首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both the content and composition of polar and neutral lipids from the mitochondrial fraction of ovarian full-grown Bufo arenarum oocytes were analysed in the present study. Triacylglycerols (TAG) represent 33% of the total lipids, followed by phosphatidylcholine (PC), free fatty acids (FFA) and phosphatidylethanolamine (PE). Diphosphatidylglycerol (DPG) or cardiolipin, a specific component of the inner mitochondrial membrane, represents about 4% of the total lipid content. Palmitic (16:0) and arachidonic (20:4n6) acids are the most abundant fatty acids in PC and PE, respectively. DPG is enriched in fatty acids with carbon chain lengths of 18, the principal component being linoleic acid. In phosphatidylinositol (PI), 20:4n6 and stearic acid (18:0) represent about 72 mol% of the total acyl group level. The main fatty acids in TAG are linoleic (18:2), oleic (18:1), and palmitic acids. The fatty acid composition of FFA and diacylglycerols (DAG) is similar, 16:0 being the most abundant acyl group. PE is the most unsaturated lipid and sphingomyelin (SM) has the lowest unsaturation index.  相似文献   

2.
This study aimed to evaluate the effect of Cd exposure (100 μmol/L) on polar lipid composition, and to examine the level of fatty acid unsaturation in maize (Zea mays L.). In roots, the level of 16:0 and monounsaturated fatty acids (16:1 + 18:1) decreased in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In contrast, the proportion of unsaturated 18-C fatty acid species showed an opposite response to Cd. The content, on the other hand, of PC, PE, digalactosyldiacylglycerol (DGDG), and steryl lipids increased in roots (2.9-, 1.6-, 5.3-, and 1.7-fold increase, respectively). These results suggest that a more unsaturated fatty acid composition than found in control plants with a concomitant increase in polar lipids may favor seedling growth during Cd exposure. However, the observed increase in the steryl lipid (SL) : phospholipid (PL) ratio (twofold), the decrease in monogalactosyldiacylglycerol (MGDG) : DGDG ratio, as well as the induction of lipid peroxidation in roots may represent symptoms of membrane injury. In shoots, the unsaturation level was markedly decreased in PC and phosphatidylglycerol (PG) after Cd exposure, but showed a significant increase in sulfoquinovosyldiacylglycerol (SQDG), MGDG and DGDG. The content of PG and MGDG was decreased by about 65%, while PC accumulated to higher levels (4.4-fold increase). Taken together, these changes in the polar lipid unsaturation and composition are likely to be due to alterations in the glycerolipid pathway. These results also support the idea that the increase in overall unsaturation plays some role in enabling the plant to withstand the metal exposure.  相似文献   

3.
This research aims to examine the effect of cadmium uptake on lipid composition and fatty acid biosynthesis, in young leaves of tomato treated seedlings (Lycopersicon esculentum cv. Ibiza F1). Results in membrane lipids investigations revealed that high cadmium concentrations affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the unsaturated fatty acid content, resulting in a lower degree of fatty acid unsaturation. The level of lipid peroxides was significantly enhanced at high Cd concentrations. Studies of the lipid metabolism using radioactive labelling with [1-14C]acetate as a major precursor of lipid biosynthesis, showed that levels of radioactivity incorporation in total lipids as well as in all lipid classes were lowered by Cd doses. In total lipid fatty acids, [1-14C]acetate incorporation was reduced in tri-unsaturated fatty acids (C16:3 and C18:3); While it was enhanced in the palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0) and linoleic (C18:2) acids. [1-14C]acetate incorporation into C16:3 and C18:3 of galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] and some phospholipids [phosphatidylcholine (PC) and phosphatidylglycerol (PG)] was inhibited by Cd stress. Our results showed that in tomato plants, cadmium stress provoked an inhibition of polar lipid biosynthesis and reduced fatty acid desaturation process.  相似文献   

4.
The composition and positional distribution of fatty acids in the polar lipids from 4 strains of Chlorella differing in chilling susceptibility and frost hardiness were analyzed by enzymatic hydrolysis and gas-liquid chromatography. Analysis of the polar lipids from chilling-sensitive, chilling-resistant and chilling-sensitive revertant strains of Chlorella ellipsoidea IAM C-102 showed that the sum of palmitic and trans -3-hexadecenoic acid in phosphatidylglycerol (PG) is about 60% for the sensitive strains and 53% for the resistant strain. The sum of dipalmitoyl and 1-palmitoyl-2-( trans -3-hexadecenoyl) PG as estimated from the positional distribution of their fatty acids, is about 10% in the case of each of the three strains. The contents of unsaturated fatty acids in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were higher in the resistant than in the sensitive strain. This suggests that unsaturation of fatty acids in not only PG but also PC and PE is involved in chilling sensitivity of Chlorella . On the other hand, lipid changes during the development of frost hardiness of C. ellipsoidea IAM C-27, a frost hardy strain, were examined. The results showed that fatty acids in most lipid classes are unsaturated in the hardening process but their degree of unsaturation is not greatly different from that of the chilling-resistant strain, suggesting that not only unsaturation of fatty acids in lipids but also other factors are necessary for the development of frost hardiness.  相似文献   

5.
Wheat seedlings were grown hydroponically in the presence of 50 microM Cu2+. The copper stress resulted in plasma-membrane (PM) changes of the root cells as altered lipid composition, a decreased phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio from 0.7 to 0.3, a decreased fatty acyl unsaturation and a decrease in the lipid/protein ratio. Membrane vesicles made from total lipid extracts of isolated PMs of wheat grown under copper excess showed a remarkably low permeability to polar molecules like glucose, as compared with the control, and no difference in proton permeability. Permeability studies of vesicles of plasma-membrane lipids, which were selectively modified by addition of specific lipids such as PC and PE, were also performed. The results are discussed with emphasis on the role of the increased PE proportion.  相似文献   

6.
Uptake, distribution, and interconversion of fluorescent lipid analogs (phosphatidylcholine, PC; cholesteryl ester, CHE; phosphatidylethanolamine, PE; palmitic acid, C16; sphingomyelin, SM) by the two life stages, meront and prezoosporangium, of the oyster protozoan parasite, Perkinsus marinus, were investigated. Class composition of these two life stages and lipid contents in meront cells were also examined. Both meronts and prezoosporangia incorporated and modified fluorescent lipids from the medium, but their metabolic modes differ to some extent. Results revealed that among the tested analogs, neutral lipid components (CHE and C16) were incorporated to a greater degree than the phospholipids (PC, PE, and SM). HPLC analysis of meront lipids showed that while the majority of the incorporated PC, CHE, and PE remained as parent compounds, most of the incorporated C16 was in triacylglycerol (TAG) and SM was in ceramide and free fatty acids. The cellular distribution of fluorescent labels varied with lipid analogs and the extent of their metabolism by the parasite. Fluorescence distribution was primarily in cytoplasmic lipid droplets of both life stages after 24 h incubation with PC. After 24 h incubation with SM, fluorescence appeared in the membrane and cytosol. Total lipid contents in meront cultures increased during proliferation and TAG accounted for most of the increased total lipids. Since total lipid content per meront cell did not increase until the day of culture termination, the lipid increase in the meront culture was mainly a result of increased cell numbers. Both life stages contain relatively high levels of phospholipids, 53.8% in 8-day-old meronts and 39.4% in prezoosporangia. PC was the predominant phospholipid.  相似文献   

7.
The glucose transport system, isolated from rat adipocyte membrane fractions, was reconstituted into phospholipid vesicles. Vesicles composed of crude egg yolk phospholipids, containing primarily phosphatidylcholine (PC) and phosphatidylethanolamine (PE), demonstrated specific d-glucose uptake. Purified vesicles made of PC and PE also supported such activity but PC or PE by themselves did not. The modulation of this uptake activity has been studied by systematically altering the lipid composition of the reconstituted system with respect to: (1) polar headgroups; (2) acyl chains, and (3) charge. Addition of small amounts (20 mol%) of PS, phosphatidylinositol (PI), cholesterol, or sphingomyelin significantly reduced glucose transport activity. A similar effect was seen with the charged lipid, phosphatidic acid. In the case of PS, this effect was independent of the acyl chain composition. Polar headgroup modification of PE, however, did not appreciably affect transport activity. Free fatty acids, on the other hand, increased or decreased activity based on the degree of saturation and charge. These results indicate that glucose transport activity is sensitive to specific alterations in both the polar headgroup and acyl chain composition of the surrounding membrane lipids.  相似文献   

8.
Studies were conducted to characterize the metabolism of the unusual fatty acid petroselinic acid (18:1cis[delta]6) in developing endosperm of the Umbelliferae species coriander (Coriandrum sativum L.) and carrot (Daucus carota L.). Analyses of fatty acid compositions of glycerolipids of these tissues revealed a dissimilar distribution of petroselinic acid in triacylglycerols (TAG) and the major polar lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Petroselinic acid comprised 70 to 75 mol% of the fatty acids of TAG but only 9 to 20 mol% of the fatty acids of PC and PE. Although such data appeared to suggest that petroselinic acid is at least partially excluded from polar lipids, results of [1-14C]acetate radiolabeling experiments gave a much different picture of the metabolism of this fatty acid. In time-course labeling of carrot endosperm, [1-14C]acetate was rapidly incorporated into PC in high levels. Through 30 min, radiolabel was most concentrated in PC, and of this, 80 to 85% was in the form of petroselinic acid. One explanation for the large disparity in amounts of petroselinic acid in PC as determined by fatty acid mass analyses and 14C radiolabeling is that turnover of these lipids or the fatty acids of these lipids results in relatively low accumulation of petroselinic acid mass. Consistent with this, the kinetics of [1-14C]acetate time-course labeling of carrot endosperm and "pulse-chase" labeling of coriander endosperm suggested a possible flux of fatty acids from PC into TAG. In time-course experiments, radiolabel initially entered PC at the highest rates but accumulated in TAG at later time points. Similarly, in pulse-chase studies, losses in absolute amounts of radioactivity from PC were accompanied by significant increases of radiolabel in TAG. In addition, stereospecific analyses of unlabeled and [1-14C]acetate-labeled PC of coriander endosperm indicated that petroselinic acid can be readily incorporated into both the sn-1 and sn-2 positions of this lipid. Because petroselinic acid is neither synthesized nor further modified on polar lipids, the apparent metabolism of this fatty acid through PC (and possibly through other polar lipids) may define a function of PC in TAG assembly apart from its involvement in fatty acid modification reactions.  相似文献   

9.
Phosphate limitation caused significant changes in the fatty acid and lipid composition of Monodus subterraneus. With decreasing phosphate availability from 175 to 52.5, 17.5 and 0 microM (K2HPO4), the proportion of the major VLC-PUFA, eicosapentaenoic acid (EPA), gradually decreased from 28.2 to 20.8, 19.4 and 15.5 mol% (of total fatty acids), respectively. The cellular total lipid content of starved cells increased, mainly due to the dramatic increase in triacylglycerols (TAG) levels. Among polar lipids, cellular contents of digalactosyldiacylglycerol (DGDG) and diacylglyceroltrimethylhomoserine (DGTS) increased sharply from 0.29 and 0.19 to 0.60 and 0.38 fg cell(-1), respectively, while that of monogalactosyldiacylglycerol (MGDG) was not significantly changed. In the absence of phosphate, the proportion of phospholipids was significantly reduced from 8.3% to 1.4% of total lipids, and the proportion of triacylglycerols (TAG) increased from 6.5% up to 39.3% of total lipids. The share of MGDG was substantially reduced, from 35.7% to 13.3%, while that of DGDG and DGTS reduced less from 18.3% to 15.1%, and 12.2% to 8.6%, respectively. The most distinctive change in the fatty acid composition was noted in that of DGDG, where the proportion of EPA, located exclusively at the sn-1 position, increased from 11.3% to 21.5% at the expense of 16:0, 16:1 and 18:1. In MGDG, however, the proportion of EPA did not change appreciably. In contrast to higher plants, DGDG accumulated under P-deprivation in M. subterraneus, did not resemble PC and the positional distribution of its fatty acids was not altered, preserving the C20/C16 structure of its molecular species. We suggest that under phosphate starvation DGTS is a likely source of C20 acyl groups that can be exported to the sn-1 position of DGDG and can partially compensate for the decrease in PE, the apparent source of C20 acyl-containing diacylglycerols in this alga. Moreover, accumulation of non-esterified 18:0 indicates that no polar lipid can replace PC, which appears to be the only lipid capable of C18 desaturation in this alga.  相似文献   

10.
ABSTRACT

Most fatty acids in phospholipids and other lipid species carry an even number of carbon atoms. Also odd-chain fatty acids (OCFAs), such as C15:0 and C17:0, are widespread throughout the living organism. However, the qualitative and quantitative profiles of OCFAs-containing lipids in living organisms remain unclear. Here, we show that OCFAs are present in Drosophila phosphatidylcholine (PC) and phosphatidylethanolamine (PE) and that their level increases in accordance with progression of growth. Furthermore, we found that food-derived propionic acid/propanoic acid (C3:0) is utilized for production of OCFA-containing PC and PE. This study provides the basis for understanding in vivo function of OCFA-containing phospholipids in development and lipid homeostasis.  相似文献   

11.
Major glycolipids [monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG)) and phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG)] as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from Anfeltia tobuchiensis (Rhodophyta), Laminaria japonica, Sargassum pallidum (Phaeophyta), Ulva fenestrata (Chlorophyta) and Zostera marina (Embriophyta), harvested in the Sea of Japan. GC analysis of their fatty acid (FA) composition revealed that the n-6 polyunsaturated FAs (PUFAs) shared the most part of the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG. In algae, it was related to the prevalence of 20:4n-6 over 20:5n-3 in non-photosynthetic lipids. Percentage of n-6 PUFAs as well as the sum of n-3 and n-6 PUFAs decreased in the following sequence: PC-->PE-->PG. The saturation increased in the lines of MGDG-->DGDG-->SQDG and PC-->PE-->PG. PG was close to SQDG by the level of saturation. Distribution of C(18) and C(20) PUFAs in polar lipids depended on taxonomic position of macrophytes. Balance between C(18) and C(20) PUFAs was preferably shifted to the side of C(20) PUFAs in PC and PE that was observed in contrast to glycolipids and PG from L. japonica containing both series of FAs. The set of major FAs of polar lipid classes can essentially differ from each other and from total lipids of macrophytes. For example, MGDG was found to accumulate characteristic fatty acids 16:4n-3, 16:3n-3, 18:3n-6 and 18:4n-3, 20:3n-6 in U. fenestrata, Z. marina, L. japonica and S. pallidum, respectively.  相似文献   

12.
Plants of garden pea ( Pisum sativum L.) were exposed to charcoal-filtered air with or without addition of 65 ± 5 l−1 ozone. Plants were harvested daily for 9 days and lipids were extracted from the second-oldest leaf. Visible injury of this leaf was evident from day 5 on, while the differences in lipids between ozone and control treatments were observed earlier. Ozone caused large decreases in the contents of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), a slower decrease in the content of phosphatidylcholine (PC), but an increase in the content of phosphatidylethanolamine (PE) per leaf area, compared with exposure to charcoal-filtered air. The content of phosphatidylglycerol (PG) was unaffected by ozone. Compared with charcoal-filtered air, fumigation with ozone resulted in a decrease in the proportion of linolenic acid (18:3) of the total lipid extract, with a concomitant increase in the proportion of linoleic acid (18:2). For individual lipids, ozone caused a similar pattern of decreased 18:3 and increased 18:2 in MGDG, SQDG, PC and PE, while the fatty acid composition of DGDG was unaffected. In PG, ozone decreased the proportions of 18:3 and trans -Δ3-decenoic acid (16:1trans), balanced by increased proportions of palmitic and oleic acids. The contents of chlorophylls and carotenoids were unaffected by ozone. Our results show that moderately elevated levels of ozone cause significant changes in the polar lipid composition of garden pea leaves and in the level of unsaturation of the lipid acyl groups and, furthermore, that ozone has different effects, which could be direct or indirect, on chloroplast lipids (MGDG, DGDG, SQDG, PG acylated with 16:1trans) and cytosolic membrane lipids.  相似文献   

13.
KD115 (ol1), an unsaturated fatty acid auxotroph of S. cerevisiae, was grown in a semi-synthetic medium supplemented with 3.3 x 10(-4) M palmitoleic (cis 16:1) or palmitelaidic (trans 16:1) acids. The parent strain S288C was studied as a control. The lipid composition (fatty acids, neutral lipids, and phospholipids), respiratory activity (O2 consumption), and ultrastructure were compared in mutant yeast grown with each unsaturated fatty acid supplement. The fatty acid supplement represented 70-80% of the yeast fatty acids. Yeast grown in trans 16:1 contained more squalene, a higher ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC), and had 10-20% of the respiratory activity compared to the same yeast grown in cis 16:1. The mitochondrial morphology of yeast in each growth supplement was notably different. The use of mixtures of cis and trans 16:1 in different proportions revealed that the PE/PC ratio, the squalene content, the respiratory defect, and the mitochondrial morphology were all similarly dependent on the fraction of trans 16:1 in the mixtures. As little as 10-20% of cis 16:1 in the mixture was sufficient to abrogate the physiological effects of trans 16:1 on each of the parameters noted above. The combined effects of high content of trans unsaturated fatty acid and the altered phospholipid composition seem to account for the decrease in lipid fluidity, the defective structure and function of the mitochondrial membrane.  相似文献   

14.
Callus cultures of the salt marsh grass Spartina patens were examined to determine changes and consistencies in membrane lipid composition in response to salt. Major membrane lipid classes remained stable at all salinity levels (0, 170, 340 mmol/L). However, the membrane protein to lipid ratio decreased significantly in response to elevated NaCl. Callus plasma membrane (PM) consisted predominantly of sterols, about 60% (mol%) of the total lipids. Glycolipid was the second largest lipid class, making up about 20% (mol%) of the total. With increasing salinity, the relative percentage of sitosterol decreased, while that of campesterol increased. The phospholipid species detected were phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI). When callus was grown at 340 mmol/L NaCl, PC increased significantly. PI and PS were also significantly elevated in salinity treatments. Only 24-32% of the PM fatty acids were common plant membrane fatty acids, C16, C18, C20, and C22, while over 60% were the less common fatty acids, C11 and C14. Membrane fluidity remained stable in response to growth medium salinity. The findings on membrane responses to salinity will facilitate a better understanding of this halophyte's tactics for salt tolerance.  相似文献   

15.
Major glyco- and phospholipids as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from five species of marine macrophytes harvested in the Sea of Japan in summer and winter at seawater temperatures of 20-23 and 3 degrees C, respectively. GC and DSC analysis of lipids revealed a common increase of ratio between n-3 and n-6 polyunsaturated fatty acids (PUFAs) of polar lipids from summer to winter despite their chemotaxonomically different fatty acid (FA) composition. Especially, high level of different n-3 PUFAs was observed in galactolipids in winter. However, the rise in FA unsaturation did not result in the lowering of peak maximum temperature of phase transition of photosynthetic lipids (glycolipids and phosphatidylglycerol (PG)) in contrast to non-photosynthetic ones [phosphatidylcholine (PC) and phosphatidylethanolamine (PE)]. Different thermotropic behavior of these lipid groups was accompanied by higher content of n-6 PUFAs from the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG in both seasons. Seasonal changes of DSC transitions and FA composition of DGTS studied for the first time were similar to PC and PE. Thermograms of all polar lipids were characterized by complex profiles and located in a wide temperature range between -130 and 80 degrees C, while the most evident phase separation occurred in PGs in both seasons. Polarizing microscopy combined with DSC has shown that the liquid crystal - isotropic melt transitions of polar lipids from marine macrophytes began from 10 to 30 degrees C mostly, which can cause the thermal sensitivity of plants to superoptimal temperatures in their environment.  相似文献   

16.
A study was carried out to determine the lipid composition of the blood-stream form of the African trypanosome. Trypanosoma vivax. Data from thin layer chromatography showed that the major polar lipids were lysophosphatidylcholine, sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and diphosphatidylglycerol. The major neutral lipids were sterol, monoacylglycerol, diacylglycerol, free fatty acid and triacyglycerol. 16:0, 18:0, 18:1 and 18:2 constituted the major fatty acids of both the polar and neutral lipid fractions. The work constituted the first detailed study on the fatty acid composition of this African trypanosome.  相似文献   

17.
 本文采用双向簿层层析分离红细胞膜脂类,继以毛细管气相色谱法分析其脂酸含量,检测了15名我国健康成人红细胞膜脂类的脂酸摩尔百分组成。结果表明:各脂类中,脂酸的类别基本相同,但其含量组成相差甚远。如磷脂酰乙醇胺(PE)富含C_(20:4);磷脂酰胆碱(PC)富含C_(18:2);神经鞘磷脂(SM)主要含C_(16:0);磷脂酰丝氨酸(PS)主要含C_(18:0);而以红细胞糖苷脂(GL)中脂酸含量最少。膜总脂中饱和脂酸与不饱和脂酸的含量大致相等,胆碱磷脂(PC+SM)的脂酸饱和度则明显高于氨基磷脂(PE+PS)。  相似文献   

18.
Altered membrane integrity in hepatocellular carcinoma (HCC) tissue was indicated by an elevation in cholesterol and significant decrease in phosphatidylcholine (PC). The resultant decreased phosphatidylcholine/phosphatidylethanolamine (PC/PE) and increased cholesterol/phospholipid ratios are associated with decreased fluidity in the carcinoma tissue. The lower PC was associated with a decrease in the quantitative levels of the saturated (C16:0, C18:0), ω6 (C18:2, C20:4) and ω3 (C22:5, C22:6) fatty acids (FAs), resulting in reduced long-chain polyunsaturated fatty acids (LCPUFAs), total PUFA and an increase in ω6/ω3 FA ratio. In PE, the saturated and ω3 (C22:5, C22:6) FAs were reduced while the total ω6 FA level was not affected, leading to an increased ω6/ω3 FA ratio. Increased levels of C18:1ω9, C20:2ω6 and reduction of 22:6ω3 in PC and PE suggest a dysfunctional delta-6 desaturase. The reduced PC/PE ratio resulted in a decreased C20:4ω6 (PC/PE) ratio, implying a shift towards synthesis of the 2-series eicosanoids. Lipid peroxidation was reduced in both hepatitis B negative (HBV) and positive (HBV+) HCC tissues. Glutathione (GSH) was decreased in HCC while HBV had no effect, suggesting an impairment of the GSH redox cycle. In contrast HBV infection enhanced GSH in the surrounding tissue possibly to counter oxidative stress as indicated by the increased level of conjugated dienes. Apart from the reduced LCPUFA, the low level of lipid peroxidation in the carcinoma tissue was associated with increased superoxide dismutase and glutathione peroxidase activity. The disruption of the redox balance, resulting in increased cellular antioxidant capacity, could create an environment for resistance to oxidative stress in the carcinoma tissue. Alterations in membrane cholesterol, phospholipids, FA parameters, C20:4ω6 membrane distribution and low lipid peroxidation are likely to be important determinants underlying the selective growth advantage of HCC cells.  相似文献   

19.
Treatment of rape seedlings with increasing CdCl2 concentrations in the culture medium resulted in a cadmium accumulation within plant tissues, which increased with external metal dose; such accumulation was more important in roots than in leaves. Biomass production was severely inhibited, even at low cadmium concentration. In leaves, quantities of chloroplastic lipids, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfolipids (SL) and phosphatidylglycerol (PG) decreased sharply under metallic treatment. However, contents of extrachloroplastic lipids, mainly phosphatidylcholine (PC) and phosphatidylethanolamine (PE) increased significantly. In contrast to leaves, contents of root phospholipids decreased. Likewise, levels of tri-unsaturated fatty acids: linolenic (C18:3) and hexadecatrienoïc (C16:3) dropped in leaves of treated seedlings as compared to those of controls, suggesting that heavy metals induced an alteration in the fatty acid desaturation process or a stimulation of their peroxidation. Also, trans palmitoleic acid (C16:1-trans) level in PG decreased considerably. In roots, there was a slight decrease in C18:3 level, with a concomitant increase in the C18:2 percentage. Radioactive labelling of leaf lipids with (1-14C) acetate allowed to show that fatty acid biosynthesis was noticeably altered at the highest cadmium dose used (50 μM). Biosynthesis of tri-unsaturated fatty acids was also inhibited which may explain the decline in non-labelled lipid contents. Results showed that metallic ion seems to affect selectively chloroplastic membranes due to an inhibition of polyunsaturated fatty acid biosynthesis. Moreover, a lipid peroxidation occurred in our case because of the spectacular increase of malondialdehyde (MDA) content observed in cadmium treated leaves. To cite this article: N. Ben Youssef et al., C. R. Biologies 328 (2005).  相似文献   

20.
Matured females of two Lake Baikal endemic fish species, Comephorus baicalensis and Comephorus dybowski, have been investigated for lipid of the whole body and specific tissues (liver, muscles, ovaries), phospholipid classes and fatty acids of neutral and polar lipids. Total lipid in the body (38.9% fresh weight), liver (23.5%) and muscles (14.5%) of C. baicalensis were greater than those of C. dybowski (4.7, 8.7 and 2.6%, respectively); only their ovaries were similar (5.3 and 5.6% lipid, respectively). In both species, phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, ranging from 60.7 to 75.1% of total phospholipid and 14.5–25.7%, respectively. In most cases, monounsaturated fatty acids (MUFA) were the major fatty acid group in C. baicalensis, whereas polyunsaturated fatty acids (PUFA) were the major group in C. dybowski. The MUFA 18:1(n-9) prevailed over other fatty acids in C. baicalensis and varied from 19% in polar lipids of muscles to 56.1% in neutral lipids of muscles. In polar lipid of C. dybowski, the PUFA 22:6(n-3) prevailed over other fatty acids in muscles and ovaries, while 16:0 dominated polar liver lipids and neutral lipids of all tissues. Other major fatty acids included 16:1(n-7), 18:1(n-7), and 20:5(n-3). Values of the (n-3)/(n-6) fatty acid ratio for neutral lipids of C. baicalensis (0.5–0.9) are well below the range of values characteristic either for marine or freshwater fish, while these values for polar lipids (1.6–1.8) are in the range typical of freshwater fish. Neutral lipid fatty acid ratios in C. dybowski (2.5–3.1) allow it to be assigned to freshwater fish, but polar lipids (2.8–3.7) leave it intermediary between freshwater and marine fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号