首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloride redistribution during type A gamma-aminobutyric acid (GABA(A)) currents (I(GABA)) has been investigated in cultured frog pituitary melanotrophs with imposed intracellular chloride concentration ([Cl(-)](i)) in the whole cell configuration or with unaltered [Cl(-)](i) using the gramicidin-perforated patch approach. Prolonged GABA exposures elicited reproducible decaying currents. The decay of I(GABA) was associated with both a transient fall of conductance (g(GABA)) and shift of current reversal potential (E(GABA)). The shift of E(GABA) appeared to be time and driving force dependent. In the gramicidin-perforated patch configuration, repeated GABA exposures induced currents that gradually vanished. The fading of I(GABA) was due to persistent shifts of E(GABA) as a result of g(GABA) recovering from one GABA application to another. In cells alternatively clamped at potentials closely flanking resting potential and submitted to a train of brief GABA pulses, a reversal of I(GABA) was observed after 150 s recording. It is demonstrated that, in intact frog melanotrophs, shifts of E(GABA) combine with genuine receptor desensitization to depress I(GABA). These findings strongly suggest that shifts of E(GABA) may act as a negative feedback, reducing the bioelectrical and secretory responses induced by an intense release of GABA in vivo.  相似文献   

2.
KCC2 comprises the major Cl(-) extruding mechanism in most adult neurons. Hyperpolarizing GABAergic transmission depends on KCC2 function. We recently demonstrated that glutamate reduces KCC2 function by a phosphorylation-dependent mechanism that leads to excitatory GABA responses. Here we investigated the methods by which to estimate changes in E(GABA), as well as the processes that lead to depolarizing GABA responses and their effects on neuronal excitability. We demonstrated that current-clamp recordings of membrane potential responses to GABA can determine upper and lower limits of E(GABA). We also further characterized depolarizing GABA responses, which both excited and inhibited neurons. Our analyses revealed that persistently active GABA(A) receptors contributed to loading Cl(-) during the glutamate exposure, indicating that tonic inhibition can facilitate the development of depolarizing GABA responses and increase excitability after pathophysiological insults. Finally, we demonstrated that hyperpolarizing GABA responses could temporarily switch to depolarizing responses when they coincided with an afterhyperpolarization.  相似文献   

3.
In the cerebellar glomerulus, GABAergic synapses formed by Golgi cells regulate excitatory transmission from mossy fibers to granule cells through feed-forward and feedback mechanisms. In acute cerebellar slices, we found that stimulating Golgi cell axons with a train of 10 impulses at 100 Hz transiently inhibited both the phasic and the tonic components of inhibitory responses recorded in granule cells. This effect was blocked by the GABA(B) receptor blocker CGP35348, and could be mimicked by bath-application of baclofen (30 μM). This depression of IPSCs was prevented when granule cells were dialyzed with GDPβS. Furthermore, when synaptic transmission was blocked, GABA(A) currents induced in granule cells by localized muscimol application were inhibited by the GABA(B) receptor agonist baclofen. These findings indicate that postsynaptic GABA(B) receptors are primarily responsible for the depression of IPSCs. This inhibition of inhibitory events results in an unexpected excitatory action by Golgi cells on granule cell targets. The reduction of Golgi cell-mediated inhibition in the cerebellar glomerulus may represent a regulatory mechanism to shift the balance between excitation and inhibition in the glomerulus during cerebellar information processing.  相似文献   

4.
Fiumelli H  Cancedda L  Poo MM 《Neuron》2005,48(5):773-786
Activity-induced modification of GABAergic transmission contributes to the plasticity of neural circuits. In the present work we found that prolonged postsynaptic spiking of hippocampal neurons led to a shift in the reversal potential of GABA-induced Cl- currents (E(Cl)) toward positive levels in a duration- and frequency-dependent manner. This effect was abolished by blocking cytosolic Ca2+ elevation and mimicked by releasing Ca2+ from internal stores. Activity- and Ca2+-induced E(Cl) shifts were larger in mature neurons, which express the K-Cl cotransporter KCC2 at high levels, and inhibition of KCC2 occluded the shifts. Overexpression of KCC2 in young cultured neurons, which express lower levels of KCC2 and have a more positive E(Cl), resulted in hyperpolarized E(Cl) similar to that of mature cells. Importantly, these young KCC2-expressing neurons became responsive to neuronal spiking and Ca2+ elevation by showing positive E(Cl) shifts. Thus, repetitive postsynaptic spiking reduces the inhibitory action of GABA through a Ca2+-dependent downregulation of KCC2 function.  相似文献   

5.
Oscillatory network activity arises from interactions between synaptic and intrinsic membrane properties of neurons. In this review, we summarize general mechanisms of synchronous neuronal oscillations. In addition, we focus on recent experimental and computational studies which suggest that activity-dependent changes of ionic environment can affect both the synaptic and intrinsic neuronal properties and influence the network behavior. GABA(A) receptor (GABA(A)R)-mediated signaling, that is based on Cl(-) and HCO(3)(-) permeability, is thought to be important for the oscillogenesis and synchronization in cortical networks. A remarkable feature of GABAergic synapses is that prolonged GABA(A)R activation may lead to switching from a hyperpolarizing to a depolarizing response. This is partly due to a positive shift of the GABA(A) R reversal potential (E(GABA)) that is generated by GABA-induced Cl(-) accumulation in neurons. Recent studies suggest that activity-dependent E(GABA) changes may have important implications for the mechanisms of gamma oscillations and seizure-like discharges. Thus, a better understanding of the impact of intracellular Cl(-) dynamics on network behavior may provide insights into the mechanisms of physiological and pathological brain rhythms. Combination of experiments and simulations is a promising approach for elucidating which properties of the time-varying ionic environment can shape the dynamics of a given circuit.  相似文献   

6.
GABA(B) receptor function is upregulated in the paraventricular nucleus (PVN) of the hypothalamus in spontaneously hypertensive rats (SHR), but it is unclear whether this upregulation occurs pre- or postsynaptically. We therefore determined pre- and postsynaptic GABA(B) receptor function in retrogradely labeled spinally projecting PVN neurons using whole cell patch-clamp recording in brain slices in SHR and Wistar-Kyoto (WKY) rats. Bath application of the GABA(B) receptor agonist baclofen significantly decreased the spontaneous firing activity of labeled PVN neurons in both SHR and WKY rats. However, the magnitude of reduction in the firing rate was significantly greater in SHR than in WKY rats. Furthermore, baclofen produced larger membrane hyperpolarization and outward currents in labeled PVN neurons in SHR than in WKY rats. The baclofen-induced current was abolished by either including G protein inhibitor GDPbetaS in the pipette solution or bath application of the GABA(B) receptor antagonist in both SHR and WKY rats. Blocking N-methyl-d-aspartic acid receptors had no significant effect on baclofen-elicited outward currents in SHR. In addition, baclofen caused significantly greater inhibition of glutamatergic excitatory postsynaptic currents (EPSCs) in labeled PVN neurons in brain slices from SHR than WKY rats. By contrast, baclofen produced significantly less inhibition of GABAergic inhibitory postsynaptic currents (IPSCs) in labeled PVN neurons in SHR than in WKY rats. Although microinjection of the GABA(B) antagonist into the PVN increases sympathetic vasomotor tone in SHR, the GABA(B) antagonist did not affect EPSCs and IPSCs of the PVN neurons in vitro. These findings suggest that postsynaptic GABA(B) receptor function is upregulated in PVN presympathetic neurons in SHR. Whereas presynaptic GABA(B) receptor control of glutamatergic synaptic inputs is enhanced, presynaptic GABA(B) receptor control of GABAergic inputs in the PVN is attenuated in SHR. Changes in both pre- and postsynaptic GABA(B) receptors in the PVN may contribute to the control of sympathetic outflow in hypertension.  相似文献   

7.
GABAergic activity is regulated by rapid, high affinity uptake of GABA from the synapse. Perturbation of GABA reuptake has been implicated in neurological disease and inhibitors of GABA transporters (GAT) have been used therapeutically but little detail is known about the ramifications of GAT inhibition on brain neurochemistry. Here, we incubated Guinea pig cortical tissue slices with [3-13C]pyruvate and major, currently available GABA uptake inhibitors. Metabolic fingerprints were generated from these experiments using 13C/1H NMR spectroscopy. These fingerprints were analyzed using multivariate statistical approaches and compared with an existing library of fingerprints of activity at GABA receptors. This approach identified five distinct clusters of metabolic activity induced by blocking GABA uptake. Inhibition of GABA uptake via GAT1 produced patterns similar to activity at mainstream GABAergic synapses in particular those containing α1-subunits but still statistically separable. This indicated that inhibition of GABA uptake, an indirect method of activating GABA receptors, produces different effects to direct receptor activation or to exogenous GABA. The mechanism of inhibitor function also produced different outcomes, with the channel blocker SKF 89976A yielding a unique metabolic response. Blocking GAT1 and GAT3 simultaneously induces a large metabolic response consistent with induction of tonic inhibition via high affinity GABA receptors. Blocking BGT produces patterns similar to activity at less common receptors such as those containing α5 subunits. This approach is useful for determining where in the spectrum of GABAergic responses a particular GABA transport inhibitor is effective.  相似文献   

8.
Zhang XB  Jiang P  Gong N  Hu XL  Fei D  Xiong ZQ  Xu L  Xu TL 《PloS one》2008,3(10):e3386
Menthol is a widely-used cooling and flavoring agent derived from mint leaves. In the peripheral nervous system, menthol regulates sensory transduction by activating TRPM8 channels residing specifically in primary sensory neurons. Although behavioral studies have implicated menthol actions in the brain, no direct central target of menthol has been identified. Here we show that menthol reduces the excitation of rat hippocampal neurons in culture and suppresses the epileptic activity induced by pentylenetetrazole injection and electrical kindling in vivo. We found menthol not only enhanced the currents induced by low concentrations of GABA but also directly activated GABA(A) receptor (GABA(A)R) in hippocampal neurons in culture. Furthermore, in the CA1 region of rat hippocampal slices, menthol enhanced tonic GABAergic inhibition although phasic GABAergic inhibition was unaffected. Finally, the structure-effect relationship of menthol indicated that hydroxyl plays a critical role in menthol enhancement of tonic GABA(A)R. Our results thus reveal a novel cellular mechanism that may underlie the ambivalent perception and psychophysical effects of menthol and underscore the importance of tonic inhibition by GABA(A)Rs in regulating neuronal activity.  相似文献   

9.
Zhu HL  Wang DS  Li JS 《Neuro-Signals》2002,11(6):322-328
The effect of copper ions (Cu(2+)) on gamma-aminobutyric acid (GABA)-induced responses in acutely dissociated neurons from the rat sacral dorsal commissural nucleus (SDCN) was investigated using a nystatin-perforated patch recording configuration under voltage clamp conditions. The application of Cu(2+) to SDCN neurons reversibly suppressed the GABA (10 microM)-activated Cl(-) current (I(GABA)) in a concentration-dependent manner (1-1000 microM; IC(50) = 24.5 microM). In the presence of Cu(2+) (30 microM), the concentration-response curve of GABA was shifted rightward without reducing I(GABA) recorded under the maximally effective concentration of GABA, thus indicating a dependence of Cu(2+) action on GABA concentration. Inhibition of GABA (10 microM) responses by 30 microM Cu(2+) was essentially voltage independent and was not accompanied by a shift in the reversal potential of the currents. Cu(2+) antagonized the suppressive effect of Zn(2+) in a concentration-dependent manner, suggesting competition between Cu(2+) and Zn(2+) for similar binding sites. These data demonstrate that Cu(2+) is a potent inhibitor of GABA(A) receptor-mediated responses, implying a possible modulatory effect of Cu(2+) on GABAergic synaptic transmission in the mammalian SDCN.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) modulates several distinct aspects of synaptic transmission, including GABAergic transmission. Exposure to BDNF alters properties of GABA(A) receptors and induces changes in the expression level at the cell surface. Although phospholipase C-related inactive protein-1 (PRIP-1) plays an important role in GABA(A) receptor trafficking and function, its role in BDNF-dependent modulation of these receptors, together with the role of PRIP-2, was investigated using neurons cultured from PRIP double knock-out mice. The BDNF-dependent inhibition of whole cell GABA-evoked currents observed in wild type neurons was not detected in neurons cultured from knock-out mice. Instead, a gradual increase in GABA-evoked currents in these neurons correlated with a gradual increase in phosphorylation of GABA(A) receptor beta3 subunit in response to BDNF. To characterize the specific role(s) that PRIP plays as components of underlying molecular machinery, we examined the recruitment of protein phosphatase(s) to GABA(A) receptors. We demonstrate that PRIP associates with phosphatases as well as with beta subunits. PRIP was found to colocalize with GABA(A) receptor clusters in cultured neurons and with recombinant GABA(A) receptors when co-expressed in HEK293 cells. Importantly, a peptide mimicking a domain of PRIP involved in binding to beta subunits disrupted the co-localization of these proteins in HEK293 cells and potently inhibited the BDNF-mediated attenuation of GABA(A) receptor currents in wild type neurons. Together, the results suggest that PRIP plays an important role in BDNF-dependent regulation of GABA(A) receptors by mediating the specific association between beta subunits of these receptors with protein phosphatases.  相似文献   

11.
Jones SM  Palmer MJ 《PloS one》2011,6(9):e24892
GABAergic inhibition in the central nervous system (CNS) can occur via rapid, transient postsynaptic currents and via a tonic increase in membrane conductance, mediated by synaptic and extrasynaptic GABA(A) receptors (GABA(A)Rs) respectively. Retinal bipolar cells (BCs) exhibit a tonic current mediated by GABA(C)Rs in their axon terminal, in addition to synaptic GABA(A)R and GABA(C)R currents, which strongly regulate BC output. The tonic GABA(C)R current in BC terminals (BCTs) is not dependent on vesicular GABA release, but properties such as the alternative source of GABA and the identity of the GABA(C)Rs remain unknown. Following a recent report that tonic GABA release from cerebellar glial cells is mediated by Bestrophin 1 anion channels, we have investigated their role in non-vesicular GABA release in the retina. Using patch-clamp recordings from BCTs in goldfish retinal slices, we find that the tonic GABA(C)R current is not reduced by the anion channel inhibitors NPPB or flufenamic acid but is reduced by DIDS, which decreases the tonic current without directly affecting GABA(C)Rs. All three drugs also exhibit non-specific effects including inhibition of GABA transporters. GABA(C)R ρ subunits can form homomeric and heteromeric receptors that differ in their properties, but BC GABA(C)Rs are thought to be ρ1-ρ2 heteromers. To investigate whether GABA(C)Rs mediating tonic and synaptic currents may differ in their subunit composition, as is the case for GABA(A)Rs, we have examined the effects of two antagonists that show partial ρ subunit selectivity: picrotoxin and cyclothiazide. Tonic and synaptic GABA(C)R currents were differentially affected by both drugs, suggesting that a population of homomeric ρ1 receptors contributes to the tonic current. These results extend our understanding of the multiple forms of GABAergic inhibition that exist in the CNS and contribute to visual signal processing in the retina.  相似文献   

12.
Activation of the laryngeal mucosa results in apnea that is mediated through, and can be elicited via electrical stimulation of, the superior laryngeal nerve (SLN). This potent inhibitory reflex has been suggested to play a role in the pathogenesis of apnea of prematurity and sudden infant death syndrome, and it is attenuated by theophylline and blockade of GABA(A) receptors. However, the interaction between GABA and adenosine in the production of SLN stimulation-induced apnea has not been previously examined. We hypothesized that activation of adenosine A(2A) receptors will enhance apnea induced by SLN stimulation while subsequent blockade of GABA(A) receptors will reverse the effect of A(2A) receptor activation. The phrenic nerve responses to increasing levels of SLN stimulation were measured before and after sequential intracisternal administration of the adenosine A(2A) receptor agonist CGS (n = 10) and GABA(A) receptor blocker bicuculline (n = 7) in ventilated, vagotomized, decerebrate, and paralyzed newborn piglets. Increasing levels of SLN stimulation caused progressive inhibition of phrenic activity and lead to apnea during higher levels of stimulation. CGS caused inhibition of baseline phrenic activity, hypotension, and enhancement of apnea induced by SLN stimulation. Subsequent bicuculline administration reversed the effects of CGS and prevented the production of apnea compared with control at higher SLN stimulation levels. We conclude that activation of adenosine A(2A) receptors enhances SLN stimulation-induced apnea probably via a GABAergic pathway. We speculate that SLN stimulation causes endogenous release of adenosine that activates A(2A) receptors on GABAergic neurons, resulting in the release of GABA at inspiratory neurons and subsequent respiratory inhibition.  相似文献   

13.
Neurotransmission mediated by gamma-aminobutyric acid type A (GABA(A)) receptors in the mammalian medial preoptic area (mPOA) plays a pivotal role in the expression of hormone-sensitive behaviors. Hand in hand with GABAergic control of reproduction, hormone treatments that activate gonadal steroid signaling pathways in gonadectomized rats are known to regulate the expression of specific GABA(A) receptor subunit mRNAs. While the effects of exogenous hormone treatments have been well documented, little information is available as to how GABA(A) receptor-mediated transmission in the mPOA is altered by endogenous changes in hormonal state in gonadally-intact adult animals or if those changes can be ascribed to hormone-dependent changes in receptor subunit composition. In the present study, we found that both the peak amplitudes of GABA(A) receptor-mediated synaptic currents in the mPOA, as well as the ability of the endogenous neurosteroids to modulate those currents, varied as a function of the estrous cycle. Moreover, we found that the degree of neurosteroid modulation was also significantly different between wild-type and the androgen-insensitive testicular feminization (Tfm) mutant male mice. Semiquantitative RT-PCR analysis performed to assess levels of GABA(A) receptor subunit mRNAs indicated that levels of specific subunits varied over the course of the estrous cycle and between wild-type and Tfm male mice. The variations in GABA(A) receptor expression and function in the mPOA that are associated with differences in gonadal steroid signaling may contribute to the dynamic nature of GABAergic control of neuroendocrine pathways.  相似文献   

14.
Tang ZQ  Lu Y 《PloS one》2012,7(4):e35831
Neurons in the nucleus laminaris (NL) of birds act as coincidence detectors and encode interaural time difference to localize the sound source in the azimuth plane. GABAergic transmission in a number of CNS nuclei including the NL is subject to a dual modulation by presynaptic GABA(B) receptors (GABA(B)Rs) and metabotropic glutamate receptors (mGluRs). Here, using in vitro whole-cell patch clamp recordings from acute brain slices of the chick, we characterized the following important but unknown properties pertaining to such a dual modulation: (1) emergence of functional GABA synapses in NL neurons; (2) the temporal onset of neuromodulation mediated by GABA(B)Rs and mGluRs; and (3) the physiological conditions under which GABA(B)Rs and mGluRs are activated by endogenous transmitters. We found that (1) GABA(A)R-mediated synaptic responses were observed in about half of the neurons at embryonic day 11 (E11); (2) GABA(B)R-mediated modulation of the GABAergic transmission was detectable at E11, whereas the modulation by mGluRs did not emerge until E15; and (3) endogenous activity of GABA(B)Rs was induced by both low- (5 or 10 Hz) and high-frequency (200 Hz) stimulation of the GABAergic pathway, whereas endogenous activity of mGluRs was induced by high- (200 Hz) but not low-frequency (5 or 10 Hz) stimulation of the glutamatergic pathway. Furthermore, the endogenous activity of mGluRs was mediated by group II but not group III members. Therefore, autoreceptor-mediated modulation of GABAergic transmission emerges at the same time when the GABA synapses become functional. Heteroreceptor-mediated modulation appears at a later time and is receptor type dependent in vitro.  相似文献   

15.
The effect of the benzodiazepine agonist midazolam on gamma-aminobutyric acid(A) (GABA(A)) receptor-mediated currents was investigated in neurons acutely dissociated from the rat sacral dorsal commissural nucleus (SDCN) using the nystatin-perforated patch-recording configuration under voltage-clamp conditions. Midazolam displayed a biphasic effect on GABA responses. Low concentrations of midazolam (1nM-10 microM) reversibly potentiated GABA (3 microM)-activated Cl(-) currents (I(GABA)) in a bell-shaped manner, with the maximal facilitary effect at 0.1 microM; whereas at higher concentrations (above 10 microM), midazolam had an antagonistic effect on I(GABA). Our further study indicated that midazolam changed GABA(A) receptor affinity to GABA and the effects of midazolam on I(GABA) were voltage-independent. The benzodiazepine receptor antagonist, flumazenil, abolished the facilitary effect of low concentrations of midazolam rather than the antagonism of I(GABA) induced by high doses of midazolam. In addition, activation of protein kinase C prevented the inhibitory effect of midazolam at higher concentrations, but did not influence the effect of midazolam at low concentrations. These results indicate that midazolam interacts with another distinct site other than the central benzodiazepine receptors on GABA(A) receptors as an antagonist at higher concentrations in SDCN neurons.  相似文献   

16.
S H Zorn  S J Enna 《Life sciences》1985,37(20):1901-1912
Antinociception produced by the GABA uptake inhibitors d,l- SKF-89976A and SKF-100330A was characterized and compared to that produced by other types of GABAergic drugs. Using the mouse tail-immersion assay it was found that the antinociception produced by the uptake inhibitors was antagonized by scopolamine, a cholinergic muscarinic receptor antagonist. However, neither SKF compound demonstrated any significant affinity for muscarinic receptor binding sites suggesting that they are not direct-acting cholinomimetics. In vitro uptake experiments revealed that the SKF compounds selectively inhibit GABA transport, having no effect on the accumulation of aspartic acid, glutamic acid, beta-alanine or glycine. Moreover, antinociception and GABA uptake inhibition were stereoselective for SKF-89976A, with the d-isomer being more active in both tests. When comparing antinociceptive responses at maximally effective doses it was also found that the SKF compounds were substantially more efficacious than direct-acting GABA receptor agonists or a GABA transaminase inhibitor. These data suggest that uptake inhibitors may be facilitating GABA transmission in a system that is less affected by other types of GABAergic compounds.  相似文献   

17.
To study modulatory actions of nitric oxide (NO) on GABAergic synaptic activity in hypothalamic magnocellular neurons in the supraoptic nucleus (SON), in vitro and in vivo electrophysiological recordings were obtained from identified oxytocin and vasopressin neurons. Whole cell patch-clamp recordings were obtained in vitro from immunochemically identified oxytocin and vasopressin neurons. GABAergic synaptic activity was assessed in vitro by measuring GABA(A) miniature inhibitory postsynaptic currents (mIPSCs). The NO donor and precursor sodium nitroprusside (SNP) and L-arginine, respectively, increased the frequency and amplitude of GABA(A) mIPSCs in both cell types (P < or = 0.001). Retrodialysis of SNP (50 mM) onto the SON in vivo inhibited the activity of both neuronal types (P < or = 0.002), an effect that was reduced by retrodialysis of the GABA(A)-receptor antagonist bicuculline (2 mM, P < or = 0.001). Neurons activated by intravenous infusion of 2 M NaCl were still strongly inhibited by SNP. These results suggest that NO inhibition of neuronal excitability in oxytocin and vasopressin neurons involves pre- and postsynaptic potentiation of GABAergic synaptic activity in the SON.  相似文献   

18.
Steroid feedback regulates GnRH secretion and previous work has implicated gamma-aminobutyric acid (GABA)ergic neurons as a mediator of these effects. We examined GABAergic postsynaptic currents (PSCs) in green fluorescent protein-identified GnRH neurons from mice exposed to different steroid milieus in vivo. Adult mice were ovariectomized and treated with estradiol (OVX+E, controls) or E plus progesterone (P, OVX+E+P). P decreased PSC frequency, a presynaptic effect, and PSC size, which could be via pre- and/or postsynaptic mechanisms. In contrast, dihydrotestosterone (DHT, OVX+E+DHT) increased both GABAergic PSC frequency and size in GnRH neurons. Tetrodotoxin (TTX), which eliminates action-potential-dependent presynaptic effects, did not alter frequency, suggesting DHT may have increased PSC frequency by increasing connectivity between GABAergic and GnRH neurons. TTX reduced PSC size below control values, indicating DHT may augment presynaptic GABA release but inhibits the postsynaptic GnRH neuron response. In mice treated with both P and DHT (OVX+E+P+DHT), PSC frequency and size were similar to controls, suggesting these steroids counteract one another. These results demonstrate GABAergic neurons participate in integrating and conveying steroid feedback to GnRH neurons, defining a potential central mechanism for steroid regulation of GnRH neurons during the reproductive cycle, and providing one possible mechanism for increased activity of these cells in hyperandrogenic females.  相似文献   

19.
Dark and light adaptation of retinal neurons allow our vision to operate over an enormous light intensity range. Here we report a mechanism that controls the light sensitivity and operational range of rod-driven bipolar cells that mediate dim-light vision. Our data indicate that the light responses of these cells are enhanced by sustained chloride currents via GABA(C) receptor channels. This sensitizing GABAergic input is controlled by dopamine D1 receptors, with horizontal cells serving as a plausible source of GABA release. Our findings expand the role of dopamine in vision from its well-established function of suppressing rod-driven signals in bright light to enhancing the same signals under dim illumination. They further reveal a role for GABA in sensitizing the circuitry for dim-light vision, thereby complementing GABA's traditional role in providing dynamic feedforward and feedback inhibition in the retina.  相似文献   

20.
The effects of social isolation on behavior, neuroactive steroid concentrations, and GABA(A) receptor function were investigated in rats. Animals isolated for 30 days immediately after weaning exhibited an anxiety-like behavioral profile in the elevated plus-maze and Vogel conflict tests. This behavior was associated with marked decreases in the cerebrocortical, hippocampal, and plasma concentrations of pregnenolone, progesterone, allopregnanolone, and allotetrahydrodeoxycorticosterone compared with those apparent for group-housed rats; in contrast, the plasma concentration of corticosterone was increased in the isolated animals. Acute footshock stress induced greater percentage increases in the cortical concentrations of neuroactive steroids in isolated rats than in group-housed rats. Social isolation also reduced brain GABA(A) receptor function, as evaluated by measuring both GABA-evoked Cl(-) currents in XENOPUS: oocytes expressing the rat receptors and tert-[(35)S]butylbicyclophosphorothionate ([(35)S]TBPS) binding to rat brain membranes. Whereas the amplitude of GABA-induced Cl(-) currents did not differ significantly between group-housed and isolated animals, the potentiation of these currents by diazepam was reduced at cortical or hippocampal GABA(A) receptors from isolated rats compared with that apparent at receptors from group-housed animals. Moreover, the inhibitory effect of ethyl-beta-carboline-3-carboxylate, a negative allosteric modulator of GABA(A) receptors, on these currents was greater at cortical GABA(A) receptors from socially isolated animals than at those from group-housed rats. Finally, social isolation increased the extent of [(35)S]TBPS binding to both cortical and hippocampal membranes. The results further suggest a psychological role for neurosteroids and GABA(A) receptors in the modulation of emotional behavior and mood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号