首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated CNS myelin membranes were extracted with Triton X-100 under conditions previously established for the isolation of cytoskeletal proteins. Treated myelin retained much of its characteristic lamellar structure despite the removal of most of the major myelin basic protein (18.5 kDa) and the proteolipid protein, which together normally constitute 60% of the total myelin protein. The SDS-PAGE profile of this extract residue demonstrated an enrichment in proteins of Mr 30 to 60 kilodaltons (the Wolfgram group). The major myelin proteins were identified by antibodies on Western immunoblots, as were the 23-cyclic nucleotide 3-phosphodiesterase (CNP), actin, tubulin, myelin-associated glycoprotein (MGP) and the 21.5 kDa MBP. The overall behavior of CNP, the 21.5 kDa MBP, MGP and tubulin towards Triton extraction is reminiscent of the behavior of other membrane-skeletal complexes, supporting the idea that these and other minor myelin proteins might be part of heteromolecular complexes with interactions spanning several lamellae of the myelin sheath.  相似文献   

2.
3.
The sphingolipids galactosylceramide and sulfatide are important for the formation and maintenance of myelin. Transgenic mice overexpressing the galactosylceramide synthesizing enzyme UDP-galactose:ceramide galactosyltransferase in oligodendrocytes display an up to four-fold increase in UDP-galactose:ceramide galactosyltransferase activity, which correlates with an increase in its products monogalactosyl diglyceride and non-hydroxy fatty acid-containing galactosylceramide. Surprisingly, however, we observed a concomitant decrease in alpha-hydroxylated galactosylceramide such that total galactosylceramide in transgenic mice was almost unaltered. These data suggest that UDP-galactose:ceramide galactosyltransferase activity does not limit total galactosylceramide level. Furthermore, the predominance of alpha-hydroxylated galactosylceramide appeared to be determined by the extent to which non-hydroxylated ceramide was galactosylated rather than by the higher affinity of UDP-galactose:ceramide galactosyltransferase for alpha-hydroxy fatty acid ceramide. The protein composition of myelin was unchanged with the exception of significant up-regulation of the myelin and lymphocyte protein. Transgenic mice were able to form myelin, which, however, was apparently unstable and uncompacted. These mice developed a progressive hindlimb paralysis and demyelination in the CNS, demonstrating that tight control of UDP-galactose:ceramide galactosyltransferase expression is essential for myelin maintenance.  相似文献   

4.
5.
6.
Tumor Necrosis Factor Receptor-Associated Factors (TRAFs) are major signal transducers for the TNF and interleukin-1/Toll-like receptor superfamilies. However, TRAF4 does not fit the paradigm of TRAF function in immune and inflammatory responses. Its physiological and molecular functions remain poorly understood. Behavorial analyses show that TRAF4-deficient mice (TRAF4-KO) exhibit altered locomotion coordination typical of ataxia. TRAF4-KO central nervous system (CNS) ultrastructure shows strong myelin perturbation including disorganized layers and disturbances in paranode organization. TRAF4 was previously reported to be expressed by CNS neurons. Using primary cell culture, we now show that TRAF4 is also expressed by oligodendrocytes, at all stages of their differentiation. Moreover, histology and electron microscopy show degeneration of a high number of Purkinje cells in TRAF4-KO mice, that was confirmed by increased expression of the Bax pro-apoptotic marker (immunofluorescence), TUNEL analysis, and caspase-3 activation and PARP1 cleavage (western blotting). Consistent with this phenotype, MAG and NogoA, two myelin-induced neurite outgrowth inhibitors, and their neuron partners, NgR and p75NTR were overexpressed (Q-RT-PCR and western blotting). The strong increased phosphorylation of Rock2, a RhoA downstream target, indicated that the NgR/p75NTR/RhoA signaling pathway, known to induce actin cytoskeleton rearrangement that favors axon regeneration inhibition and neuron apoptosis, is activated in the absence of TRAF4 (western blotting). Altogether, these results provide conclusive evidence for the pivotal contribution of TRAF4 to myelination and to cerebellar homeostasis, and link the loss of TRAF4 function to demyelinating or neurodegenerative diseases.  相似文献   

7.
Loss of myelin in the central nervous system (CNS) leads to debilitating neurological deficits. High-resolution optical imaging of myelin in the CNS of animal models is limited by a lack of in vivo myelin labeling strategies. We demonstrated that third harmonic generation (THG) microscopy—a coherent, nonlinear, dye-free imaging modality—provides micrometer resolution imaging of myelin in the mouse CNS. In fixed tissue, we found that THG signals arose from white matter tracts and were colocalized with two-photon excited fluorescence (2PEF) from a myelin-specific dye. In vivo, we used simultaneous THG and 2PEF imaging of the mouse spinal cord to resolve myelin sheaths surrounding individual fluorescently-labeled axons, and followed myelin disruption after spinal cord injury. Finally, we suggest optical mechanisms that underlie the myelin specificity of THG. These results establish THG microscopy as an ideal tool for the study of myelin loss and recovery.  相似文献   

8.
9.
Purified myelin fractions from the central nervous system contain one major myelin-associated glycoprotein and approximately 16 minor glycoproteins. While the genuine association of the major myelin-associated glycoprotein with the oligodendroglial myelin unit is demonstrated, the possibility exists that several of the minor glycoproteins have their origin in contaminating membranes not related to myelin. The major myelin-associated glycoprotein is probably not present in compacted myelin, but immunocytochemical and subfractionation studies indicate that it is confined to the periaxonal and paranodal region of the myelin sheath. In experimental demyelination and multiple sclerosis, the major glycoprotein is the first myelin constituent to be affected. Its localization on the membrane surface where myelin and axolemma are in close contact, and other indirect evidence indicate that the major glycoprotein, and possibly other myelin-associated glycoproteins, could play a role in the process of myelination and myelin maintenance.  相似文献   

10.
We utilised the retrograde transport machinery of neurones to deliver naked plasmid DNA into the central nervous system. A 5.4-kb fragment of the glycine receptor (GlyR) alpha1 subunit gene was cloned and used to drive the expression of a construct encoding for the enhanced green fluorescent protein (EGFP). Injections of the plasmid DNA in the tongue of mice resulted in the expression of the marker protein in hypoglossal motor neurones, showing that the GlyRalpha1 promoter sequence is sufficient to drive expression of the transgene. In order to determine the specificity of expression of the 5.4-kb fragment of the GlyR alpha1 subunit gene promoter, we subsequently injected the plasmid DNA into the mouse central nucleus of the amygdala. This nucleus receives projections from the parabrachial nucleus, a brainstem area that has a high density of GlyRs, and from the insular cortex, a forebrain structure devoid of GlyRs. We observed EGFP-labelled neurones in the parabrachial nucleus, but not in the insular cortex, indicating that the 5.4-kb GlyR alpha1 subunit gene promoter confers specificity of expression. This approach provides a simple and rapid way to identify, in vivo, promoter elements that mediate neurone-specific gene expression.  相似文献   

11.
Diabetes is considered a major public health problem affecting millions of individuals worldwide. Remarkably, scientific reports regarding salivary glands sphingolipid metabolism in diabetes are virtually non‐existent. This is odd given the well‐established link between the both in other tissues (e.g., skeletal muscles, liver) and the key role of these glands in oral health preservation. The aim of this paper is to examine sphingolipids metabolism in the salivary glands in (pre)diabetes (evoked by high fat diet feeding or streptozotocin). Wistar rats were allocated into three groups: control, HFD‐, or STZ‐diabetes. The content of major sphingolipid classes in the parotid (PSG) and submandibular (SMSG) glands was assessed via chromatography. Additionally, Western blot analyses were employed for the evaluation of key sphingolipid signaling pathway enzyme levels. No changes in ceramide content in the PSG were found, whereas an increase in ceramide concentration for SMSG of the STZ group was observed. This was accompanied by an elevation in SPT1 level. Probably also sphingomyelin hydrolysis was increased in the SMSG of the STZ‐diabetic rats, since we observed a significant drop in the amount of SM. PSG and SMSG respond differently to (pre)diabetes, with clearer pattern presented by the later gland. An activation of sphingomyelin signaling pathway was observed in the course of STZ‐diabetes, that is, metabolic condition with rapid onset/progression. Whereas, chronic HFD lead to an inhibition of sphingomyelin signaling pathway in the salivary glands (manifested in an inhibition of ceramide de novo synthesis and accumulation of S1P).  相似文献   

12.
Saito T 《Nature protocols》2006,1(3):1552-1558
This protocol describes a basic method for in vivo electroporation in the nervous system of embryonic mice. Delivery of electric pulses following microinjection of DNA into the brain ventricle or the spinal cord central canal enables efficient transfection of genes into the nervous system. Transfection is facilitated by forceps-type electrodes, which hold the uterus and/or the yolk sac containing the embryo. More than ten embryos in a single pregnant mouse can be operated on within 30 min. More than 90% of operated embryos survive and more than 90% of these survivors express the transfected genes appropriately. Gene expression in neurons persists for a long time, even at postnatal stages, after electroporation. Thus, this method could be used to analyze roles of genes not only in embryonic development but also in higher order function of the nervous system, such as learning.  相似文献   

13.
14.
Calcium-activated neutral proteinase (CANP) activity was determined in subcellular fractions and in different regions of bovine brain. The CANP specific activity in spinal cord and corpus callosum, areas rich in myelin, were almost six-fold greater than cerebral cortex and cerebellum. Treatment of whole homogenate and myelin with 0.1% Triton X-100 increased the CANP activity by tenfold. Subcellular fractions were prepared from bovine brain gray and white matter. Most of the CANP activity (70%) was in the primary particulate fractions P1 (nuclear), P2 (mitochondrial) and P3 (microsomal). On subfractionation of each particulate fraction, the majority of the activity (greater than 50%) was recovered in the myelin-enriched fractions (P1A, P2A, P3A) which separate at the interphase of 0.32 M- and 0l85 M-sucrose. The distribution of activity was P2A>P1A>P3A. Further purification of myelin (of P2A) increased the specific activity over homogenate by more than three-fold. The same myelin fractions contained the highest proportion (60%) and specific activity (five-fold increase) of CNPase. The enzyme activity in different regions of brain and in subcellular fractions was increased by 20–39% after the inhibitor was removed. Electron microscopic study confirmed that the myelin fractions were highly purified. The cytosolic fraction contained 20–30% of the total homogenate CANP activity. Other fractions contained low enzyme activity. CANP was identified in the purified myelin fraction by electroimmublot-technique. It is concluded that the bulk of CANP in CNS is tightly bound to the membrane, may be masked or hidden and is intimately associated with the myelin sheath.Abbreviations Used CANP calcium-activated neutral proteinase - CNPase adenosine-2, 3-cyclic nucleotide 3-phosphohydrolase  相似文献   

15.
16.
17.
18.
This review discusses all pyridine alkaloids with CNS activity, their therapeutic potential, and the interesting array of sources whence they originate.  相似文献   

19.
20.
Oxidative stress has been shown to play a role in aging and in neurodegenerative disorders. Some of the consequences of oxidative stress are DNA base modifications, lipid peroxidation, and protein modifications such as formation of carbonyls and nitrotyrosine. These events may play a role in apoptosis, another factor in aging and neurodegeneration, in response to uncompensated oxidative stress. Bcl-2 is a mitochondrial protein that protects neurons from apoptotic stimuli including oxidative stress. Using immunohistochemistry and western blot analysis, here we show that Bcl-2 is up-regulated in the hippocampus and cerebellum of aged (24 months) Fisher 344 rats. Treatment with the free radical spin trap N-tert-butyl-alpha-phenylnitrone (PBN) effectively reverses this age-dependent Bcl-2 up-regulation indicating that this response is redox sensitive. This conclusion was further supported by inducing the same regional Bcl-2 up-regulation in young (3 months) Fisher 344 rats exposed to 100% normobaric O(2) for 48 h. Our results indicate that Bcl-2 expression is increased in the aged brain, possibly as a consequence of oxidative stress challenges. These results also illustrate the effectiveness of antioxidants in reversing age-related changes in the CNS and support further research to investigate their use in aging and in age-related neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号