首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human antithrombin III contains four asparagine-linked sugar chains in one molecule. The sugar chains were quantitatively released as radioactive oligosaccharides from the polypeptide portion by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. All of the oligosaccharides, thus obtained, contain N-acetylneuraminic acid. A same neutral nonaitol was released from all acidic oligosaccharides by sialidase treatment. By combination of the sequential exoglycosidase digestion and methylation analysis, their structures were elucidated as NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6-(NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc, Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6(NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manαl → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc, and NeuAcα2 → 6Galβ1 → 4GlcNAcβ1 → 2Manα1 → 6(Galβ1 → 4GlcNAcβ1 → 2Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc.  相似文献   

2.
The sugar chains of microsomal and lysosomal β-glucuronidases of rat liver were studied by endo-β-N-acetylglucosaminidase H digestion and by hydrazinolysis. Only a part of the oligosaccharides released from microsomal β-glucuronidase was an acidic component. The acidic component was not hydrolyzed by sialidase and by calf intestinal and Escherichia coli alkaline phosphatases, but was converted to a neutral component by phosphatase digestion after mild acid treatment indicating the presence of a phosphodiester group. The neutral oligosaccharide portion of microsomal enzyme was a mixture of five high mannose-type sugar chains: (Manα1 → 2)0~4 [Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc]. In contrast, lysosomal enzyme contains only Manα1 → 6 (Manα1 → 3) Manα1 → 6(Manα1 → 3) Manβ1 → 4GlcNAcβ1 → 4GlcNAc. The result indicates that removal of α1 → 2-linked mannosyl residues from (Manα1 → 2)4[Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc → Asn] starts already in the endoplasmic reticulum of rat liver.  相似文献   

3.
Angiosperms possess a retaining trans-α-xylosidase activity that catalyses the inter-molecular transfer of xylose residues between xyloglucan structures. To identify the linkage of the newly transferred α-xylose residue, we used [Xyl-3H]XXXG (xyloglucan heptasaccharide) as donor substrate and reductively-aminated xyloglucan oligosaccharides (XGO–NH2) as acceptor. Asparagus officinalis enzyme extracts generated cationic radioactive products ([3H]Xyl·XGO–NH2) that were Driselase-digestible to a neutral trisaccharide containing an α-[3H]xylose residue. After borohydride reduction, the trimer exhibited high molybdate-affinity, indicating xylobiosyl-(1→6)-glucitol rather than a di-xylosylated glucitol. Thus the trans-α-xylosidase had grafted an additional α-[3H]xylose residue onto the xylose of an isoprimeverose unit. The trisaccharide was rapidly acetolysed to an α-[3H]xylobiose, confirming the presence of an acetolysis-labile (1→6)-bond. The α-[3H]xylobiitol formed by reduction of this α-[3H]xylobiose had low molybdate-affinity, indicating a (1→2) or (1→4) linkage. In NaOH, the α-[3H]xylobiose underwent alkaline peeling at the moderate rate characteristic of a (1→4)-disaccharide. Finally, we synthesised eight non-radioactive xylobioses [α and β; (1↔1), (1→2), (1→3) and (1→4)] and found that the [3H]xylobiose co-chromatographed only with (1→4)-α-xylobiose. We conclude that Asparagus trans-α-xylosidase activity generates a novel xyloglucan building block, α-d-Xylp-(1→4)-α-d-Xylp-(1→6)-d-Glc (abbreviation: ‘V’). Modifying xyloglucan structures in this way may alter oligosaccharin activities, or change their suitability as acceptor substrates for xyloglucan endotransglucosylase (XET) activity.  相似文献   

4.
The sugar specificity of Escherichia coli 346 and of the type-1 fimbriae isolated from this organism has been studied by quantitative inhibition of the agglutination of mannan-containing yeast cells. The best inhibitors of the agglutination by the bacteria were the oligosaccharides Manα1→6[Manα1→3]Manα1→6[Manα1→2Manα1→3]ManαOMe, Manα1→6[Manα1→3]Manα1→6[Manα1→3]ManαOMe and Manα1→3Manβ1→4GlcNAc, and the aromatic glycoside p-nitrophenyl α-d-mannoside, all of which were 20–30 times more inhibitory than methyl α-d-mannoside. The disaccharides Manα1→3Man, Manα1→2Man and Manα1→6Man, the tetrasaccharide Manα1→2Manα1→3Manβ1→4GlcNAc and the pentasaccharide Manα1→2Manα1→2Manα1→3Manβ1→4GlcNAc, were all poor inhibitors. A very good correlation was found between the relative inhibitory activity of the different sugars tested with intact bacteria and with the isolated fimbriae. Our findings show that the combining site of the E. coli lectin is an extended one, corresponding to the size of a trisaccharide, that it contains a hydrophobic region, and that it is in the form of a pocket on the surface of the lectin. The combining site fits best the structures found in short oli gomannosidic chains present in N-glycosidically linked glycoproteins.  相似文献   

5.
A fucose-containingceramide octadekahexoside exhibiting blood-group (A+H) activity has been isolated from hog gastric mucosa. Based on the results of partial acid hydrolysis, sequential degradation with specific glycosidases, oxidation with periodate and chromium trioxide, and permethylation analysis, we propose that the carbohydrate chain of this fucolipid contains four branches. Two of the branches are terminated by βGall→4βGlcNAc, one by αFucl→2βGall→34βGlcNAc and one by αGalNAcl→3(αFucl→2)βGall→34βGlcNAc.  相似文献   

6.
《Carbohydrate research》1986,150(1):241-263
The asparagine-linked sugar chains of human milk galactosyltansferase were quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. They were converted into radioactive oligosaccharides by sodium borotritiate reduction after N-acetylation, and fractionated by paper electrophoresis and by Bio-Gel P-4 column chromatography after sialidase treatment. Structural studies of each oligosaccharides by sequential exoglycosidase digestion and methylation analysis indicated that the galactosyltransferase contains bi, tri-, and probably tetra-antennary, complex-type oligosaccharides having α-d-Manp-(1→3)-[α-d-Manp-(1→6)]-β-d-Manp-(1→4)-β-d-GlcpNAc-(1→4)-α-d-[Fucp-(1→6)]-d- GlcNAc as their common core. Variation is produced by the different locations and numbers of the five different outer chains: β-d-Galp-(1→4)-d-GlcNAc, α-l-Fucp-(1→3)-[β-d-Galp-(1→4)]-d-GlcNAc, α-NeuAc-(2→6)-β-d-Galp-(1→4)-d-GlcNAc, α-l-Fucp-(1→3)-[β-d-Galp-(1→4)]-β-d-GlcpNAc-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d- GlcNAc, and α-NeuAc-(2→6)-β-d-Galp-(1→4)-β-d-GlcpNAc-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)-β-d-GlcNAc.  相似文献   

7.
Repeated Biogel P6 chromatography of the urine from a patient with fucosidosis yielded several fractions containing fucosyloligosaccharides and glycopeptides. Two of these were shown by 1H nuclear magnetic resonance (1H-n.m.r.) spectroscopy and permethylation analysis to have the following structures respectively: (I) αfuc (1→3) [βgal (1→4)] βglcNAc (1→2) αman (1→36) βman (1→4) glcNAc and (II) αfuc (1→3) [βgal (1→4)] βglcNAc (1→2) αman (1→36) βman (1→4) βglcNAc (1→4) [αfuc (1→36)] βglcNAc-Asn.  相似文献   

8.
ON THE STRUCTURE OF A NEW, FUCOSE CONTAINING GANGLIOSIDE FROM PIG CEREBELLUM   总被引:12,自引:7,他引:5  
A new ganglioside, provisionally named GLIVa, was isolated in pure form from pig cerebellum. Ganglioside GLIVa is a disialoganglioside containing fucose. Its basic neutral glycosphingolipid core is the gangliotetraose ceramide: Gal, β 1 → 3 GalNAc, β 1 → 4 Gal, β 1 → 4 Glc, β 1 → Cer. Fucose is α-glycosidically linked to the 2-position of external galactose and one N-acetylneuraminic acid is linked to the other one by an α, 2 → 8 linkage. Thus the total structure of ganglioside GLIVa is the following: Fuc, α 1 → 2 Gal, β 1 → 3 GalNAc, β 1 → 4 (NeuAc, α 2 48 NeuAc, α 2 → 3) Gal, β 1 → 4 Glc, β 1 → Ceramide. According to the IUPAC-IUB Commission on Biochemical Nomenclature is indicated as II3α(NeuAc)2 IV2αFuc-GgOse4Cer.  相似文献   

9.
Synthesis and clusterization of Galβ(1→3)[NeuAcα(2→6)]GlcNAcβ(1→2)Man motif of the N-glycan, as the molecular probes for their biological evaluation, are reported. Key step is the quantitative and the completely α-selective sialylation of the C5-azide N-phenyltrifluoroacetimidate with the disaccharide acceptor, Galβ(1→3)GlcNTroc. Clusterization of the 16 molecules of trisaccharide motif was also achieved by the ‘self-activating click reaction’. These probes could efficiently be labeled by biotin and/or other fluorescence- or radioactive reporter groups through either cross metathesis, acylation, Cu(I)-mediated Huisgen [2+3]-cycloaddition, or the azaelectrocyclization to utilize the various biological techniques.  相似文献   

10.
Two new saponins, agavasaponin E and agavasaponin H have been isolated from the methanolic extract of Agave americana leaves and their structures elucidated. Agavasaponin E is 3-O-[β-d-xylopyranosyl-(1→2glc1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-α-d-galactopyranosyl]-(25R)-5α-spirostan-12-on-3β-ol, whereas agavasaponin H is 3-O-[β-d-xylopyranosyl-(1→2 glc 1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3 glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-β-d-galactopyranosyl]-26-O-[β-d-glucopyranosyl]-(25R)-5α-furostan-12-on-3β,22α,26-triol.  相似文献   

11.
6-N-[3-3H]Trimethyl-dl-lysine was synthesized from 6-N-acetyl-l-lysine by the following chemical scheme: 6-N-acetyl-l-lysine → 2-keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid oxime → 6-N-[3-3H]acetyl-dl-lysine → dl-[3-3H]lysine → 2-N-[3-3H]formyl-dl-lysine → 2-[3-3H]formyl-6-N-trimethyl-dl-lysine → 6-N-[3-3H]trimethyl-dl-lysine. Using a 70% ammonium sulfate fraction obtained from a high-speed rat kidney supernatant, the cosubstrate and cofactor requirements for 6-N-trimethyl-l-lysine hydroxylase activity as measured by tritium release from 6-N-[3-3H]trimethyl-dl-lysine were: α-ketoglutarate, ferrous ions, l-ascorbate, and oxygen, with added catalase showing a slight but distinct stimulatory effect. On incubation with the crude rat kidney preparation, the release of tritium from 6-N-[3-3H]trimethyl-dl-lysine was linear with both time of incubation and protein concentration. Hydroxylation of 6-N-trimethyl-l-lysine, as measured by tritium release from the labeled substrate, was examined in rat kidney, heart, liver, and skeletal muscle tissues, and found to be most active in the kidney.  相似文献   

12.
Partial invitro sialylation of biantennary and triantennary glycopeptides of α1-acid glycoprotein using colostrum β-galactosideα(2→6) sialyltransferase followed by high resolution 1H-NMR spectroscopic analysis of the isolated products enabled the assignment of the Galβ(1→4)GlcNAcβ(1→2)Manα(1→3)Man branch as the most preferred substrate site for sialic acid attachment. The Galβ(1→4)GlcNAcβ(1→2)Manα(1→6)Man branch appeared to be much less preferred and the Galβ(1→4)GlcNAcβ(1→4)Manα(1→3)Man sequence of triantennary structures was of intermediate preference for the sialyltransferase. The specificity of the β-galactoside α(2→6) sialyltransferase is thus shown to extend to structural features beyond the terminal N-acetyllactosamine units on the oligosaccharide chains of serum glycoproteins.  相似文献   

13.
From the roots of Gundelia tournefortii seven saponins have been isolated mainly by DCCC. The main saponins (A and B) were characterized, mainly by 13C and 1H NMR spectroscopy, as oleanolic acid 3-O-(2-[α-l-arabinopyranosyl(1 → 3) -β-d-gentiotriosyl(1 → 6) -β-d-glucopyranosyl]gb-d-xylopyranoside) (saponin A) and oleanolic acid 3-O-(2-[α-l-arabinopyranosyl] (1 → 3)-β-d-gentiobiosyl (1 → 6)-β-d-glucopyranosyl β-d-xylopyranoside) (saponin B). The other saponins are also derived from oleanolic acid and contain more sugar units. The saponin mixture and the saponins A and B possess strong molluscicidal activity against the schistosomiasis transmitting snail Biomphalaria glabrata.  相似文献   

14.
15.
Two new oleanane‐type saponins: β‐d ‐xylopyranosyl‐(1 → 4)‐6‐deoxy‐α‐l ‐mannopyranosyl‐(1 → 2)‐1‐O‐{(3β)‐28‐oxo‐3‐[(2‐Oβ‐d ‐xylopyranosyl‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐yl}‐β‐d ‐glucopyranose ( 1 ) and 1‐O‐[(3β)‐28‐oxo‐3‐{[β‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐arabinopyranosyl‐(1 → 6)‐2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐yl]β‐d ‐glucopyranose ( 2 ), along with two known saponins: (3β)‐3‐[(β‐d ‐Glucopyranosyl‐(1 → 2)‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐oic acid ( 3 ) and (3β)‐3‐{[α‐l ‐arabinopyranosyl‐(1 → 6)‐[β‐d ‐glucopyranosyl‐(1 → 2)]‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐oic acid ( 4 ) were isolated from the acetone‐insoluble fraction obtained from the 80% aqueous MeOH extract of Albizia anthelmintica Brongn . leaves. Their structures were identified using different NMR experiments including: 1H‐ and 13C‐NMR, HSQC, HMBC and 1H,1H‐COSY, together with HR‐ESI‐MS/MS, as well as by acid hydrolysis. The four isolated saponins and the fractions of the extract exhibited cytotoxic activity against HepG‐2 and HCT‐116 cell lines. Compound 2 showed the most potent cytotoxic activity among the other tested compounds against the HepG2 cell line with an IC50 value of 3.60μm . Whereas, compound 1 showed the most potent cytotoxic effect with an IC50 value of 4.75μm on HCT‐116 cells.  相似文献   

16.
Three glycopeptides, obtained in quantity from ovalbumin by exhaustive digestion with Pronase and purified by ion-exchange chromatography and gel filtration, had mannose-2-acetamido-2-deoxyglucose-aspartic acid ratios of 5:4:1, 6:2:1, and 5:2:1. The structures of the glycopeptides have been investigated by sequential digestion with purified exo-glycosidases, Smith degradation, and selective acetolysis, and by methylation analysis of the glycopeptides and their degradation products. The resulting data indicated the structures to be α-d-Manp-(1→6)-[α-d- Manp-(1→3)]-α-d-Manp-(1→6)-[β-d-GlcNAcp-(1→4)]-[β-d-GlcNAcp-(1→2)-α-d- Manp-(1→3)]-β-d-Manp-(1→4)-β-d-GlcNAcp-(1→4)-β-d-GlcNAcp→Asn, α-d- Manp-(1→6)-[α-d-Manp-(1→3)]-α-d-Manp-(1→6)-[α-d-Manp-(1→2)-α-d-Manp- (1→3)]-β-d-Manp-(1→4)-β-d-GlcNAcp-(1→4)-β-d-GlcNAcp→Asn, and α-d-Manp- (1→6)-[α-d-Manp-(1→3)]-α-d-Manp-(1→6)-[α-d-Manp-(1→3)]-β-d-Manp-(1→4)- β-d-GlcNAcp-(1→4)-β-d-GlcNAcp→Asn. The glycopeptides had a common-core structure consisting of five mannose and two hexosamine residues, but the two larger glycopeptides were not homologous.  相似文献   

17.
Glycoproteins from the ruminant helminthic parasite Haemonchus contortus react with Lotus tetragonolobus agglutinin and Wisteria floribunda agglutinin, which are plant lectins that recognize α1,3-fucosylated GlcNAc and terminal β-GalNAc residues, respectively. However, parasite glycoconjugates are not reactive with Ricinus communis agglutinin, which binds to terminal β-Gal, and the glycoconjugates lack the Lewis x (Lex) antigen or other related fucose-containing antigens, such as sialylated Lex, Lea, Leb Ley, or H-type 1. Direct assays of parasite extracts demonstrate the presence of an α1,3-fucosyltransferase (α1,3FT) and β1,4-N-acetylgalactosaminyltransferase (β1,4GalNAcT), but not β1,4-galactosyltransferase. The H. contortus α1,3FT can fucosylate GlcNAc residues in both lacto-N-neotetraose (LNnT) Galα1→4GlcNAcβ1→3Galβ1→4Glc to form lacto-N-fucopentaose III Galβ1→ 4[Fucα1→3]GlcNAcβ1→3Galβ1→4Glc, which contains the Lex antigen, and the acceptor lacdiNAc (LDN) GalNAcβ1→4GlcNAc to form GalNAcβ1→4[Fucα1 →3]GlcNAc. The α1,3FT activity towards LNnT is dependent on time, protein, and GDP-Fuc concentration with a Km 50 μ M and a Vmax of 10.8 nmol-mg?1 h?1. The enzyme is unusually resistant to inhibition by the sulfhydryl-modifying reagent N-ethylmaleimide. The α1,3FT acts best with type-2 glycan acceptors (Galβ1→4GlcNAcβ1-R) and can use both sialylated and non-sialylated acceptors. Thus, although in vitro the H. contortus α1,3FT can synthesize the Lex antigen, in vivo the enzyme may instead participate in synthesis of fucosylated LDN or related structures, as found in other helminths.  相似文献   

18.
Glycolipid antigen reacting to the monoclonal antibody directed to the developmentally regulated antigen SSEA-1 was isolated from human erythrocytes and colonic adenocarcinoma. The antigens have the Lex (Galβl→4[Fucα]→3]GlcNAcβl→R) or Ley (Fucαl→2Galβl→4[Fucαl→3]GlcNAcβl→R) structure at the termini of the branched polylactosaminolipid. In addition, a novel polyfucosyl structure locating exclusively at the internal GlcNAc was detected in the tumor antigen. The antibody reacts with a simple monovalent Lex glycolipid (Galβl→4[Fucαl→3]GlcNAcβl→3Galβl→4Glcβl→Cer) previously isolated from colonic carcinoma when presented at a high density on liposomes. The antibody therefore may react to the bivalent or multivalent Lex or Ley structure.  相似文献   

19.
To determine the pharmacologic activity of (−)-lobeline between human (h)α4β2 and hα4β4 nicotinic acetylcholine receptors (AChRs), functional and structural experiments were performed. The Ca2+ influx results established that (−)-lobeline neither actives nor enhances the function of the studied AChR subtypes, but competitively inhibits hα4β4 AChRs with potency ∼10-fold higher than that for hα4β2 AChRs. This difference is due to a higher binding affinity for the [3H]cytisine sites at hα4β4 compared to hα4β2 AChRs, which, in turn, can be explained by our molecular dynamics (MD) results: (1) higher stability of (−)-lobeline and its hydrogen bonds within the α4β4 pocket compared to the α4β2 pocket, (2) (−)-lobeline promotes Loop C to cap the binding site at the α4β4 pocket, but forces Loop C to get apart from the α4β2 pocket, precluding the gating process elicited by agonists, and (3) the orientation of (−)-lobeline within the α4β4, but not the α4β2, subpocket, promoted by the t− (or t+) rotameric state of α4-Tyr98, remains unchanged during the whole MD simulation. This study gives a detailed view of the molecular and dynamics events evoked by (−)-lobeline supporting the differential binding affinity and subsequent inhibitory potency between hα4β2 and hα4β4 AChRs, and supports the possibility that the latter subtype is also involved in its activity.  相似文献   

20.
While glycosyltransferases are known to display unidirectional enzymatic activity, recent studies suggest that some can also catalyze readily reversible reactions. Recently, we found that mammalian sialyltransferase ST3Gal-II can catalyze the formation of CMP-NeuAc from 5'-CMP in the presence of a donor containing the NeuAcα2,3Galβ1,3GalNAc unit [Chandrasekaran, E. V., et al. (2008) Biochemistry 47, 320-330]. This study shows by using [9-(3)H]- or [(14)C]sialyl mucin core 2 compounds that ST3Gal-II exchanges sialyl residues between CMP-NeuAc and the NeuAcα2,3Galβ1,3GalNAc unit and also radiolabels sialyl residues in gangliosides GD1a and GT1b, but not GM1. Exchange sialylation proceeds with relative ease, which is evident from the following. (a) Radiolabeleling of fetuin was ~2-fold stronger than that of asialo fetuin when CMP- [9-(3)H]NeuAc was generated in situ from 5'-CMP and [9-(3)H]NeuAcα2,3Galβ1,3GalNAcβ1,3Galα-O-Me by ST3Gal-II. (b) ST3Gal-II exchanged radiolabels between [(14)C]sialyl fetuin and [9-(3)H]NeuAcα2,3Galβ1,3GalNAcβ1,3Galα-O-Me by generating CMP-[(14)C]- and -[9-(3)H]NeuAc through 5'-CMP; only 20.3% (14)C and 28.0% (3)H remained with the parent compounds after the sialyl exchange. The [9-(3)H]sialyl-tagged MN glycophorin A, human chorionic gonadotropin β subunit, GlyCAM-1, CD43, fetuin, porcine Cowper's gland mucin, bovine casein macroglycopeptide, human placental glycoproteins, and haptoglobin were analyzed by using Pronase digestion, mild alkaline borohydride treatment, Biogel P6, lectin agarose, and silica gel thin layer chromatography. Sulfated and sialylated O-glycans were found in GlyCAM-1 and human placental glycoproteins. This technique has the potential to serve as an important tool as it provides a natural tag for the chemical and functional characterization of O-glycan-bearing glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号