首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report period response curves (τRC) for two nocturnal Murid species from India, Mus booduga and Mus platythrix. We further discuss the method of phase shift estimation in the presence of τ-changes, because such changes pose a serious methodological problem in the estimation of phase shifts. Although the τRC indicates that most of the phase shifts are associated with small changes in τ, the period changes across all the phases showed a significant positive correlation with the phase shifts. We conclude that τRCs are a reality even in nocturnal mammals, although their amplitude is less than what is usually found in diurnal mammals, and requires a larger data set to be distinguished from noise.  相似文献   

2.
A consequence of simple velocity-based models is that, in response to light pulses, the circadian period should adjust inversely to phase. In addition, because of the interaction of circadian period and phase response, earlier circadian period changes should modify later circadian period changes. The literature contains few mentions of response curves of circadian period responses following light pulses. Rats were exposed to four pulses of light (60 minutes, 1000 lux) at the same circadian time, a minimum of 26 days apart; we assessed period responses and possible bias in the period-response curve. Modulation of circadian period following light-induced phase responses was examined by assessing the period of running wheel activity onset. Phase and circadian period were not consistently found to share an inverse relationship. Moreover, biases in initial period tended to be increased by the experimental protocol regardless of circadian time of pulse. Rats with a short initial (high-velocity) period had a lengthened period, while rats with a long initial period (low velocity) tended to have a reduce period. However, rats with a long initial period were phase delay biased, not phase advance biased. These results do not support a simple velocity model of the pacemaker. (Chronobiology International, 18(2), 187-201, 2001)  相似文献   

3.
Phase responses to red and blue light pulses were measured at different times during the circadian cycle (phase response curves, PRC) in the marine unicellular dinoflagellate Gonyaulaxpolyedra Stein. Pulses were given during a 24-h period of darkness; thereafter, cultures were released into constant dim red light for the assessment of phase and period. The results confirmed earlier findings that the Gonyaulax circadian system receives light signals via two distinct input pathways. During the subjective day and for the first 3 h of the subjective night, red and blue light pulses led to identical phase responses. For the rest of the circadian cycle, however, phase responses to pulses of either red or blue light differed drastically both in their amplitude and direction (advances or delays). Thus, the Gonyaulax light PRC is generated by two distinct light responses. One of these represents responses via a light input that is responsive both to red and blue light mainly producing small delays. The other represents responses of a primarily blue-sensitive input system leading to large advances restricted to the subjective night. Via feed-back, the blue-sensitive light input appears to be under the control of the circadian system. Received: 27 November 1996/Accepted: 30 January 1997  相似文献   

4.
《Chronobiology international》2013,30(7):1348-1364
The phase and period responses to short light pulses were studied in the jerboa, a seasonal, hibernating, nocturnal rodent from the Atlas region in Morocco. The jerboa, which is a saltatory species, showed precise activity onsets and offsets under a light-dark (LD) cycle using infrared captors to record locomotor activity. When released into constant darkness (DD), the majority of animals showed a circadian period (τ) <24?h (mean τ?=?23.89?±?0.13?h) and a lengthening of the activity span, α. Animals were subsequently exposed to up to eight 15-min light pulses, each separated by at least 2 wks, for up to 160 days in DD. During this span, most individuals maintained robust circadian rhythmicity, with clearly defined activity onsets and offsets, similar levels of total activity, duration of α, and percent activity occurring during the subjective night. The phase response curve (PRC) is typical of other nocturnal rodents, with light eliciting delays during late subjective day and early subjective night (CT8–CT19) and advances during late subjective night to early subjective day (CT19–CT2). A dead zone, when light had no effect on phase, is observed during mid-subjective day (CT3–CT8). A few individuals showed large (>9?h) Type 0 phase resetting near the singularity region (CT19) that resulted in a complete phase reversal, but otherwise displayed normal phase-shifting responses at other CT times. The τ response curve showed a decrease in period from early to late subjective night with increases at other times, but these changes were small (maximum <9?min) and highly variable. There was a distinct tendency for animals that had an initial short τ in DD to conserve a short τ during the series of light pulses and, inversely, for animals with long τ to conserve a long τ. This suggests possible constraints on the plasticity of variation of τ in relation to the endogenous period of the animal. (Author correspondence: )  相似文献   

5.
6.
ABSTRACT

Insects express diverse behavioral rhythms synchronized to environmental cycles. While circadian entrainment to light–dark cycles is ubiquitous in living organisms, synchronization to non-photic cycles may be critical for hematophagous bugs that depend on rhythmic hosts. The purpose was to determine whether Triatoma infestans are capable of synchronizing to the circadian rhythms of potential hosts with temporally distinct activity patterns; and, if so, if this synchronization occurs through masking or entrainment. Precise synchronization with the food source may be critical for the insects’ survival due to the specific predatory or defensive nature of each host. Kissing bugs were housed in a compartment in constant dark, air-flow-connected to another compartment with a nocturnal or a diurnal host; both hosts were synchronized to a light–dark cycle. The activity rhythms of kissing bugs were modulated by the daily activity rhythms of the vertebrates. Effects were a decrease in the endogenous circadian period, independent of the host being nocturnal or diurnal; in some cases relative coordination occurred and in others synchronization was clearly achieved. Moreover, splitting and bimodality arose, phenomena that were also affected by the host presence. The results indicate that T. infestans were able to detect the non-photic cycle of their potential hosts, an ability that surely facilitates feeding and hinders predation risk. Understanding triatomines behavior is of fundamental importance to the design of population control methods.  相似文献   

7.
The effect of light intensity on the phase response curve (PRC) and the period response curve (τRC) of the nocturnal field mouse Mus booduga was studied. PRCs and τRCs were constructed by exposing animals free-running in constant darkness (DD), to fluorescent light pulses (LPs) of 100 lux and 1000 lux intensities for 15min duration. The waveform of the PRCs and τRCs evoked by high light intensity (1000 lux) stimuli was significantly different compared to those constructed using low light intensity (100 lux). Moreover, a weak but significant correlation was observed between phase shifts and period changes when light stimuli of 1000 lux intensity were used; however, the phase shifts and period changes in the 100 lux PRC and τRC were not correlated. This suggests that the intensity of light stimuli affects both phase and period responses in the locomotor activity rhythm of the nocturnal field mouse M. booduga. These results indicate that complex mechanisms are involved in entrainment of circadian clocks, even in nocturnal rodents, in which PRC, τRC, and dose responses play a significant role.  相似文献   

8.
Our goal is to understand how nearly synchronous modes arise in heterogenous networks of neurons. In heterogenous networks, instead of exact synchrony, nearly synchronous modes arise, which include both 1:1 and 2:2 phase-locked modes. Existence and stability criteria for 2:2 phase-locked modes in reciprocally coupled two neuron circuits were derived based on the open loop phase resetting curve (PRC) without the assumption of weak coupling. The PRC for each component neuron was generated using the change in synaptic conductance produced by a presynaptic action potential as the perturbation. Separate derivations were required for modes in which the firing order is preserved and for those in which it alternates. Networks composed of two model neurons coupled by reciprocal inhibition were examined to test the predictions. The parameter regimes in which both types of nearly synchronous modes are exhibited were accurately predicted both qualitatively and quantitatively provided that the synaptic time constant is short with respect to the period and that the effect of second order resetting is considered. In contrast, PRC methods based on weak coupling could not predict 2:2 modes and did not predict the 1:1 modes with the level of accuracy achieved by the strong coupling methods. The strong coupling prediction methods provide insight into what manipulations promote near-synchrony in a two neuron network and may also have predictive value for larger networks, which can also manifest changes in firing order. We also identify a novel route by which synchrony is lost in mildly heterogenous networks.  相似文献   

9.
Non-photic clock-resetting events (arousal and locomotor activity) in the subjective day reduced expression of Period genes in the suprachiasmatic nucleus of hamsters. This decrease was attenuated by a 30-min light pulse occurring during the last 0.5 h of 3.5 h of confinement to a novel running wheel. This provides an example at the molecular level of an interaction between different modalities of synchronizing agents.  相似文献   

10.
In this study we investigated the influence of red light, which naturally occurs during dawn and dusk, on locomotor activity and body temperature rhythms of Djungarian hamsters (Phodopus sungarus). A single weak red light pulse given 2 h before regular lights on had acute as well as long-term effects persisting for several days following exposure. The hamsters immediately stopped their locomotor activity, accompanied by a drop in body temperature. In the following undisturbed nights (LD 168) the nocturnal activity stopped earlier than usual. This lasting effect of the light pulse was more pronounced than the acute effect. The activity phase compressed gradually during 3 to 5 days after the light pulse was administered while time of activity onset was almost unaffected. It took 6 to 11 days for complete recovery of the original activity phase. The maximal activity compression and the recovery period depended on the duration of the single red light pulse and its intensity. Red light pulses of 15 min duration were about twice effective as 1 min pulses; and the effect of a red light pulse of 130 mW/m2 was about 1.5 times stronger than a 30 mW/m2 red light pulse. The maximal value of activity phase compression reached in this experiment was 2.5+0.2 h with a recovery period of 11.1±0.3 days following a given red light pulse of 90 mW/m2 and 15 min. The morning oscillator seems to be persistently affected. This indicates a very high photosensitivity of the Djungarian hamster's circadian system to red light.Abbreviations T b body temperature - DD constant darkness - LD light:dark cycle - LL constant light - duration of activity phase - CT circadian time - PRC phase response curve - SCN suprachiasmatic nuclei  相似文献   

11.
In mammals, nocturnal light pulses (NLP) have been demonstrated to affect physiology and behavior. However, the impact of NLP as a stressor has been less broadly examined. The purpose of this study was to examine the effect of NLP (three 15 min 450 lux light pulses) during each scotophase on both thermoregulation and endocrine stress responses under short-day (SD; 8L:16D) acclimation. Voles were acclimated to either SD (SD voles) or SD+NLP (NLP voles). Resistance to cold was estimated by measurements of body temperature (Tb) during cold exposure (5°C). Daily rhythms of energy expenditure (calculated from oxygen consumption), urine production, and urinary adrenaline and serum cortisol levels were measured. Tb values of SD voles were generally unaffected by the cold stimulus, whereas in NLP voles, resistance to cold was markedly lowered. While SD- and NLP voles showed similar ultradian characteristics in energy expenditure with a period of 3.5 h, mean energy expenditure levels were lowest for voles exposed to NLP-treatment. In SD voles, but not in NLP voles, urine production rates showed clear time variations and were consistently highest for SD voles, with significant differences during the scotophase. Both mean total urinary adrenaline and serum cortisol levels were significantly elevated in NLP-treated voles compared with the control group. Taken together, the results suggest that NLP negatively affects winter acclimatization of thermoregulatory mechanisms of M. socialis, probably by mimicking summer acclimatization, and consequently the thermoregulatory mechanisms respond inappropriately to ambient conditions. One important finding of this study is that NLP may act as a stressor and correspondingly impose a major threat to the physiological homeostasis of M. socialis, such that over-winter survival might be compromised.  相似文献   

12.
Most animals can be categorized as nocturnal, diurnal, or crepuscular. However, rhythms can be quite plastic in some species and vary from one individual to another within a species. In the golden spiny mouse (Acomys russatus), a variety of rhythm patterns have been seen, and these patterns can change considerably as animals are transferred from the field into the laboratory. We previously suggested that these animals may have a circadian time‐keeping system that is fundamentally nocturnal and that diurnal patterns seen in their natural habitat reflect mechanisms operating outside of the basic circadian time‐keeping system (i.e., masking). In the current study, we further characterized plasticity evident in the daily rhythms of golden spiny mice by measuring effects of lighting conditions and access to a running wheel on rhythms in general activity (GA) and body temperature (Tb). Before the wheel was introduced, most animals were active mainly during the night, though there was considerable inter‐individual variability and patterns were quite plastic. The introduction of the wheel caused an increase in the level of nighttime activity and Tb in most individuals. The periods of the rhythms in constant darkness (DD) were very similar, and even slightly longer in this study (24.1±0.2 h) than in an earlier one in which animals had not been provided with running wheels. We found no correlation between the distance animals ran in their wheels and the period of their rhythms in DD. Re‐entrainment after phase delays of the LD cycle occurred more rapidly in the presence than absence of the running wheel. The characteristics of the rhythms of golden spiny mice seen in this study may be the product of natural selection favoring plasticity of the circadian system, perhaps reflecting what can happen during an evolutionary transition as animals move from a nocturnal to a diurnal niche.  相似文献   

13.
ABSTRACT. Locomotor activity of individual blowflies, Phormia (=Protophormia) terraenovae R.D. (Diptera, Calliphoridae), was recorded by means of running wheels made of Perspex (plexiglass). At various intervals after hatching, flies were placed in the wheel in continuous light (120 lx). The period of the free-running rhythm was often shorter than 24 h initially, but lengthened later and stabilized after 15–20 days at values around or above 25 h. The mean period was independent of age in both sexes. Within a range from 2 to 2000lx the period did not depend in a systematic way on intensity of illumination; no activity could be recorded below 1 lx.  相似文献   

14.
Circadian rhythms are fundamental biological phenomena generated by molecular genetic mechanisms known as circadian clocks. There is increasing evidence that circadian synchronization of physiological and cellular processes contribute to the wellness of organisms, curbing pathologies such as cancer and premature aging. Therefore, there is a need to understand how circadian clocks orchestrate interactions between the organism’s internal processes and the environment. Here, we explore the nexus between the clock and oxidative stress susceptibility in Drosophila melanogaster. We exposed flies to acute oxidative stress induced by hydrogen peroxide (H2O2), and determined that mortality rates were dependent on time at which exposure occurred during the day/night cycle. The daily susceptibility rhythm was abolished in flies with a null mutation in the core clock gene period (per) abrogating clock function. Furthermore, lack of per increased susceptibility to H2O2 compared to wild-type flies, coinciding with enhanced generation of mitochondrial H2O2 and decreased catalase activity due to oxidative damage. Taken together, our data suggest that the circadian clock gene period is essential for maintaining a robust anti-oxidative defense.  相似文献   

15.
Photic phase response curves (PRCs) have been extensively studied in many laboratory-bred diurnal and nocturnal rodents. However, comparatively fewer studies have addressed the effects of photic cues on wild diurnal mammals. Hence, we studied the effects of short durations of light pulses on the circadian systems of the diurnal Indian Palm squirrel, Funambulus pennanti. Adult males entrained to a light–dark cycle (12?h–12?h) were transferred to constant darkness (DD). Free-running animals were exposed to brief light pulses (250 lux) of 15?min, 3 circadian hours (CT) apart (CT 0, 3, 6, 9, 12, 15, 18 and 21). Phase shifts evoked at different phases were plotted against CT and a PRC was constructed. F. pennanti exhibited phase-dependent phase shifts at all the CTs studied, and the PRC obtained was of type 1 at the intensity of light used. Phase advances were evoked during the early subjective day and late subjective night, while phase delays occurred during the late subjective day and early subjective night, with maximum phase delay at CT 15 (?2.04?±?0.23?h), and maximum phase advance at CT 21 (1.88?±?0.31?h). No dead zone was seen at this resolution. The free-running period of the rhythm was concurrently lengthened (deceleration) during the late subjective day and early subjective night, while period shortening (acceleration) occurred during the late subjective night. The maximum deceleration was noticed at CT 15 (?0.40?±?0.09?h) and the maximum acceleration at CT 21 (0.39?±?0.07?h). A significant positive correlation exists between the phase shifts and the period changes (r?=?0.684, p?=?0.001). The shapes of both the PRC and period response curve (τRC) qualitatively resemble each other. This suggests that the palm squirrel’s circadian system is entrained both by phase and period responses to light. Thus, F. pennanti exhibits robust clock-resetting in response to light pulses.  相似文献   

16.
ABSTRACT

We examined phase shifts to bright morning light when sleep was restricted by delaying bedtimes. Adolescents (n = 6) had 10-h sleep/dark opportunities for 6 days. For the next 2 days, half were put to bed 4.5 h later and then allowed to sleep for 5.5 h (evening room light + sleep restriction). The others continued the 10-h sleep opportunities (sleep satiation). Then, sleep schedules were gradually shifted earlier and participants received bright light (90 min, ~6000 lux) after waking for 3 days. As expected, sleep satiation participants advanced (~2 h). Evening room light + sleep restriction participants did not shift or delayed by 2–4 h.

Abbreviations: DLMO: dim light melatonin onset.  相似文献   

17.
Wheel‐running activity was recorded in Lemniscomys barbarus exposed to different lighting conditions. This rodent shows rhythmic locomotor activity under natural twilight‐light/dark (LD) as well as squared‐LD cycles. A mean of 77% of the activity occurred during the light phase. Under different controlled photoperiods, the quantity of daily locomotor activity was relatively stable except for a lower level in the shortest photoperiod tested (LD 06∶18). The duration of the active phase tended to increase with the duration of the light phase, especially in the longer photoperiods. Whatever the lighting conditions, Lemniscomys barbarus started running before lights‐on and stopped after lights‐off. The phase angle of activity offset relative to lights‐off was stable in each squared‐photoperiod, whereas the phase angle of activity onset relative to lights‐on was significantly the highest under the shortest photoperiods. Recording of activity under constant lighting conditions showed that the daily rhythm of locomotor activity is fundamentally circadian. The endogenous period was slightly<24 h (mean=23.8 h) in permanent darkness and>24 h (mean=24.5 h) in continuous light. Re‐entrainment of the locomotor activity rhythm after a 6 h phase advance or delay requires only four days on average. Moreover, the phase‐responses curve to a 30 min light pulse (200 lux) in Lemniscomys barbarus kept in constant dark reveals large phase shifts according to circadian times (CT). With CT0 being defined as the onset of daily activity, maximum phase delay and advance shifts were observed at CT11 (Δ Ψ=‐5.7 h±2.3 h) and CT21 (Δ Ψ =4.9±1.2 h), respectively. Interestingly, the phase‐response curve to light did not show any dead zone. Immunohistochemical staining of the suprachiasmatic nuclei indicates that arginine vasopressin‐immunoreactive cell bodies and fibers delimited a dorsal subregion that extends laterally and medially. The ventral subregion is rich in vasoactive intestinal peptide‐immunoreactive neurones overlapping a smaller area containing gastrin‐releasing peptide‐expressing cells and receives numerous fibers labeled with neuropeptide Y antibody. The results of this study clearly demonstrate that Lemniscomys barbarus is a diurnal species highly sensitive to the shifting effects of light. Overall, this rodent can be considered a new and interesting model for circadian rhythm neurobiology.  相似文献   

18.
对中国四种蒿属植物(毛莲蒿、蒙古蒿、牡蒿和灰苞蒿)的光合响应曲线进行了研究。结果表明:牡蒿具有高光饱点(411.0μmol·m-2·s-1)和最大光合速率(18.627μmol·m-2·s-1),以及较低的光补偿点(17.867μmol·m-2·s-1),对高光的适应能力最强;灰苞蒿的暗呼吸速率(0.353μmol·m-2·s-1)和表观量子效率(0.038)最低,说明该种对弱光的适应能力较差,且在弱光条件下只能维持较低的生长速率;灰苞蒿水分利用效率随光强的变化趋势与其他三种蒿属植物一致,但总体上维持在一个较高的水平,可能与其对干旱生境的适应有关。光合响应曲线各个拟合指标在种间呈现出了较大的变异,其中光补偿点(L cpμmol·m-2·s-1)和暗呼吸速率(R dayμmol·m-2·s-1)差异达到了显著水平。说明植物功能性状与植物对环境长期适应密切相关,并且这种适应性是稳定可遗传的。  相似文献   

19.
In a total of 12 adult Colombian owl monkeys, Aotus lemurinus griseimembra, the significance of nonparametric light effects for the entrainment of the circadian system by light-dark (LD) cycles was studied by carrying out (a) phase-response experiments testing the phase-shifting effect of 30-min light pulses (LPs) of 250 lx applied at various phases of the free-running circadian activity rhythm (LL 0.2 lx) and (b) synchronization experiments testing the entraining effect of 24-h single LP photoperiods consisting of 30-min L of 80 lx and 23.5-h D of 0.5 lx (sP 0.5) and skeleton photoperiods consisting of two 30-min LPs of 80 lx, given against a background illuminance of 0.5 lx either symmetrically at 12-h intervals (PP 12:12) or asymmetrically at 9- and 15-h intervals (PP 9:15). The phase-response characteristics in Aotus, as evidenced by the phase-response curve, generally correspond to those of nocturnal rodents, proving that this neotropical simian primate chronobiologically is a genuine nocturnal species. When free-running with a spontaneous period close to 24 h (24.3 ± 0.1 h), the PP 12:12 produced entrainment in only two of five owl monkeys, whereas the sP 0.5 entrained four of them. The PP 9:15, however, brought about stable entrainment of the circadian rhythms of locomotor activity, feeding activity, and core temperature in all animals tested (n = 8). Changes in phase position of the activity time with the endogenous rhythm entrained by a PP 12:12, by an sP 0.5, or by a PP 9:15 give evidence that both LPs of a skeleton photoperiod contribute to the phase setting of the circadian system. When free-running with a considerably lengthened spontaneous period (τ ≥ 25.5 h), even the sP 0.5 and the PP 9:15 failed to entrain the owl monkeys' circadian rhythms, whereas a 24-h photoperiod with a very long LP of 3 h caused entrainment. The results indicate that in Aotus lemurinus griseimembra, in addition to the nonparametric light effects, parametric light effects play a significant role in the entrainment of circadian rhythms by LD cycles.  相似文献   

20.
We investigated changes in the circadian rhythm of peak expiratory flow (PEF) in seven persons with nocturnal asthma for a 24h span when (1) they were symptom free and their disease was stable, (2) their asthma deteriorated and nocturnal symptoms were frequent, and (3) they were treated with theophylline chronotherapy. Subjects recorded their PEF every 4h between 07:00 and 23:00 one day each period. Circadian rhythms in PEF were assessed using the group-mean cosinor method. The circadian rhythm in PEF varied according to asthma severity. Significant circadian rhythms in PEF were detected during the period when asthma was stable and when it was unstable and nocturnal symptoms were frequent. When nocturnal symptoms were present, the bathyphase (trough time) of the PEF rhythm narrowed to around 04:00; during this time of unstable asthma, the amplitude of the PEF pattern increased 3.9-fold compared to the symptom-free period. No significant group circadian rhythm was detected during theophylline chronotherapy. Evening theophylline chronotherapy proved to be prophylactic for persons whose symptoms before treatment had occurred between midnight and early morning. Changes in the characteristics of the circadian rhythm of PEF, particularly amplitude and time of bathyphase, proved useful in determining when to institute theophylline chronotherapy to avert nocturnal asthma symptoms. (Chronobiology International, 17(4), 513-519, 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号