首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acellular slime mold, Physarum polycephalum, has a unique wound-healing system. When cytoplasm of plasmodia is exposed to extracellular fluid, calcium binding protein 40 (CBP40) seals damaged areas, forming large aggregates Ca(2+) dependently. Part of the CBP40 is truncated at the N terminus by a proteinase in plasmodia (CBP40delta), which does not aggregate in the Ca(2+)-bound form. Here we report the crystal structures of CBP40delta in both the metal-free and the Ca(2+)-bound states. Both structures consist of three domains: coiled-coil, intervening, and EF-hand. The topology of the EF-hand domain is similar to that of calpain. The N-terminal half of CBP40Delta interacts with the C-terminal EF-hands through a large hydrophobic interface, necessary for high Ca(2+) affinity. Conformational change upon Ca(2+) binding is small; however, the structure of CBP40delta provides novel insights into the mechanism of Ca(2+)-dependent oligomerization.  相似文献   

2.
Guanylyl cyclase activating protein 1 (GCAP-1), a Ca(2+)/Mg(2+) sensor protein that accelerates retinal guanylyl cyclase (RetGC) in the light and decelerates it in the dark, is inactive in cation-free form. Binding of Mg(2+) in EF-hands 2 and 3 was essential for RetGC activation in the conditions mimicking light adaptation. Mg(2+) binding in EF-hand 2 affected the conformation of a neighboring non-metal binding domain, EF-hand-1, and increased GCAP-1 affinity for RetGC nearly 40-fold compared with the metal-free EF-hand 2. Mg(2+) binding in EF-hand 3 increased GCAP-1 affinity for RetGC 5-fold and its maximal RetGC stimulation 2-fold. Mg(2+) binding in EF-hand 4 affected neither GCAP-1 affinity for RetGC, nor RetGC activation. Inactivation of Ca(2+) binding in EF-hand 4 was sufficient to render GCAP-1 a constitutive activator of RetGC, whereas the EF-hand 3 role in Ca(2+)-dependent deceleration of RetGC was likely to be through the neighboring EF-hand 4. Inactivation of Ca(2+) binding in EF-hand 2 affected cooperativity of RetGC inhibition by Ca(2+), but did not prevent the inhibition. We conclude that 1) Mg(2+) binding in EF-hands 2 and 3, but not EF-hand 4, is essential for the ability of GCAP-1 to activate RetGC in the light; 2) Mg(2+) or Ca(2+) binding in EF-hand 3 and especially in EF-hand 2 is required for high-affinity interaction with the cyclase and affects the conformation of the neighboring EF-hand 1, a domain required for targeting RetGC; and 3) RetGC inhibition is likely to be primarily caused by Ca(2+) binding in EF-hand 4.  相似文献   

3.
E Hohenester  P Maurer    R Timpl 《The EMBO journal》1997,16(13):3778-3786
BM-40 (also known as SPARC or osteonectin) is an anti-adhesive secreted glycoprotein involved in tissue remodelling. Apart from an acidic N-terminal segment, BM-40 consists of a follistatin-like (FS) domain and an EF-hand calcium-binding (EC) domain. Here we report the crystal structure at 3.1 A resolution of the FS-EC domain pair of human BM-40. The two distinct domains interact through a small interface that involves the EF-hand pair of the EC domain. Residues implicated in cell binding, inhibition of cell spreading and disassembly of focal adhesions cluster on one face of BM-40, opposite the binding epitope for collagens and the N-linked carbohydrate. The elongated FS domain is structurally related to serine protease inhibitors of the Kazal family. Notable differences are an insertion into the inhibitory loop in BM-40 and a protruding N-terminal beta-hairpin with striking similarities to epidermal growth factor. This hairpin is likely to act as a rigid spacer in proteins containing tandemly repeated FS domains, such as follistatin and agrin, and forms the heparin-binding site in follistatin.  相似文献   

4.
Calmodulin (CaM) is an EF-hand protein composed of two calcium (Ca(2+))-binding EF-hand motifs in its N-domain (EF-1 and EF-2) and two in its C-domain (EF-3 and EF-4). In this study, we examined the structure, dynamics, and Ca(2+)-binding properties of a fragment of CaM containing only EF-2 and EF-3 and the intervening linker sequence (CaM2/3). Based on NMR spectroscopic analyses, Ca(2+)-free CaM2/3 is predominantly unfolded, but upon binding Ca(2+), adopts a monomeric structure composed of two EF-hand motifs bridged by a short antiparallel beta-sheet. Despite having an "even-odd" pairing of EF-hands, the tertiary structure of CaM2/3 is similar to both the "odd-even" paired N- and C-domains of Ca(2+)-ligated CaM, with the conformationally flexible linker sequence adopting the role of an inter-EF-hand loop. However, unlike either CaM domain, CaM2/3 exhibits stepwise Ca(2+) binding with a K (d1) = 30 +/- 5 microM to EF-3, and a K (d2) > 1000 microM to EF-2. Binding of the first equivalent of Ca(2+) induces the cooperative folding of CaM2/3. In the case of native CaM, stacking interactions between four conserved aromatic residues help to hold the first and fourth helices of each EF-hand domain together, while the loop between EF-hands covalently tethers the second and third helices. In contrast, these aromatic residues lie along the second and third helices of CaM2/3, and thus are positioned adjacent to the loop between its "even-odd" paired EF-hands. This nonnative hydrophobic core packing may contribute to the weak Ca(2+) affinity exhibited by EF-2 in the context of CaM2/3.  相似文献   

5.
S100A5 is a novel member of the EF-hand superfamily of calcium-binding proteins that is poorly characterized at the protein level. Immunohistochemical analysis demonstrates that it is expressed in very restricted regions of the adult brain. Here we characterized the human recombinant S100A5, especially its interaction with Ca(2+), Zn(2+), and Cu(2+). Flow dialysis revealed that the homodimeric S100A5 binds four Ca(2+) ions with strong positive cooperativity and an affinity 20-100-fold higher than the other S100 proteins studied under identical conditions. S100A5 also binds two Zn(2+) ions and four Cu(2+) ions per dimer. Cu(2+) binding strongly impairs the binding of Ca(2+); however, none of these ions change the alpha-helical-rich secondary structure. After covalent labeling of an exposed thiol with 2-(4'-(iodoacetamide)anilino)-naphthalene-6-sulfonic acid, binding of Cu(2+), but not of Ca(2+) or Zn(2+), strongly decreased its fluorescence. In light of the three-dimensional structure of S100 proteins, our data suggest that in each subunit the single Zn(2+) site is located at the opposite side of the EF-hands. The two Cu(2+)-binding sites likely share ligands of the EF-hands. The potential role of S100A5 in copper homeostasis is discussed.  相似文献   

6.
The anti-spreading activity of secreted protein acidic and rich in cysteine (SPARC) has been assigned to the C-terminal third domain, a region rich in alpha-helices. This "extracellular calcium-binding" (EC) domain contains two EF-hands that each coordinates one Ca2+ ion, forming a helix-loop-helix structure that not only drives the conformation of the protein but is also necessary for biological activity. Recombinant (r) EC, expressed in E. coli, was fused at the C-terminus to a His hexamer and isolated under denaturing conditions by nickel-chelate affinity chromatography. rEC-His was renatured by procedures that simultaneously (i) removed denaturing conditions, (ii) catalyzed disulfide bond isomerization, and (iii) initiated Ca2+-dependent refolding. Intrinsic tryptophan fluorescence and circular dichroism spectroscopies demonstrated that rEC-His exhibited a Ca2+-dependent conformation that was consistent with the known crystal structure. Spreading assays confirmed that rEC-His was biologically active through its ability to inhibit the spreading of freshly plated human urothelial cells propagated from transitional epithelium. rEC-His and rSPARC-His exhibited highly similar anti-spreading activities when measured as a function of concentration or time. In contrast to the wild-type and EC recombinant proteins, rSPARC(E268F)-His, a point substitution mutant at the Z position of EF-hand 2, failed to exhibit both Ca2+-dependent changes in alpha-helical secondary structure and anti-spreading activity. The collective data provide evidence that the motif of SPARC responsible for anti-spreading activity was dependent on the coordination of Ca2+ by a Glu residue at the Z position of EF-hand 2 and provide insights into how adhesive forces are balanced within the extracellular matrix of urothelial cells. .  相似文献   

7.
Sorcin, a 21.6 kDa cytosolic EF-hand protein which undergoes a Ca(2+)-induced translocation from cytoplasm to membranes, has been assigned to the newly defined penta EF-hand family. A molecular model of the C-terminal Ca(2+)-binding domain has been generated using as a template the X-ray coordinates of the corresponding domain in the calpain light subunit, the family prototype [Lin, G., et al. (1997) Nat. Struct. Biol. 4, 539-546]. The model indicates that in sorcin the three-dimensional structure is conserved and in particular that of EF1, the novel EF-hand motif characteristic of the family. On this basis, two stable fragments have been obtained and characterized. Just like the native protein, the sorcin Ca(2+)-binding domain (residues 33-198) is largely dimeric, interacts with the ryanodine receptor at physiological calcium concentrations, and undergoes a reversible, Ca(2+)-dependent translocation from cytosol to target proteins on Escherichia coli membranes. In contrast, the 90-198 fragment (residues 90-198), which lacks EF1 and EF2, does not bind Ca(2+) with high affinity and is unable to translocate. Binding of calcium to the EF1-EF2 pair is therefore required for the activation of sorcin which uses the C-terminal calcium-binding domain for interaction with the ryanodine receptor, a physiological target in muscle cells.  相似文献   

8.
C-terminal half of human centrin 2 behaves like a regulatory EF-hand domain   总被引:4,自引:0,他引:4  
Human centrin 2 (HsCen2) is an EF-hand protein that plays a critical role in the centrosome duplication and separation during cell division. We studied the structural and Ca(2+)-binding properties of two C-terminal fragments of this protein: SC-HsCen2 (T94-Y172), covering two EF-hands, and LC-HsCen2 (M84-Y172), having 10 additional residues. Both fragments are highly disordered in the apo state but become better structured (although not conformationally homogeneous) in the presence of Ca(2+) and depending on the nature of the cations (K(+) or Na(+)) in the buffer. Only the longer C-terminal domain, in the Ca(2+)-saturated state and in the presence of Na(+) ions, was amenable to structure determination by nuclear magnetic resonance. The solution structure of LC-HsCen2 reveals an open two EF-hand structure, similar to the conformation of related Ca(2+)-saturated regulatory domains. Unexpectedly, the N-terminal helix segment (F86-T94) lies over the exposed hydrophobic cavity. This unusual intramolecular interaction increases considerably the Ca(2+) affinity and constitutes a useful model for the target binding.  相似文献   

9.
Calbindin D28k exhibits properties characteristic of a Ca2+ sensor   总被引:3,自引:0,他引:3  
Calbindin D(28k) is a member of the calmodulin superfamily of Ca(2+)-binding proteins and contains six EF-hands. The protein is generally believed to function as a Ca(2+) buffer, but the studies presented in this work indicate that it may also act as a Ca(2+) sensor. The results show that Mg(2+) binds to the same sites as Ca(2+) with an association constant of approximately 1.4.10(3) m(-1) in 0.15 m KCl. The four high affinity sites in calbindin D(28k) bind Ca(2+) in a non-sequential, parallel manner. In the presence of physiological concentrations of Mg(2+), the Ca(2+) affinity is reduced by a factor of 2, and the cooperativity, which otherwise is modest, increases. Based on the binding constants determined in the presence of physiological salt concentrations, we estimate that at the Ca(2+) concentration in a resting cell calbindin D(28k) is saturated to 40-75% with Mg(2+) but to less than 9% with Ca(2+). In contrast, the protein is expected to be nearly fully saturated with Ca(2+) at the Ca(2+) level of an activated cell. A substantial conformational change is observed upon Ca(2+) binding, but only minor structural changes take place upon Mg(2+) binding. This suggests that calbindin D(28k) undergoes Ca(2+)-induced structural changes upon Ca(2+) activation of a cell. Thus, calbindin D(28k) displays several properties that would be expected for a protein involved in Ca(2+)-induced signal transmission and hence may function not only as a Ca(2+) buffer but also as a Ca(2+) sensor. Digestion patterns resulting from limited proteolysis of the protein suggest that the loop of EF-hand 2, a variant site that does not bind Ca(2+), becomes exposed upon Ca(2+) binding.  相似文献   

10.
Grancalcin is a recently described Ca(2+)-binding protein especially abundant in human neutrophils. Grancalcin belongs to the penta-EF-hand subfamily of EF-hand proteins, which also comprises calpain, sorcin, peflin, and ALG-2. Penta-EF-hand members are typified by two novel types of EF-hands: one that binds Ca(2+) although it has an unusual Ca(2+) coordination loop and one that does not bind Ca(2+) but is directly involved in homodimerization. We have developed a novel method for purification of native grancalcin and found that the N terminus of wild-type grancalcin is acetylated. This posttranslational modification does not affect the secondary structure or conformation of the protein. We found that both native and recombinant grancalcin always exists as a homodimer, regardless of the Ca(2+) load. Flow dialysis showed that recombinant grancalcin binds two Ca(2+) per subunit with positive cooperativity and moderate affinity ([Ca(2+)](0.5) of 25 and 83 microm in the presence and absence of octyl glycoside, respectively) and that the sites are of the Ca(2+)-specific type. Furthermore, we showed, by several independent methods, that grancalcin undergoes important conformational changes upon binding of Ca(2+) and subsequently exposes hydrophobic amino acid residues, which direct the protein to hydrophobic surfaces. By affinity chromatography of solubilized human neutrophils on immobilized grancalcin, L-plastin, a leukocyte-specific actin-bundling protein, was found to interact with grancalcin in a negative Ca(2+)-dependent manner. This was substantiated by co-immunoprecipitation of grancalcin by anti-L-plastin antibodies and vice versa.  相似文献   

11.
Among the EF-hand Ca(2+)-binding proteins, parvalbumin (PV) and calbindin D9k (CaB) have the function of Ca(2+) buffers. They evolved from an ancestor protein through two phylogenetic pathways, keeping one pair of EF-hands. They differ by the extra helix-loop-helix (AB domain) found in PV and by the linker between the binding sites. To investigate whether the deletion of AB in PV restores a CaB-like structure, we prepared and solved the structure of the truncated rat PV (PVratDelta37) by X-ray and NMR. PVratDelta37 keeps the PV fold, but is more compact, having a well-structured linker, which differs remarkably from CaB. PvratDelta37 has no stable apo-form, has lower affinity for Ca(2+) than full-length PV, and does not bind Mg(2+), in contrast to CaB. Structural differences of the hydrophobic core are partially responsible for lowering the calcium-binding affinity of the truncated protein. It can be concluded that the AB domain, like the linker of CaB, plays a role in structural stabilization. The AB domain of PV protects the hydrophobic core, and is required to maintain high affinity for divalent cation binding. Therefore, the AB domain possibly modulates PV buffer function.  相似文献   

12.
Malmberg NJ  Varma S  Jakobsson E  Falke JJ 《Biochemistry》2004,43(51):16320-16328
During Ca(2+) activation, the Ca(2+)-binding sites of C2 domains typically bind multiple Ca(2+) ions in close proximity. These binding events exhibit positive cooperativity, despite the strong charge repulsion between the adjacent divalent cations. Using both experimental and computational approaches, the present study probes the detailed mechanisms of Ca(2+) activation and positive cooperativity for the C2 domain of cytosolic phospholipase A(2), which binds two Ca(2+) ions in sites I and II, separated by only 4.1 A. First, each of the five coordinating side chains in the Ca(2+)-binding cleft is individually mutated and the effect on Ca(2+)-binding affinity and cooperativity is measured. The results identify Asp 43 as the major contributor to Ca(2+) affinity, while the two coordinating side chains that provide bridging coordination to both Ca(2+) ions, Asp 43 and Asp 40, are observed to make the largest contributions to positive cooperativity. Electrostatic calculations reveal that Asp 43 possesses the highest pseudo-pK(a) of the coordinating acidic residues, as well as the highest general cation affinity, due to its relatively buried location within 3.5 A of seven protein oxygens with full or partial negative charges. These calculations therefore explain the greater importance of Asp 43 in defining the Ca(2+) affinity. Overall, the experimental and computational results support an activation model in which the first Ca(2+) ion binds usually to site I, thereby preordering both bridging side chains Asp 40 and 43, and partially or fully deprotonating the three coordinating Asp residues. This initial binding event prepares the conformation and protonation state of the remaining site for Ca(2+) binding, enabling the second Ca(2+) ion to bind with higher affinity than the first as required for positive cooperativity.  相似文献   

13.
The 'EF-hand' Ca2+-binding motif plays an essential role in eukaryotic cellular signalling, and the proteins containing this motif constitute a large and functionally diverse family. The EF-hand is defined by its helix-loop-helix secondary structure as well as the ligands presented by the loop to bind the Ca2+ ion. The identity of these ligands is semi-conserved in the most common (the 'canonical') EF-hand; however, several non-canonical EF-hands exist that bind Ca2+ by a different co-ordination mechanism. EF-hands tend to occur in pairs, which form a discrete domain so that most family members have two, four or six EF-hands. This pairing also enables communication, and many EF-hands display positive co-operativity, thereby minimizing the Ca2+ signal required to reach protein saturation. The conformational effects of Ca2+ binding are varied, function-dependent and, in some cases, minimal, but can lead to the creation of a protein target interaction site or structure formation from a molten-globule apo state. EF-hand proteins exhibit various sensitivities to Ca2+, reflecting the intrinsic binding ability of the EF-hand as well as the degree of co-operativity in Ca2+ binding to paired EF-hands. Two additional factors can influence the ability of an EF-hand to bind Ca2+: selectivity over Mg2+ (a cation with very similar chemical properties to Ca2+ and with a cytoplasmic concentration several orders of magnitude higher) and interaction with a protein target. A structural approach is used in this review to examine the diversity of family members, and a biophysical perspective provides insight into the ability of the EF-hand motif to bind Ca2+ with a wide range of affinities.  相似文献   

14.
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).  相似文献   

15.
J Engel  W Taylor  M Paulsson  H Sage  B Hogan 《Biochemistry》1987,26(22):6958-6965
SPARC, BM-40, and osteonectin are identical or very closely related extracellular proteins of apparent Mr 43,000 (Mr 33,000 predicted from sequence). They were originally isolated from parietal endoderm cells, basement membrane producing tumors, and bone, respectively, but are rather widely distributed in various tissues. In view of the calcium binding activity reported for osteonectin, we analyzed the SPARC sequence and found two putative calcium binding domains. One is an N-terminal acidic region with clusters of glutamic acid residues. This region, although neither gamma-carboxylated nor homologous, resembles the gamma-carboxyglutamic acid (Gla) domain of vitamin K dependent proteins of the blood clotting system in charge density, size of negatively charged clusters, and linkage to the rest of the molecule by a cysteine-rich domain. The other region is an EF-hand calcium binding domain located near the C-terminus. A disulfide bond between the E and F helix is predicted from modeling the EF-hand structure with the known coordinates of intestinal calcium binding protein. The disulfide bridge apparently serves to stabilize the isolated calcium loop in the extracellular protein. As observed for cytoplasmic EF-hand-containing proteins and for Gla domain containing proteins, a major conformational transition is induced in BM-40 upon binding of several Ca2+ ions. This is accompanied by a 35% increase in alpha-helicity. A pronounced sigmoidicity of the dependence of the circular dichroism signal at 220 nm on calcium concentration indicates that the process is cooperative. In view of its properties, abundance, and wide distribution, it is proposed that SPARC/BM-40/osteonectin has a rather general regulatory function in calcium-dependent processes of the extracellular matrix.  相似文献   

16.
A molecule of the photoreceptor Ca(2+)-binding protein recoverin contains four potential EF-hand Ca(2+)-binding sites, of which only two, the second and the third, are capable of binding calcium ions. We have studied the effects of substitutions in the second, third and fourth EF-hand sites of recoverin on its Ca(2+)-binding properties and some other characteristics, using intrinsic fluorescence, circular dichroism spectroscopy and differential scanning microcalorimetry. The interaction of the two operating binding sites of wild-type recoverin with calcium increases the protein's thermal stability, but makes the environment around the tryptophan residues more flexible. The amino acid substitution in the EF-hand 3 (E121Q) totally abolishes the high calcium affinity of recoverin, while the mutation in the EF-hand 2 (E85Q) causes only a moderate decrease in calcium binding. Based on this evidence, we suggest that the binding of calcium ions to recoverin is a sequential process with the EF-hand 3 being filled first. Estimation of Ca(2+)-binding constants according to the sequential binding scheme gave the values 3.7 x 10(6) and 3.1 x 10(5) M(-1) for third and second EF-hands, respectively. The substitutions in the EF-hand 2 or 3 (or in both the sites simultaneously) do not disturb significantly either tertiary or secondary structure of the apo-protein. Amino acid substitutions, which have been designed to restore the calcium affinity of the EF-hand 4 (G160D, K161E, K162N, D165G and K166Q), increase the calcium capacity and affinity of recoverin but also perturb the protein structure and decrease the thermostability of its apo-form.  相似文献   

17.
Guanylyl cyclase activator proteins (GCAPs) are calcium-binding proteins closely related to recoverin, neurocalcin, and many other neuronal Ca(2+)-sensor proteins of the EF-hand superfamily. GCAP-1 and GCAP-2 interact with the intracellular portion of photoreceptor membrane guanylyl cyclase and stimulate its activity by promoting tight dimerization of the cyclase subunits. At low free Ca(2+) concentrations, the activator form of GCAP-2 associates into a dimer, which dissociates when GCAP-2 binds Ca(2+) and becomes inhibitor of the cyclase. GCAP-2 is known to have three active EF-hands and one additional EF-hand-like structure, EF-1, that deviates form the EF-hand consensus sequence. We have found that various point mutations within the EF-1 domain can specifically affect the ability of GCAP-2 to interact with the target cyclase but do not hamper the ability of GCAP-2 to undergo reversible Ca(2+)-sensitive dimerization. Point mutations within the EF-1 region can interfere with both the activation of the cyclase by the Ca(2+)-free form of GCAP-2 and the inhibition of retGC basal activity by the Ca(2+)-loaded GCAP-2. Our results strongly indicate that evolutionary conserved and GCAP-specific amino acid residues within the EF-1 can create a contact surface for binding GCAP-2 to the cyclase. Apparently, in the course of evolution GCAP-2 exchanged the ability of its first EF-hand motif to bind Ca(2+) for the ability to interact with the target enzyme.  相似文献   

18.
Calcium binding protein 40 (CBP40) is a Ca(2+)-binding protein abundant in the plasmodia of Physarum polycephalum. CBP40 consists four EF-hand domains in the COOH-terminal half and a putative alpha-helix domain in the NH(2)-terminal half. We expressed recombinant proteins of CBP40 in Escherichia coli to investigate its Ca(2+)-binding properties. Recombinant proteins of CBP40 bound 4 mol of Ca(2+) with much higher affinity (pCa(1/2) = 6.5) than that of calmodulin. When residues 1-196 of the alpha-helix domain were deleted, the affinity for Ca(2+) decreased to pCa(1/2) = 4.6. A chimeric calmodulin was generated by conjugating the alpha-helix domain of CBP40 with calmodulin. The affinity of Ca(2+) for the chimeric calmodulin was higher than that for calmodulin, suggesting that the alpha-helix domain is responsible for the high affinity of CBP40 for Ca(2+). CBP40 forms large aggregates reversibly in a Ca(2+)-dependent manner. A mutant protein with a deletion of NH(2)-terminal 32 residues, however, could not aggregate, indicating the importance of these residues for the aggregation. The aggregation occurs above micromolar levels of Ca(2+) concentration, so it may only occur when CBP40 is secreted out of the plasmodial cells.  相似文献   

19.
20.
Calbindin D28k, a highly conserved protein with Ca2+-sensing and Ca2+-buffering capabilities, is abundant in brain and sensory neurons. This protein contains six EF-hand subdomains, four of which bind Ca2+ with high affinity. Calbindin D28k can be reconstituted from six synthetic peptides corresponding to the six EF-hands, indicating a single-domain structure with multiple interactions between the EF-hand subdomains. In this study, we have undertaken a detailed characterization of the Ca2+-binding and oligomerization properties of each individual EF-hand peptide using CD spectroscopy and analytical ultracentrifugation. Under the conditions tested, EF2 is monomeric and does not bind Ca2+, whereas EF6, which binds Ca2+ weakly, aggregates severely. We have therefore focused this study on the high-affinity binding sites, EF-hands 1, 3, 4, and 5. Our sedimentation equilibrium data show that, in the presence of Ca2+, EF-hands 1, 3, 4, and 5 all form dimers in solution in which the distribution between the monomer, dimer, and higher order oligomers differs. The processes of Ca2+ binding and oligomerization are linked to different degrees, and three main mechanisms emerge. For EF-hands 1 and 5, the dimer binds Ca2+ more strongly than the monomer and Ca2+ binding drives dimerization. For EF-hand 4, dimer formation requires only one of the monomers to be Ca2+-bound. In this case, the Ca2+ affinity is independent of dimerization. For EF-hand 3, dimerization occurs both in the absence and presence of Ca2+, while oligomerization increases in the presence of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号