic reproduction have long interested biologists and remain a central issue in ecological and evolutionary studies. Recent data on brine shrimp (Artemia) indicate that extensive ecological and genetic divergence occurs in an obligately parthenogenetic lineage. This challenges the belief that parthenogenetic lineages are evolutionary 'dead ends' and that extensive divergence is necessarily linked to recent recruitment from sexual ancestors. The molecular evidence suggests that parthenogenesis in Artemia is relatively ancient, with a single asexual lineage branching from an Old World sexual ancestor approximately five million years ago. Automictic recombination (which can occur in diploid but not polyploid parthenogenetic brine shrimp) appears to play a central role in the long-term maintenance of the parthenogenetic lineage.  相似文献   

13.
Crossing experiments revealed that a diploid hybridogenetic fish (genus Poeciliopsis) from the Río Mocorito (Sinaloa, Mexico) is trihybrid. Its haploid maternal genome is inherited clonally (i.e., hemiclonally), and it expresses a mixture of morphological traits found in the closely related species P. monacha and P. viriosa. Its haploid paternal genome is replaced in each generation by mating with males of a more distantly related sexual species, P. lucida. However, expression of mixed (monacha X viriosa) traits by this hemiclone is also consistent with retention of shared ancestral polymorphisms. If true, this hemiclonal lineage would be one of the few examples of an ancient asexual taxon. We used mitochondrial DNA and allozymes to test whether the maternal progenitor of the Mocorito hybridogen was a recent P. monacha X P. viriosa hybrid or a remnant of their most recent common ancestor. Our results clearly link the hemiclonal genome to contemporary P. monacha and therefore support the hypothesis of a recent origin. Additionally, our findings suggest that this unisexual fish may serve as a vehicle for introgression between two allopatric sexual species.  相似文献   

14.
 One hundred years ago, the developmental origin of endosperm from double fertilization was discovered independently by Navashin and Guignard. For much of the twentieth century, specific events related to the evolutionary origin of the endosperm of flowering plants remained a mystery. However, during the past 20 years, advances in phylogenetic reconstruction of seed plants, genetic theory associated with kin selection, and comparative study of the reproductive biology of the closest living relatives of angiosperms (Gnetales) have advanced our understanding of the evolutionary events associated with the origin of double fertilization and endosperm. Recent developmental analyses of Ephedra and Gnetum (members of Gnetales) indicate that these nonflowering seed plants undergo a regular process of double fertilization that yields two diploid zygotes. Use of explicit genetic and developmental criteria for analysis of evolutionary homology demonstrates congruence with the hypothesis that double fertilization processes in Gnetales and angiosperms were inherited from a common ancestor of the two lineages. In its rudimentary form, the second fertilization event in the ancestors of flowering plants yielded a supernumerary diploid embryo that was genetically identical to the normal embryo, a process most similar to what occurs in extant Ephedra. Subsequent to the divergence of the angiosperm stem lineage, the supernumerary embryo derived from double fertilization was developmentally modified into an embryo-nourishing structure, endosperm, that now characterizes angiosperms. Received: 25 September 1997 / Accepted: 3 November 1997  相似文献   

15.
Interspecific hybridization and introgression are important evolutionary processes in plants, but their full significance with respect to speciation at the diploid level remains unresolved. In this study, molecular markers from the plastid and nuclear genomes were used to document an unusual evolutionary history of Gossypium bickii Prokh. (Malvaceae). This species is one of three morphologically similar Australian cottons (along with G. austrate F. Muell. and G. nelsonii Fryx.) in section Hibiscoidea. In contrast to expectations based on previous morphological data, cladistic analysis of maternally inherited cpDNA restriction site mutations unites G. bickii with G. sturtianum J. H. Willis, a morphologically distant species in a different taxonomic section (Sturtia). Few restriction site mutations distinguish the plastomes of G. bickii and G. sturtianum, but these two cpDNAs are differentiated from those of G. australe and G. nelsonii by a minimum of 33 mutations (out of 640 sites scored). These two highly distinct clades are not supported by phylogenetic analyses of allozyme markers (from 58 populations) and restriction site mutations in nuclear ribosomal DNAs. Rather, phylogenies based on 83 nuclear markers indicate that G. bickii shares a more recent common ancestor with G. australe and G. nelsonii than it does with G. sturtianum. We suggest that the striking discrepancy between independent molecular phylogenies from two different genomes indicates a biphyletic ancestry of G. bickii. Our preferred hypothesis involves an ancient hybridization, in which G. sturtianum, or a similar species, served as the maternal parent with a paternal donor from the lineage leading to G. australe and G. nelsonii. Because we detected no G. sturtianum nuclear genes in G. bickii, we suggest that the nuclear genomic contribution of the maternal parent was subsequently eliminated from the hybrid or its descendent maternal lineage. Several possible mechanisms of cytoplasm transfer are suggested, including repeated backcrossing of the hybrid, as female, into the paternal donor lineage, selection against recombinant nuclear genomes and a form of apomixis known as semigamy. This example, and several others in Gossypium as well as other genera, attest to the evolutionary possibility of interspecific cytoplasmic transfer, and perhaps the origin of diploid species via reticulate speciation. In addition, this study offers an example of natural cytoplasmic introgression without long-term survival of nuclear genes from the maternal progenitor.  相似文献   

16.
Patterns of genome duplication within the Brassica napus genome.   总被引:6,自引:0,他引:6  
The progenitor diploid genomes (A and C) of the amphidiploid Brassica napus are extensively duplicated with 73% of genomic clones detecting two or more duplicate sequences within each of the diploid genomes. This comprehensive duplication of loci is to be expected in a species that has evolved through a polyploid ancestor. The majority of the duplicate loci within each of the diploid genomes were found in distinct linkage groups as collinear blocks of linked loci, some of which had undergone a variety of rearrangements subsequent to duplication, including inversions and translocations. A number of identical rearrangements were observed in the two diploid genomes, suggesting they had occurred before the divergence of the two species. A number of linkage groups displayed an organization consistent with centric fusion and (or) fission, suggesting this mechanism may have played a role in the evolution of Brassica genomes. For almost every genetically mapped locus detected in the A genome a homologous locus was found in the C genome; the collinear arrangement of these homologous markers allowed the primary regions of homoeology between the two genomes to be identified. At least 16 gross chromosomal rearrangements differentiated the two diploid genomes during their divergence from a common ancestor.  相似文献   

17.
Attelabid weevils manipulate specific structures of their host plants in a species-specific manner, e.g., cutting a shoot, cutting a leaf, rolling a leaf, or constructing sophisticated wrapped leaf rolls, presumably to secure the survivorship of eggs or larvae. To depict the evolutionary history of maternal plant-manipulation behaviours and larval feeding strategies of the family Attelabidae, molecular phylogenetic analyses were conducted by sequencing the nuclear 18S and 28S ribosomal DNA and the mitochondrial cytochrome oxidase subunit I genes. Our analyses indicated that the attelabid weevils form a monophyletic group, and that maternal plant-cutting behaviour originated in a common ancestor of Attelabidae, but was subsequently lost in several lineages. Monophyly of the subfamily Attelabinae was also recovered with high support, but the subfamily Rhynchitinae was not recovered as monophyletic. By employing maximum-likelihood-based ancestral state reconstructions, larval leaf-blade feeding was inferred to have evolved from boring of cut shoots/petioles. Moreover, maternal leaf-rolling behaviours likely originated independently in the Attelabinae and Byctiscini lineages, and in several Deporaini lineages. As the sophisticated behaviours constructing wrapped leaf rolls of Attelabinae originated only once and has not been lost from the lineage, these complex and innovative behaviours may have contributed to the success and diversification of the lineage.  相似文献   

18.
Abstract.  Armoured scale insects are economically important parasites of woody plants and grasses. They are promising subjects for the evolutionary study of physiology (no complete gut), genetics (chimerism, paternal genome elimination, frequent parthenogenesis) and coevolution (with host plants, parasitoids, Septobasidium fungi, endosymbiotic bacteria). Little phylogenetic work has been accomplished with armoured scales, and uncertainty surrounds their classification. Here, we report the phylogenetic results of Bayesian and parsimony analyses of 705 base pairs of Elongation Factor 1α and 660 base pairs of 28S from eighty-nine species of armoured scale insects, representing forty-seven genera and five tribes in the subfamilies Diaspidinae and Aspidiotinae, together with two outgroups. 28S was aligned based on a secondary structural model. Our results broadly corroborate the major features of the existing classification, although we do not find perfect monophyly of any of the traditionally recognized subfamilies or tribes. The subfamily Aspidiotinae is paraphyletic with respect to the subfamily Diaspidinae. Diaspidinae consists of two main clades that only roughly correspond to the tribes Lepidosaphidini and Diaspidini. Diaspidini is nearly monophyletic, except that it includes a single aspidiotine species. Other members of the tribe Aspidiotini form a clade, except that the clade includes a single species of Leucaspidini and excludes Maskellia and Pseudaonidia . Our results weakly support the hypothesis that the most recent common ancestor of the Diaspididae had adult females that were permanently enclosed within the derm of the second instar (the pupillarial habit) and had diploid adult males that eliminated their paternal genomes during spermatogenesis (late paternal genome elimination).  相似文献   

19.
Despite the advantage of avoiding the costs of sexual reproduction, asexual vertebrates are very rare and often considered evolutionarily disadvantaged when compared to sexual species. Asexual species, however, may have advantages when colonizing (new) habitats or competing with sexual counterparts. They are also evolutionary older than expected, leaving the question whether asexual vertebrates are not only rare because of their 'inferior' mode of reproduction but also because of other reasons. A paradigmatic model system is the unisexual Amazon molly, Poecilia formosa, that arose by hybridization of the Atlantic molly, Poecilia mexicana, as the maternal ancestor, and the sailfin molly, Poecilia latipinna, as the paternal ancestor. Our extensive crossing experiments failed to resynthesize asexually reproducing (gynogenetic) hybrids confirming results of previous studies. However, by producing diploid eggs, female F(1) -hybrids showed apparent preadaptation to gynogenesis. In a range-wide analysis of mitochondrial sequences, we examined the origin of P. formosa. Our analyses point to very few or even a single origin(s) of its lineage, which is estimated to be approximately 120,000 years old. A monophyletic origin was supported from nuclear microsatellite data. Furthermore, a considerable degree of genetic variation, apparent by high levels of clonal microsatellite diversity, was found. Our molecular phylogenetic evidence and the failure to resynthesize the gynogenetic P. formosa together with the old age of the species indicate that some unisexual vertebrates might be rare not because they suffer the long-term consequences of clonal reproduction but because they are only very rarely formed as a result of complex genetic preconditions necessary to produce viable and fertile clonal genomes and phenotypes ('rare formation hypothesis').  相似文献   

20.
Werren JH  van den Assem J 《Genetics》1986,114(1):217-233
Virtually all known cases of extrachromosomal inheritance involve cytoplasmic inheritance through the maternal line. Recently, a paternally transmitted factor that causes the production of all-male families has been discovered in a parasitic wasp. The wasp has haplodiploid sex determination: male offspring are haploid and usually develop from unfertilized eggs, whereas females are diploid and usually develop from fertilized eggs. It has been postulated that this paternal sex-ratio factor (psr) is either (1) an infectious agent (a venereal disease) that is transmitted to the female reproductive tract during copulation with an infected male and, subsequently, causes all-male families or (2) a male cytoplasmic factor that is transmitted by sperm to eggs upon egg fertilization and, somehow, causes loss of the paternal set of chromosomes.—Experimental evidence is presented which shows that the factor requires egg fertilization for transmission to the next generation; therefore, it is likely to be a cytoplasmic factor. Significant potential intragenomic conflict results from the presence of this factor and two other sex-ratio distorters in this wasp species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号