首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of amyloidogenic amyloid-beta peptide (Abeta) from amyloid-beta precursor protein (APP) requires cleavage by beta- and gamma-secretases. In contrast, alpha-secretase cleaves APP within the Abeta sequence and precludes amyloidogenesis. Regulated and unregulated alpha-secretase activities have been reported, and the fraction of cellular alpha-secretase activity regulated by protein kinase C (PKC) has been attributed to the ADAM (a disintegrin and metalloprotease) family members TACE and ADAM-10. Although unregulated alpha-secretase cleavage of APP has been shown to occur at the cell surface, we sought to identify the intracellular site of PKC-regulated alpha-secretase APP cleavage. To accomplish this, we measured levels of secreted ectodomains and C-terminal fragments of APP generated by alpha-secretase (sAPPalpha) (C83) versus beta-secretase (sAPPbeta) (C99) and secreted Abeta in cultured cells treated with PKC and inhibitors of TACE/ADAM-10. We found that PKC stimulation increased sAPPalpha but decreased sAPPbeta levels by altering the competition between alpha- versus beta-secretase for APP within the same organelle rather than by perturbing APP trafficking. Moreover, data implicating the trans-Golgi network (TGN) as a major site for beta-secretase activity prompted us to hypothesize that PKC-regulated alpha-secretase(s) also reside in this organelle. To test this hypothesis, we performed studies demonstrating proteolytically mature TACE intracellularly, and we also showed that regulated alpha-secretase APP cleavage occurs in the TGN using an APP mutant construct targeted specifically to the TGN. By detecting regulated alpha-secretase APP cleavage in the TGN by TACE/ADAM-10, we reveal ADAM activity in a novel location. Finally, the competition between TACE/ADAM-10 and beta-secretase for intracellular APP cleavage may represent a novel target for the discovery of new therapeutic agents to treat Alzheimer's disease.  相似文献   

2.
Jolly-Tornetta C  Wolf BA 《Biochemistry》2000,39(25):7428-7435
Cleavage of amyloid precursor protein (APP) by beta-secretase generates beta-amyloid (Abeta), the major component of senile plaques in Alzheimer's disease. Cleavage of APP by alpha-secretase prevents Abeta formation, producing nonamyloidogenic APP products. Protein kinase C (PKC) has been shown to regulate APPs secretion, and PKCalpha and PKCepsilon have been implicated in APPs secretion in fibroblasts. This study examined the PKC isoform involved in regulated APPs secretion in human NT2N neurons and in CHO cells stably expressing APP(695). Inhibition of PMA-induced APPs secretion with the PKC inhibitors Calphostin C and GF109203X demonstrated that PKC is involved in PMA-regulated APPs secretion in NT2N cells. The specific PKC isoforms present in NT2N and CHO695 cells were identified, and PKCalpha and PKCepsilon were found to translocate from cytosol to membranes in NT2N and CHO695 cells. Translocation of PKC to the membrane allows for activation of the enzyme, as well as for positioning of the enzyme close to its substrate. Long-term PMA treatment led to complete downregulation of PKCalpha in NT2N cells and to downregulation of PKCalpha and PKCepsilon in CHO695 cells. PKCalpha downregulation in the NT2N cells resulted in loss of PMA-regulated APPs secretion and a substantial reduction in constitutive APPs secretion. Downregulation of PKCalpha and PKCepsilon in CHO695 cells resulted in loss of PMA-regulated APPs secretion; however, constitutive APPs secretion was unaffected. These findings suggest that PKCalpha is involved in PMA-regulated APPs secretion in NT2N cells and PKCalpha and/or PKCepsilon is involved in PMA-regulated APPs secretion in CHO695 cells.  相似文献   

3.
Constitutive and PKC-regulated alpha-secretase pathways have been reported to produce the secreted form of alpha-secretase-derived APP (sAPPalpha). Here, we examined putative role of furin in the regulation of alpha-secretase activity in vitro and in vivo. Overexpression of the prodomain of furin and infection with a furin-specific inhibitor significantly reduced the levels of sAPPalpha regardless of PKC activity, whereas total APP levels remained unchanged. Furin mRNA levels in the brains of AD patients and Tg2576 mice were significantly lower than those in controls, whereas ADAM10 and TACE mRNA levels were much alike between Tg2576 and littermate mice. Moreover, the injection of furin-adenovirus into Tg2576 mouse brains markedly increased alpha-secretase activity and reduced beta-amyloid protein (Abeta) production in infected brain regions. Our results suggest that furin enhances alpha-secretase activity via the cleavage of ADAM10 and TACE, and that attenuated furin activity is connected to the production of Abeta.  相似文献   

4.
Deposition of plaques containing Abeta is considered important in the pathogenesis of Alzheimer's disease. Phorbol esters that activate protein kinase C (PKC) promote alpha-secretase-mediated processing of the beta amyloid precursor protein (APP), which generally reduces formation of Abeta. To determine which PKC isozymes mediate this process, we studied CHO cells that express human APP751. Phorbol 12-myristate, 13-acetate (PMA)-stimulated APP secretion, which was reduced by a general PKC inhibitor bisindoylmaleimide I, but not by G? 6976, which inhibits PKCalpha, beta, gamma, and mu. Since PKCdelta and epsilon were the only other PMA-sensitive isozymes present, we studied cells that express selective peptide inhibitors of these isozymes. Expression of the PKCepsilon inhibitor inhibited PMA-induced APPs secretion and suppression of Abeta production. In contrast, the PKCdelta inhibitor had no effect. These results provide evidence that PKCepsilon decreases Abeta production by promoting alpha-secretase mediated cleavage of APP.  相似文献   

5.
Non-amyloidogenic alpha-secretase processing of amyloid precursor protein (APP) is stimulated by protein kinase C (PKC). Levels and activity of PKC are decreased in sporadic Alzheimer's disease skin fibroblasts. We investigated whether alterations in PKC and PKC-mediated APP processing occur also in fibroblasts established from individuals with familial Alzheimer's disease APP KM670/671NL, PS1 M146V and H163Y mutations. These pathogenic mutations are known to alter APP metabolism to increase Abeta. PKC activities, but not levels, were decreased by 50% in soluble fractions from sporadic Alzheimer's disease cases. In contrast, familial Alzheimer's disease fibroblasts showed no significant changes in PKC enzyme activity. Fibroblasts bearing the APP KM670/671NL mutation showed no significant differences in either PKC levels or PKC-mediated soluble APP (APPs) secretion, compared to controls. Fibroblasts bearing PS1 M146V and H163Y mutations showed a 30% increase in soluble PKC levels and a 40% decrease in PKC-mediated APPs secretion. These results indicate that PKC deficits are unlikely to contribute to increased Abeta seen with APP and PS1 mutations, and also that PS1 mutations decrease alpha-secretase derived APPs production independently of altered PKC activity.  相似文献   

6.
Progressive cerebral deposition of the amyloid (A beta) beta-protein is an early and invariant feature of Alzheimer's disease. A beta is derived by proteolysis from the membrane-spanning beta-amyloid precursor protein (beta APP). beta APP is processed into various secreted products, including soluble beta APP (APPs), the 4-kD A beta peptide, and a related 3-kD peptide (p3). We analyzed the mechanisms regulating the polarized basolateral sorting of beta APP and its proteolytic derivatives in MDCK cells. Deletion of the last 32 amino acids (residues 664-695) of the beta APP cytoplasmic tail had no influence on either the constitutive approximately 90% level of basolateral sorting of surface beta APP, or the strong basolateral secretion of APPs, A beta, and p3. However, deleting the last 42 amino acids (residues 654-695) or changing tyrosine 653 to alanine altered the distribution of cell surface beta APP so that approximately 40-50% of the molecules were inserted apically. In parallel, A beta was now secreted from both surfaces. Surprisingly, this change in surface beta APP had no influence on the basolateral secretion of APPs and p3. This result suggests that most beta APP molecules which give rise to APPs in MDCK cells are cleaved intracellularly before reaching the surface. Consistent with this conclusion, we readily detected intracellular APPs in carbonate extracts of isolated membrane vesicles. Moreover, ammonium chloride treatment resulted in the equal secretion of APPs into both compartments, as occurs with other non-membranous, basolaterally secreted proteins, but it did not influence the polarity of cell surface beta APP. These results demonstrate that in epithelial cells two independent mechanisms mediate the polarized trafficking of beta APP holoprotein and its major secreted derivative (APPs) and that A beta peptides are derived in part from beta APP holoprotein targeted to the cell surface by a signal that includes tyrosine 653.  相似文献   

7.
Presenilin-1 (PS1) is required for the release of the intracellular domain of Notch from the plasma membrane as well as for the cleavage of the amyloid precursor protein (APP) at the gamma-secretase cleavage site. It remains to be demonstrated whether PS1 acts by facilitating the activity of the protease concerned or is the protease itself. PS1 could have a gamma-secretase activity by itself or could traffic APP and Notch to the appropriate cellular compartment for processing. Human APP 695 and PS1 were coexpressed in Sf9 insect cells, in which endogenous gamma-secretase activity is not detected. In baculovirus-infected Sf9 cells, PS1 undergoes endoproteolysis and interacts with APP. However, PS1 does not cleave APP in Sf9 cells. In CHO cells, endocytosis of APP is required for Abeta secretion. Deletion of the cytoplasmic sequence of APP (APPDeltaC) inhibits both APP endocytosis and Abeta production. When APPDeltaC and PS1 are coexpressed in CHO cells, Abeta is secreted without endocytosis of APP. Taken together, these results conclusively show that, although PS1 does not cleave APP in Sf9 cells, PS1 allows the secretion of Abeta without endocytosis of APP by CHO cells.  相似文献   

8.
We investigated the ability of the antidementia agents, nicergoline, aniracetam and hydergine to stimulate PKC mediated alpha-secretase amyloid precursor protein (APP) processing in cultured human neuroblastoma SH-SY5Y cells. Western immunoblotting of cell conditioned media using the Mabs 22C11 and 6E10 revealed the presence of 2 bands with molecular mass of 90 and 120 kDa, corresponding to possible alternatively glycosylated forms of secreted APP (APPs). Short-term (30 min and 2 h) treatment of cells with nicergoline gave an increased intensity of both bands, compared to non-treated cells. Maximal nicergoline effects, of the order of 150-200% over basal APPs release, were seen at concentrations between 1 and 10 microM. Under the same condition, 1 microM PdBu, used as a positive control, gave 500-1000% increases of basal APPs release. In contrast, aniracetam and hydergine, did not show any effect on APPs secretion. 2 h treatment with nicergoline had no effect on cellular full-length APP levels, as determined by immunoblotting of cell extracts with 22C11 and CT15 antibodies. Immunoblotting with PKC isoform specific antibodies of soluble and membrane fractions prepared from 2 h treated cells, showed that nicergoline (50 microM) and PdBu (1 microM) both induced translocation of PKC alpha, gamma and epsilon, but not PKC beta. The involvement of PKC in mediating nicergoline stimulated APPs release was also studied using specific inhibitors. 1 microM calphostin C, a broad range PKC inhibitor, significantly reduced both PdBu (1 microM) and nicergoline (10 microM) induced APPs release. In contrast, Go6976 (1 microM), a selective PKC alpha and beta1 inhibitor, as well as the cAMP-dependent protein kinase inhibitor, H89 (1 microM) were without effect. These results indicate that nicergoline can modulate alpha-secretase APP processing by a PKC dependent mechanism that is likely to involve the gamma and epsilon isoforms of this enzyme.  相似文献   

9.
Ectodomain shedding of the amyloid precursor protein (APP) by the two proteases alpha- and beta-secretase is a key regulatory event in the generation of the Alzheimer disease amyloid beta peptide (Abeta). beta-Secretase catalyzes the first step in Abeta generation, whereas alpha-secretase cleaves within the Abeta domain, prevents Abeta generation, and generates a secreted form of APP with neuroprotective properties. At present, little is known about the cellular mechanisms that control APP alpha-secretase cleavage and Abeta generation. To explore the contributory pathways, we carried out an expression cloning screen. We identified a novel member of the sorting nexin (SNX) family of endosomal trafficking proteins, called SNX33, as a new activator of APP alpha-secretase cleavage. SNX33 is a homolog of SNX9 and was found to be a ubiquitously expressed phosphoprotein. Exogenous expression of SNX33 in cultured cells increased APP alpha-secretase cleavage 4-fold but surprisingly had little effect on beta-secretase cleavage. This effect was similar to the expression of the dominant negative dynamin-1 mutant K44A. SNX33 bound the endocytic GTPase dynamin and reduced the rate of APP endocytosis in a dynamin-dependent manner. This led to an increase of APP at the plasma membrane, where alpha-secretase cleavage mostly occurs. In summary, our study identifies SNX33 as a new endocytic protein, which modulates APP endocytosis and APP alpha-secretase cleavage, and demonstrates that the rate of APP endocytosis is a major control factor for APP alpha-secretase cleavage.  相似文献   

10.
In Alzheimer's disease there is abnormal brain copper distribution, with accumulation of copper in amyloid plaques and a deficiency of copper in neighbouring cells. Excess copper inhibits Abeta (amyloid beta-peptide) production, but the effects of deficiency have not yet been determined. We therefore studied the effects of modulating intracellular copper levels on the processing of APP (amyloid precursor protein) and the production of Abeta. Human fibroblasts genetically disposed to copper accumulation secreted higher levels of sAPP (soluble APP ectodomain)alpha into their medium, whereas fibroblasts genetically manipulated to be profoundly copper deficient secreted predominantly sAPPbeta and produced more amyloidogenic beta-cleaved APP C-termini (C99). The level of Abeta secreted from copper-deficient fibroblasts was however regulated and limited by alpha-secretase cleavage. APP can be processed by both alpha- and beta-secretase, as copper-deficient fibroblasts secreted sAPPbeta exclusively, but produced primarily alpha-cleaved APP C-terminal fragments (C83). Copper deficiency also markedly reduced the steady-state level of APP mRNA whereas the APP protein level remained constant, indicating that copper deficiency may accelerate APP translation. Copper deficiency in human neuroblastoma cells significantly increased the level of Abeta secretion, but did not affect the cleavage of APP. Therefore copper deficiency markedly alters APP metabolism and can elevate Abeta secretion by either influencing APP cleavage or by inhibiting its degradation, with the mechanism dependent on cell type. Overall our results suggest that correcting brain copper imbalance represents a relevant therapeutic target for Alzheimer's disease.  相似文献   

11.
Tumor necrosis factor-alpha (TNF-alpha) is implicated in inflammatory processes and much effort is being directed at inhibiting the release of TNF-alpha for treatment of inflammatory conditions. In this context, the drug CP-661,631 has been developed to inhibit the TNF-alpha converting enzyme (TACE). However, TACE is also implicated in amyloid precursor protein secretion. Amyloid precursor protein (APP) undergoes constitutive and regulated secretion by alpha-secretase endoproteolytic cleavage within the amyloid beta peptide (Abeta) domain. Alternative cleavage at the N- and C-terminus of the Abeta domain by beta- and gamma-secretases results in the production of Abeta. In many cellular and in vivo animal models, increased secretion of APP results in a concomitant decrease in the production of Abeta suggesting that the two pathways are intricately linked. However, in human primary neuron cultures, increased APP secretion is not associated with a decrease in total Abeta production. To determine if the use of CP-661,631 may enhance amyloidogenic processing in human brain, we have assessed the effect of CP-661,631 on APP metabolism in primary cultures of human neurons. Our results show that CP-661,631 effectively prevents regulated APP secretion but does not increase total Abeta levels in human primary neuron cultures.  相似文献   

12.
Alzheimer's beta-amyloid precursor protein (APP) is normally processed by an unidentified alpha-secretase. A unique feature of this protease is its high sensitivity to phorbol esters, yet the mechanism involved is unclear. We have previously reported that phorbol 12,13-dibutyrate (PDBu) activates calpain, a Ca2+-dependent protease, and PDBu-induced release of APPs (secreted APP) is sensitive to calpain inhibitors, suggesting that calpain is involved in APP alpha-processing. In the present study, we found that PDBu markedly promoted the expression of both mu- and m-calpains in cultured fibroblasts. Dose-response and time course studies revealed that mu-calpain was more sensitive to PDBu than m-calpain and the temporal course of the mu-calpain change coincides better with that of APPs release. Moreover, the stimulatory effect of PDBu on mu-calpain was selectively blocked by mu-calpain-specific siRNA (small interference RNA) and the blockage was accompanied by a concomitant decrease in APPs release. In contrast, m-calpain siRNA did not affect APPs release significantly. Measurement of amyloid beta protein (Abeta) release in the mu-calpain siRNA-treated cells indicated that Abeta40 and Abeta42 levels inversely changed in relation to APPs, and the changes in Abeta42 were more prominent than in Abeta40. Together, these data suggest that calpain, particularly mu-calpain, is a potential candidate for alpha-secretase in the regulated APP alpha-processing, and that changes in this protease can affect the outcome of the overall APP processing.  相似文献   

13.
The Alzheimer's amyloid protein (Abeta) is released from the larger amyloid beta-protein precursor (APP) by unidentified enzymes referred to as beta- and gamma-secretase. beta-Secretase cleaves APP on the amino side of Abeta producing a large secreted derivative (sAPPbeta) and an Abeta-bearing C-terminal derivative that is subsequently cleaved by gamma-secretase to release Abeta. Alternative cleavage of the APP by alpha-secretase at Abeta16/17 releases the secreted derivative sAPPalpha. In yeast, alpha-secretase activity has been attributed to glycosylphosphatidylinositol (GPI)-anchored aspartyl proteases. To examine the role of GPI-anchored proteins, we specifically removed these proteins from the surface of mammalian cells using phosphatidylinositol-specific phospholipase C (PI-PLC). PI-PLC treatment of fetal guinea pig brain cultures substantially reduced the amount of Abeta40 and Abeta42 in the medium but had no effect on sAPPalpha. A mutant CHO cell line (gpi85), which lacks GPI-anchored proteins, secreted lower levels of Abeta40, Abeta42, and sAPPbeta than its parental line (GPI+). When this parental line was treated with PI-PLC, Abeta40, Abeta42, and sAPPbeta decreased to levels similar to those observed in the mutant line, and the mutant line was resistant to these effects of PI-PLC. These findings provide strong evidence that one or more GPI-anchored proteins play an important role in beta-secretase activity and Abeta secretion in mammalian cells. The cell-surface GPI-anchored protein(s) involved in Abeta biogenesis may be excellent therapeutic target(s) in Alzheimer's disease.  相似文献   

14.
Amyloid-beta (Abeta) peptide, the principal component of senile plaques in the brains of patients with Alzheimer's disease, is derived from proteolytic cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Alternative cleavage of APP by alpha-secretase occurs within the Abeta domain and precludes generation of Abeta peptide. Three members of the ADAM (a disintegrin and metalloprotease) family of proteases, ADAM9, 10 and 17, are the main candidates for alpha-secretases. However, the mechanism that regulates alpha-secretase activity remains unclear. We have recently demonstrated that nardilysin (EC 3.4.24.61, N-arginine dibasic convertase; NRDc) enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of ADAM17. In this study, we show that NRDc enhances the alpha-secretase activity of ADAMs, which results in a decrease in the amount of Abeta generated. When expressed with ADAMs in cells, NRDc dramatically increased the secretion of alpha-secretase-cleaved soluble APP and reduced the amount of Abeta peptide generated. A peptide cleavage assay in vitro also showed that recombinant NRDc enhances ADAM17-induced cleavage of the peptide substrate corresponding to the alpha-secretase cleavage site of APP. A reduction of endogenous NRDc by RNA interference was accompanied by a decrease in the cleavage by alpha-secretase of APP and increase in the amount of Abeta generated. Notably, NRDc is clearly expressed in cortical neurons in human brain. Our results indicate that NRDc is involved in the metabolism of APP through regulation of the alpha-secretase activity of ADAMs, which may be a novel target for the treatment of Alzheimer's disease.  相似文献   

15.
Mutations within the amyloid-beta (Abeta) domain of the amyloid precursor protein (APP) typically generate hemorrhagic strokes and vascular amyloid angiopathy. In contrast, the Arctic mutation (APP E693G) results in Alzheimer's disease. Little is known about the pathologic mechanisms that result from the Arctic mutation, although increased formation of Abeta protofibrils in vitro and intraneuronal Abeta aggregates in vivo suggest that early steps in the amyloidogenic pathway are facilitated. Here we show that the Arctic mutation favors proamyloidogenic APP processing by increased beta-secretase cleavage, as demonstrated by altered levels of N- and C-terminal APP fragments. Although the Arctic mutation is located close to the alpha-secretase site, APP harboring the Arctic mutation is not an inferior substrate to a disintegrin and metalloprotease-10, a major alpha-secretase. Instead, the localization of Arctic APP is altered, with reduced levels at the cell surface making Arctic APP less available for alpha-secretase cleavage. As a result, the extent and subcellular location of Abeta formation is changed, as revealed by increased Abeta levels, especially at intracellular locations. Our findings suggest that the unique clinical symptomatology and neuropathology associated with the Arctic mutation, but not with other intra-Abeta mutations, could relate to altered APP processing with increased steady-state levels of Arctic Abeta, particularly at intracellular locations.  相似文献   

16.
We investigated the effects of different apolipoprotein E (apoE) isoforms, Abeta (1-42), and apoE/Abeta complexes on PKC-alpha translocation and APP processing in human SH-SY5Y neuroblastoma cells and fibroblasts. Treatment of cells with either 10 nM apoE3 or apoE4, 10 microM Abeta (1-42), or apoE/Abeta complexes induced significant translocation of PKC-alpha in both cell types. Effects were seen using both human recombinant apoE and apoE loaded into beta-very low density lipoprotein (beta-VLDL) particles. Time course (5-24 h) studies of APP processing revealed that some conditions induced transient or moderate increases in the secretion of proteins detected by 22C11. In contrast, the secretion of alpha-secretase cleaved APP was either not modified or transiently decreased, as determined by immunoblotting with the antibody 6E10. These results suggest that apoE, Abeta (1-42) and apoE/Abeta complexes can modulate PKC activity but do not have major consequences for APP processing. These effects could contribute to the reported PKC alterations seen in AD. However, it is unlikely that the contribution of different apoE isoforms to AD pathology occurs via effects on APP processing.  相似文献   

17.
18.
Abeta peptides are major components of the amyloid plaques that characterize Alzheimer's disease. These peptides are proteolytic cleavage products of the amyloid precursor protein (APP) and are generated by beta- and gamma-secretases. Here we show by multiparameter immunofluorescence imaging in muscle cells that localization of the Abeta40 and Abeta42 cleavage products reveals different myocyte types in a three-dimensional culture system. These myocyte types are heterogeneous by selective intracellular concentration of either Abeta40 or Abeta42 in vesicular structures, whilst only the Abeta40 peptide is secreted as indicated by Western blot analysis. This cellular pattern of APP proteolysis and Abeta peptide secretion correlates with lack of L-APP mRNA splice isoforms. Differential secretion and intracellular accumulation of Abeta peptides is characteristic for the early myocyte development and might be related to cell fusion.  相似文献   

19.
The main component of Alzheimer's disease (AD) senile plaques is amyloid-beta peptide (Abeta), a proteolytic fragment of the amyloid precursor protein (APP). Platelets contain both APP and Abeta and may contribute to the perivascular amyloid deposition seen in AD. However, no data are available concerning the biochemical mechanism(s) involved in their formation and release by these cells. We found that human platelets released APP and Abeta following activation with collagen or arachidonic acid. Inhibition of platelet cyclooxygenase (COX) reduced APP but not Abeta release following those stimuli. In contrast, activation of platelets by thrombin and calcium ionophore caused release of both APP and Abeta in a COX-independent fashion. Ex vivo studies showed that, despite suppression of COX activity, administration of aspirin did not modify Abeta or APP levels in serum or plasma, suggesting that this enzyme plays only a minor role in vivo. We examined the regulation of APP cleavage and release from activated platelets and found that cleavage requires protein kinase C (PKC) activity and is regulated by the intracellular second messengers phosphatidylinositol 2-phosphate and Ca(2+). Our data provide the first evidence that in human platelets COX is a minor component of APP secretion whereas PKC plays a major role in the secretory cleavage of APP. By contrast, Abeta release may represent secretion of preformed peptide and is totally independent of both COX and PKC activity.  相似文献   

20.
The influence of cholesterol and the lovastatin (cholesterol-lowering drug) on secretion of alpha-secretase cleavage product of amyloid precursor protein (APP) and expression of nicotinic acetylcholine receptors (nAChRs) was investigated in human HTB-15 astrocytes. The results showed that exposure of cholesterol to astrocytes inhibited the secretion of alpha-form of secreted APP (alphaAPPs) and reduced cell viability, while lovastatin enhanced the alpha-secretase processing on astrocytes; cholesterol treatment decreased expression of alpha7 nAChR, whereas lovastatin induced an up-regulation of the receptor; the increase in alphaAPPs resulted from lovastatin was partially inhibited by the alpha7 nAChR antagonists, alpha-bungarotoxin or methyllycaconitine; cholesterol or lovastatin did not influence either whole APP level or expression of alpha4 nAChR. We suggest that high dose of cholesterol may inhibit both the activity of alpha-secretase in APP metabolic processing and the expression of alpha7 nAChR, while lovastatin may stimulate alpha-secretase cleavage processing that might be regulated by alpha7 nAChR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号