首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soluble form of guanylyl cyclase (sGC) plays a pivotal role in the transduction of inter- and intracellular signals conveyed by nitric oxide. Here, a feedback inhibitory mechanism triggered by cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) activation is described. Preincubation of chromaffin cells with C-type natriuretic peptide, which increased cGMP levels and activated PKG, or with cGMP-permeant analogue (which also activates PKG), in the presence of a broad-spectrum phosphodiesterase inhibitor, resulted in a decrease in subsequent sodium nitroprusside (SNP)-dependent cGMP elevations. This inhibitory effect was mimicked by activating a protein phosphatase and counteracted by the selective PKG inhibitor KT-5823 and by different protein phosphatase inhibitors. Immunoprecipitation of sGC from cells submitted to different treatments followed by immunodetection with antiphosphoserine antibodies (clone 4A9) showed changes in phosphorylation levels of the beta subunit of sGC, and these changes correlated well with differences in SNP-elicited cGMP accumulations. Pretreatment of cells with several PKG inhibitors or protein phosphatase inhibitors produced an enhancement of SNP-stimulated cGMP rises without changing the SNP concentration required to produce half-maximal or maximal responses. Taken together, these results indicate that the catalytic activity of sGC is closely coupled to the phosphorylation state of its beta subunit and that the tonic activity of PKG or its stimulation regulates sGC activity through dephosphorylation of the beta subunit.  相似文献   

2.
The objective of this study was to understand the mechanism of action of nitric oxide (NO) in the heart by determining whether nitric oxide (NO) released from sodium nitroprusside (SNP) induces p38 mitogen activated protein kinase (p38 MAPK) phosphorylation and whether this is mediated through a cyclic GMP (cGMP)/protein kinase G (PKG) pathway. p38 MAPK activation was examined by Western blotting of whole cell lysates of embryonic chick cardiomyocytes with antibodies specific to the native or phosphorylated forms of p38 MAPK. SNP, 1 mM, which released significant amounts of NO as determined by Griess reaction, induced p38 MAPK phosphorylation that was apparent within 10 min, was significantly (p<0.05) greater than control at 60 min and remained higher than initial levels up to the 4 h end point of the experiment. This could not be attributed to hydrogen peroxide release from SNP as catalase did not affect SNP-induced p38 MAPK phosphorylation. SB202190, a relatively selective inhibitor of p38 MAPK, mainly p38alpha MAPK, inhibited SNP-induced p38 MAPK phosphorylation. SNP-induced p38 MAPK phosphorylation was not altered by pre-treatment with the PKG inhibitor KT 5823 or by ODQ a potent and selective inhibitor of NO-sensitive guanylyl cyclase. p38 MAPK phosphorylation was not induced by the cell permeable cGMP analogue, 8-Br-cGMP. In summary, considering that new therapeutic strategies aimed at NO and p38 MAPK are being considered for myocardial injury and heart failure, these data demonstrate that SNP induces p38 MAPK phosphorylation through a pathway that is independent of NO-induced activation of cGMP/PKG pathways and suggest that non cGMP/PKG regulatory proteins leading to p38 MAPK phosphorylation merit further investigation to address this therapeutic target.  相似文献   

3.
Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole 3',5'-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca(2+) release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.  相似文献   

4.
Human cervicalepithelial cells express mRNA for the nitric oxide (NO) synthase (NOS)isoforms ecNOS, bNOS, and iNOS and release NO into the extracellularmedium. NG-nitro-L-arginine methylester (L-NAME), an NOS inhibitor, and Hb, an NO scavenger,decreased paracellular permeability; in contrast, the NO donors sodiumnitroprusside (SNP) andN-(ethoxycarbonyl)-3-(4-morpholinyl)sydnonimine increasedparacellular permeability across cultured human cervical epithelia onfilters, suggesting that NO increases cervical paracellular permeability. The objective of the study was to understand the mechanisms of NO action on cervical paracellular permeability. 8-Bromo-cGMP (8-BrcGMP) also increased permeability, and the effect wasblocked by KT-5823 (a blocker of cGMP-dependent protein kinase), butnot by LY-83583 (a blocker of guanylate cyclase). In contrast, LY-83583and KT-5823 blocked the SNP-induced increase in permeability. Treatmentwith SNP increased cellular cGMP, and the effect was blocked by Hb andLY-83583, but not by KT-5823. Neither SNP nor 8-BrcGMP had modulatedcervical cation selectivity. In contrast, both agents increasedfluorescence from fura 2-loaded cells in theCa2+-insensitive wavelengths, indicating that SNP and8-BrcGMP stimulate a decrease in cell size and in the resistance of thelateral intercellular space. Neither SNP nor 8-BrcGMP had an effect ontotal cellular actin, but both agents increased the fraction ofG-actin. Hb blocked the SNP-induced increase in G-actin, and KT-5823blocked the 8-BrcGMP-induced increase in G-actin. On the basis of theseresults, it is suggested that NO acts on guanylate cyclase andstimulates an increase in cGMP; cGMP, acting via cGMP-dependent proteinkinase, shifts actin steady-state toward G-actin; this fragments thecytoskeleton and renders cells more sensitive to decreases in cell sizeand resistance of the lateral intercellular space and, hence, toincreases in permeability. These results may be important forunderstanding NO regulation of transcervical paracellular permeabilityand secretion of cervical mucus in the woman.

  相似文献   

5.
Exposure of RINm5F cells to interleukin-1beta and to several chemical NO donors such as sodium nitroprusside (SNP), SIN-1 and SNAP induce apoptotic events such as the release of cytochrome c from mitochondria, caspase 3 activation, Bcl-2 downregulation and DNA fragmentation. SNP exposure led to transient activation of soluble guanylate cyclase (sGC) and prolonged protein kinase G (PKG) activation but apoptotic events were not attenuated by inhibition of the sGC/PKG pathway. Prolonged activation of the cGMP pathway by exposing cells to the dibutyryl analogue of cGMP for 12 h induced both apoptosis and necrosis, a response that was abolished by the PKG inhibitor KT5823. These results suggest that NO-induced apoptosis in the pancreatic beta-cell line is independent of acute activation of the cGMP pathway.  相似文献   

6.
7.
Signaling by nitric oxide (NO) determines several cardiovascular functions including blood pressure regulation, cardiac and smooth muscle hypertrophy, and platelet function. NO stimulates the synthesis of cGMP by soluble guanylyl cyclases and thereby activates cGMP-dependent protein kinases (PKGs), mediating most of the cGMP functions. Hence, an elucidation of the PKG signaling cascade is essential for the understanding of the (patho)physiological aspects of NO. Several PKG signaling pathways were identified, meanwhile regulating the intracellular calcium concentration, mediating calcium desensitization or cytoskeletal rearrangement. During the last decade it emerged that the inositol trisphosphate receptor-associated cGMP-kinase substrate (IRAG), an endoplasmic reticulum-anchored 125-kDa membrane protein, is a main signal transducer of PKG activity in the cardiovascular system. IRAG interacts specifically in a trimeric complex with the PKG1β isoform and the inositol 1,4,5-trisphosphate receptor I and, upon phosphorylation, reduces the intracellular calcium release from the intracellular stores. IRAG motifs for phosphorylation and for targeting to PKG1β and 1,4,5-trisphosphate receptor I were identified by several approaches. The (patho)physiological functions for the regulation of smooth muscle contractility and the inhibition of platelet activation were perceived. In this review, the IRAG recognition, targeting, and function are summarized compared with PKG and several PKG substrates in the cardiovascular system.  相似文献   

8.
Nitric oxide in the gut is produced by nNOS in enteric neurons and by eNOS in smooth muscle cells. The eNOS in smooth muscle is activated by vasoactive intestinal peptide (VIP) released from enteric neurons. In the present study, we examined the effect of nitric oxide on VIP-induced eNOS activation in smooth muscle cells isolated from human intestine and rabbit stomach. NOS activity was measured as formation of the 1:1 co-product, l-citrulline from l-arginine. VIP caused an increase in l-citrulline production that was inhibited by NO in a concentration dependent manner (IC(50)~25 microM; maximal inhibition 72% at 100 microM NO). Basal l-citrulline production, however, was unaffected by NO. The effect was not mediated by cGMP/PKG since the PKG inhibitor KT5823 had no effect on eNOS autoinhibition. The autoinhibition was selective for NO since the co-product l-citrulline had no effect on VIP-induced NOS activation. Similar effects were obtained in rabbit gastric and human intestinal smooth muscle cells. The results suggest that NO produced in smooth muscle cells as a result of the activation of eNOS by VIP exerts an autoinhibitory restraint on eNOS thereby regulating the balance of the VIP/cAMP/PKA and NO/cGMP/PKG pathways that regulate the relaxation of gut smooth muscle.  相似文献   

9.
Continuous exposure to nitrovasodilators and nitric oxide induces tolerance to their vasodilator effects in vascular smooth muscle. This study was done to determine the role of cGMP-dependent protein kinase (PKG) in the development of tolerance to nitric oxide. Isolated fourth-generation pulmonary veins of newborn lambs were studied. Incubation of veins for 20 h with DETA NONOate (DETA NO; a stable nitric oxide donor) significantly reduced their relaxation response to the nitric oxide donor and to beta-phenyl-1,N2-etheno-8-bromo-cGMP (8-Br-PET-cGMP, a cell-permeable cGMP analog). Incubation with DETA NO significantly reduced PKG activity and protein and mRNA levels in the vessels. These effects were prevented by 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase) and Rp-8-Br-PET-cGMPS (an inhibitor of PKG). A decrease in PKG protein and mRNA levels was also observed after continuous exposure to cGMP analogs. The PKG inhibitor abrogated these effects. The decrease in cGMP-mediated relaxation and in PKG activity caused by continuous exposure to DETA NO was not affected by KT-5720, an inhibitor of cAMP-dependent protein kinase. Prolonged exposure to 8-Br-cAMP (a cell-permeable cAMP analog) did not affect PKG protein level in the veins. These results suggest that continuous exposure to nitric oxide or cGMP downregulates PKG by a PKG-dependent mechanism. Such a negative feedback mechanism may contribute to the development of tolerance to nitric oxide in pulmonary veins of newborn lambs.  相似文献   

10.
Nitric oxide and endogenous nitrovasodilators regulate smooth muscle tone by elevation of cGMP and activation of cyclic GMP-dependent protein kinase (PKG). The amplitude and duration of the cGMP signal in smooth muscle is regulated in large part by cGMP-specific cyclic nucleotide phosphodiesterase (PDE5). Previous in vitro data have suggested that both cAMP-dependent protein kinase and PKG can regulate the activity of PDE5. To test if this type of regulation is important in the intact cell, we have generated phospho-PDE5-specific antisera and have utilized isolated smooth muscle cells from mice having a disruption in the PKG I gene as well as cells from normal human smooth muscle. The data show that in human smooth muscle cells, activation of PKG by 8-Br-cGMP led to phosphorylation and activation of PDE5. In the same cells, 8-Br-cAMP had no significant effect on PDE5 phosphorylation. Treatment of wild-type mouse aortic smooth muscle cells with 8-Br-cGMP also induced the phosphorylation of PDE5, whereas no phosphorylation was seen in smooth muscle cells isolated from mice in which the gene for PKG I had been disrupted. As with the human cells, no phosphorylation was seen in the mouse cells in response to 8-Br-cAMP. These results strongly suggest that a major regulatory pathway for control of PDE5 phosphorylation and activity in intact smooth muscle is via PKG-dependent phosphorylation of PDE5. Finally, experiments with calyculin A and okadaic acid suggest that PP1 phosphatase, the catalytic subunit of myosin phosphatase, can regulate PDE5 dephosphorylation. Together, the data suggest that phosphorylation and activation of PDE5 by PKG I and its subsequent dephosphorylation by myosin phosphatase may be key steps in the regulation of relaxation/contraction cycles of smooth muscle.  相似文献   

11.
The singular effects and interplay of cAMP- and cGMP-dependent protein kinase (PKA and PKG) on Ca(2+) mobilization were examined in dispersed smooth muscle cells. In permeabilized muscle cells, exogenous cAMP and cGMP inhibited inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of cAMP and cGMP caused synergistic inhibition that was exclusively mediated by PKG and attenuated by PKA. In intact muscle cells, low concentrations (10 nM) of isoproterenol and sodium nitroprusside (SNP) inhibited agonist-induced, IP(3)-dependent Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of isoproterenol and SNP increased PKA and PKG activities: the increase in PKA activity reflected inhibition of phosphodiesterase 3 activity by cGMP, whereas the increase in PKG activity reflected activation of cGMP-primed PKG by cAMP. Inhibition of Ca(2+) release and muscle contraction by the combination of isoproterenol and SNP was preferentially mediated by PKG. In light of studies showing that PKG phosphorylates the IP(3) receptor in intact and permeabilized muscle cells, whereas PKA phosphorylates the receptor in permeabilized cells only, the results imply that inhibition of IP(3)-induced Ca(2+) release is mediated exclusively by PKG. The effect of PKA on agonist-induced Ca(2+) release probably reflects inhibition of IP(3) formation.  相似文献   

12.
Recent studies from our laboratory indicate that pulmonary vasodilatory responses to exogenous nitric oxide (NO) are attenuated following chronic hypoxia (CH) and that this NO-dependent vasodilation is mediated by cGMP. Similarly, we have demonstrated that CH attenuates vasodilatory responses to the cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP). We hypothesized that attenuated pulmonary vasodilation to 8-BrcGMP following CH is mediated by decreased protein kinase G-1 (PKG-1) expression/activity. Therefore, we examined vasodilatory responses to 8-BrcGMP (1 microM) in isolated, saline-perfused lungs from control and CH (4 wk at barometric pressure of 380 mmHg) rats in the presence of the competitive PKG inhibitor Rp-beta-phenyl-1, N2-etheno-8-bromoguanosine 3',5'-cyclic monophosphorothionate (30 microM) or the highly specific PKG inhibitor KT-5823 (10 microM). PKG-1 expression and activity were determined in whole lung homogenates from each group, and vascular PKG-1 levels were assessed by quantitative immunohistochemistry. PKG inhibition with either Rp-8-Br-PET-cGMPS or KT-5823 diminished vasodilatory responses to 8-BrcGMP in lungs from both control and CH rats, thus indicating a role for PKG in mediating reactivity to 8-BrcGMP in each group. However, in contrast to our hypothesis, PKG-1 levels were approximately twofold greater in lungs from CH rats vs. controls, and furthermore, this upregulation was localized to the vasculature. This correlates with an increase in PKG activity following CH. We conclude that PKG-1 is involved in 8-BrcGMP-mediated vasodilation; however, attenuated pulmonary vasodilation following CH is not associated with decreased expression/activity of PKG-1.  相似文献   

13.
Estrogen increasessecretion of cervical mucus in women, and the effect depends onfragmentation of the cytoskeleton. The objective of the present studywas to understand the molecular mechanism of estrogen action. Treatmentof human cervical epithelial cells with 17-estradiol, sodiumnitroprusside (SNP), or 8-bromoguanosine 3',5'-cyclic monophosphate(8-Br-cGMP) increased cellular monomeric G-actin and decreasedpolymerized F-actin. The effects of estradiol were blocked bytamoxifen, by the guanylate cyclase inhibitor LY-83583, and by thecGMP-dependent protein kinase inhibitor KT-5823. The effects of SNPwere blocked by LY-83583 and KT-5823, while the effects of 8-Br-cGMPwere blocked only by KT-5823. Treatment with phalloidin decreasedparacellular permeability and G-actin. Treatment with 17-estradiol,SNP, or 8-Br-cGMP attenuated SNP-induced phosphorylation of[32P]adenylate NAD in vitro: tamoxifen blocked the effectof estrogen; LY-83583 blocked the effect of SNP but not that of8-Br-cGMP, while KT-5823 blocked effects of both SNP and 8-Br-cGMP.These results indicate that estrogen, nitric oxide (NO), and cGMPstimulate actin depolymerization. A possible mechanism is NO-induced,cGMP-dependent protein kinase augmentation of ADP-ribosylation ofmonomeric actin.

  相似文献   

14.
Intracellular microelectrode recordings were used to determine whether nitric oxide (NO), affects the pacemaker events that initiate vasomotion in lymphatic vessels of the guinea pig mesentery. This pacemaker activity is recorded as spontaneous transient depolarizations (STDs) and is likely to arise through synchronized Ca2+ release from intracellular stores. We show here that acetylcholine-induced endothelium-derived NO and exogenous NO released by sodium nitroprusside (SNP; 100 microM) and DEA-NONOate (500 microM) reduced the frequency and amplitude of STDs. This inhibition of STD frequency and amplitude was independent of the NO-induced hyperpolarization of the smooth muscle. The SNP-induced inhibition of STD frequency and amplitude was abolished during superfusion with the soluble guanylyl cyclase inhibitor ODQ (10 microM) and was diminished in the presence of cGMP and cAMP-dependent protein kinase inhibitors. The data are consistent with the hypothesis that NO inhibits vasomotion primarily by production of cGMP and activation of both cGMP- and cAMP-dependent protein kinases, which reduce the size and frequency of STDs, probably by acting on the underlying synchronized Ca2+ release from intracellular stores.  相似文献   

15.
The mechanism by which nitric oxide (NO) protects from apoptosis is a matter of debate. We have shown previously that phosphorylation of tyrosine residues participates in the protection from apoptosis in insulin-producing RINm5F cells (Inorg. Chem. Commun. 3 (2000) 32). Since NO has been reported to activate the tyrosine kinase c-Src and this kinase is involved in the activation of protein kinase G (PKG) in some cell systems, we aimed at studying the contribution of c-Src and PKG systems in anti-apoptotic actions of NO in serum-deprived RINm5F cells. Here we report that exposure of serum-deprived cells to 10 microM DETA/NO results in protection from degradation of the anti-apoptotic protein Bcl-2, together with a reduction of cytochrome c release from mitochondria and caspase-3 inhibition. Studies with the inhibitors ODQ and KT-5823 revealed that these actions are dependent on both activation of guanylate cyclase and PKG. DETA/NO was also able to induce autophosphorylation and activation c-Src protein both in vivo and in vitro and active c-Src was able to induce tyrosine phosphorylation of Bcl-2 in vitro. The c-Src kinase inhibitor PP1 abrogated the actions of DETA/NO on cGMP formation, PKG activation, caspase activation, cytochrome c release from mitochondria, and Bcl-2 phosphorylation and degradation in serum-deprived cells. We thus propose that activation of c-Src is an early step in the chain of events that signal cGMP-dependent anti-apoptotic actions of NO in mitocohondria.  相似文献   

16.
Atrial natriuretic peptide (ANP) and transforming growth factor (TGF)-beta play important counterregulatory roles in pulmonary vascular adaptation to chronic hypoxia. To define the molecular mechanism of this important interaction, we tested whether ANP-cGMP-protein kinase G (PKG) signaling inhibits TGF-beta1-induced extracellular matrix (ECM) expression and defined the specific site(s) at which this molecular merging of signaling pathways occurs. Rat pulmonary arterial smooth muscle cells (PASMCs) were treated with ANP (1 muM) or cGMP (1 mM) with or without pretreatment with PKG inhibitors KT-5823 (1 muM) or Rp-8-bromo-cGMP (Rp-8-Br-cGMP 50 muM), then exposed to TGF-beta1 (1 ng/ml) for 5-360 min (for pSmad nuclear translocation and protein analysis) or 24 h (for ECM mRNA expression). Nuclear translocation of pSmad2 and pSmad3 was assessed by fluorescent confocal microscopy. ANP and cGMP inhibited TGF-beta1-induced pSmad2 and pSmad3 nuclear translocation and expression of periostin, osteopontin, and plasminogen activator inhibitor-1 mRNA and protein, but not TGF-beta1-induced phosphorylation of Smad2 and Smad3. KT-5823 and Rp-8-Br-cGMP blocked ANP/cGMP-induced activation of PKG and inhibition of TGF-beta1-stimulated nuclear translocation of pSmad2 and pSmad3 in PASMCs. These results reveal for the first time a precise site at which ANP-cGMP-PKG signaling exerts its antifibrogenic effect on the profibrogenic TGF-beta1 signaling pathway: by blocking TGF-beta1-induced pSmad2 and pSmad3 nuclear translocation and ECM expression in PASMCs. Blocking nuclear translocation and subsequent binding of pSmad2 and pSmad3 to TGF-beta-Smad response elements in ECM genes may be responsible for the inhibitory effects of ANP on TGF-beta-induced expression of ECM molecules.  相似文献   

17.
Myosin light chain phosphatase with its regulatory subunit, myosin phosphatase target subunit 1 (MYPT1) modulates Ca2+-dependent phosphorylation of myosin light chain by myosin light chain kinase, which is essential for smooth muscle contraction. The role of MYPT1 in vascular smooth muscle was investigated in adult MYPT1 smooth muscle specific knock-out mice. MYPT1 deletion enhanced phosphorylation of myosin regulatory light chain and contractile force in isolated mesenteric arteries treated with KCl and various vascular agonists. The contractile responses of arteries from knock-out mice to norepinephrine were inhibited by Rho-associated kinase (ROCK) and protein kinase C inhibitors and were associated with inhibition of phosphorylation of the myosin light chain phosphatase inhibitor CPI-17. Additionally, stimulation of the NO/cGMP/protein kinase G (PKG) signaling pathway still resulted in relaxation of MYPT1-deficient mesenteric arteries, indicating phosphorylation of MYPT1 by PKG is not a major contributor to the relaxation response. Thus, MYPT1 enhances myosin light chain phosphatase activity sufficient for blood pressure maintenance. Rho-associated kinase phosphorylation of CPI-17 plays a significant role in enhancing vascular contractile responses, whereas phosphorylation of MYPT1 in the NO/cGMP/PKG signaling module is not necessary for relaxation.  相似文献   

18.
Phosphodiesterases (PDE) metabolize cyclic nucleotides limiting the effects of vasodilators such as prostacyclin and nitric oxide (NO). In this study, DNA microarray techniques were used to assess the impact of NO on expression of PDE genes in rat pulmonary arterial smooth muscle cells (rPASMC). Incubation of rPASMC with S-nitroso-l-glutathione (GSNO) increased expression of a PDE isoform that specifically metabolizes cAMP (PDE4B) in a dose- and time-dependent manner. GSNO increased PDE4B protein levels, and rolipram-inhibitable PDE activity was 2.3 +/- 1.0-fold greater in GSNO-treated rPASMC than in untreated cells. The soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one, and the cAMP-dependent protein kinase inhibitor, H89, prevented induction of PDE4B gene expression by GSNO, but the protein kinase G (PKG) inhibitors, Rp-8-pCPT-cGMPs and KT-5823, did not. Incubation of rPASMC with IL-1beta and tumor necrosis factor-alpha induced PDE4B gene expression, an effect that was inhibited by l-N(6)-(1-iminoethyl)lysine, an antagonist of NO synthase 2 (NOS2). The GSNO-induced increase in PDE4B mRNA levels was blocked by actinomycin D but augmented by cycloheximide. Infection of rPASMC with an adenovirus specifying a dominant negative cAMP response element binding protein (CREB) mutant inhibited the GSNO-induced increase of PDE4B gene expression. These results suggest that exposure of rPASMC to NO induces expression of PDE4B via a mechanism that requires cGMP synthesis by sGC but not PKG. The GSNO-induced increase of PDE4B gene expression is CREB dependent. These findings demonstrate that NO increases expression of a cAMP-specific PDE and provide evidence for a novel "cross talk" mechanism between cGMP and cAMP signaling pathways.  相似文献   

19.
Translocation of telokin by cGMP signaling in smooth muscle cells   总被引:3,自引:0,他引:3  
Telokin is an acidic protein with asequence identical to the COOH-terminal domain of myosin light chainkinase (MLCK) produced by an alternate promoter of the MLCK gene.Although it is abundantly expressed in smooth muscle, its physiologicalfunction is not understood. In the present study, we attempted toclarify the function of telokin by analyzing its spatial and temporallocalization in living single smooth muscle cells. Primary culturedsmooth muscle cells were transfected with green fluorescent protein(GFP)-tagged telokin. The telokin-GFP localized mostly diffusely incytosol. Stimulation with both sodium nitroprusside (SNP) and8-bromo-cyclic GMP induced translocation of GFP-tagged telokin to nearplasma membrane in living single smooth muscle cells. The translocation was slow, and it took more than 10 min at room temperature. Mutation ofthe phosphorylation sites of telokin (S13A, S19A, and S13A/S19A) significantly attenuated SNP-induced translocation. Both KT-5823 (cGMP-dependent protein kinase inhibitor) and PD-98059(mitogen-activated protein kinase inhibitor) diminished the telokin-GFPtranslocation. These results suggest that telokin changes itsintracellular localization because of phosphorylation at Ser13 and/orSer19 via the cGMP-signaling pathway.

  相似文献   

20.
The objective of this study was to examine the effects of manipulating the nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on bovine oocyte nuclear maturation in vitro. Cumulus-enclosed oocytes (CEO) were recovered from abattoir-derived ovaries and cultured in M199+FCS for 7 or 21h in the presence of various molecules affecting the NO/cGMP pathway, and then fixed and stained for evaluation of the stage of nuclear maturation. Cyclic GMP levels were also measured in cumulus-oocyte complexes after 3 and 6 h of culture. The iNOS inhibitor, aminoguanidine (AG, 10 and 50 mM) and the NO donor sodium nitroprusside (SNP, 100 and 500 microM) significantly inhibited GVBD after 7h of culture. However, a lower concentration of SNP (0.01 microM) stimulated GVBD. The inhibitory effects of AG and SNP were reversible, indicating that they were not toxic effects. Although SNP (500 microM) increased cGMP levels in cumulus-oocyte complexes after 3 h of culture, the inhibitor of soluble guanylate cyclase ODQ and the protein kinase G (PKG) inhibitor KT5823 did not reverse the inhibitory effect of SNP on meiosis, suggesting that SNP does not inhibit meiosis through the cGMP/PKG pathway. Similarly, an analogue of cGMP (8-Bromo-cGMP 0.5, 1, 3, and 6 mM), as well as activation of guanylate cyclase with Protoporphyrin IX or atrial natriuretic peptide, or inhibition of the enzyme with ODQ, did not have any significant effect on GVBD after 7 h of culture, supporting the idea that the effects of AG and SNP were not due to altered cGMP levels. Atrial natriuretic peptide, Protoporphyrin IX and SNP 500 microM increased cGMP levels after 3 h but not 6 h of culture. In conclusion, soluble and particulate guanylate cyclases could be activated in bovine cumulus-oocyte complexes, but accumulation of cGMP was probably not responsible for the effects of NO on meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号