首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porcine platelet tropomyosin has been isolated by hydroxyapatite chromatography following isoelectric precipitation and ethanol fractionation. A single component (Mr = 30,000 on polyacrylamide gel electrophoresis in sodium dodecyl sulphate) was obtained in a variety of gel electrophoretic systems, including urea/sodium dodecyl sulphate and isoelectric focussing, suggesting the presence of a single polypeptide species. This contrasts with the observations by others using horse platelet tropomyosin or tropomyosins isolated from brain, where two polypeptides were found. The amino acid composition of porcine platelet tropomyosin was virtually identical to that of the horse platelet protein except for the presence of a single cysteine residue in the pig protein, whereas horse tropomyosin contains two. Oxidation of this sulphydryl group produced a molecule of over 60,000 Mr on polyacrylamide gels in sodium dodecyl sulphate, suggesting by analogy with skeletal muscle tropomyosin that the two chains had been linked and therefore existed in register in the coiled-coil structure. Cleavage at the cysteine produced a fragment of Mr = 19,000, indicating that this residue was located about one-third of the distance from a molecular end.Magnesium paracrystals of platelet tropomyosin were examined by electron microscopy following negative staining and found to have a repeat of 345 Å, close to that expected for an extended alpha-helical coiled-coil with an apparent Mr of 30,000. The repeating unit was centrosymmetric and the appearance of broken paracrystals suggested that the molecular ends lie on a dyad axis. Location of the sulphydryl residues in the paracrystals by labelling with N-pyrrolo-isomaleimide showed two bands separated by approximately 80 Å, which was consistent with the location of the molecular ends on a dyad.The amount of tropomyosin present was estimated as 2·2% of the total platelet protein. This implied a molar ratio of G-actin to tropomyosin of about 14:1, based on previous estimates of the actin content in porcine platelets. Assuming that one molecule of tropomyosin will bind six molecules of actin (based on the reduced molecular length of the platelet protein), there was not sufficient tropomyosin to bind to more than half the total actin in the cell.  相似文献   

2.
Integrin-mediated interactions between cytoskeletal proteins and extracellular fibrinogen are required for platelet adhesion. We have previously demonstrated that the major platelet integrin, alpha(IIb)beta(3), becomes incorporated into the actin cytoskeleton of platelets in an activation-dependent, aggregation-independent manner. To determine if regulatory molecules are also associated with these integrin-rich cytoskeletal complexes, we examined actin cytoskeletons for the presence of kinases and phosphoproteins. Western immunoblot analysis revealed that the tyrosine kinases Src, Fyn, and Lyn are specifically associated with actin cytoskeletons of activated, nonaggregated platelets. However, as noted by others, the cytoskeletal association of focal adhesion kinase depends on platelet aggregation. Actin cytoskeletons isolated from (32)P-labeled platelets also contain a number of phosphorylated proteins. Interestingly, an approximately 18-kDa phosphoprotein was uniquely present in activated platelet cytoskeletons. Collectively, our results demonstrate that actin cytoskeletons of activated, nonaggregated platelets contain not only integrins, but also kinases and phosphoproteins that could regulate platelet adhesion and transmembrane communication.  相似文献   

3.
Immunocytochemical studies demonstrate that annexin V relocates to the plasma membranes of intact stimulated blood platelets. Anti-annexin V antibodies label the cytoplasmic side of the substrate-adherent plasma membrane of mechanically unroofed, glass-activated platelets and colocalize with actin. In addition, crosslinking experiments using detergent-solubilized membranes of activated platelets have identified an 85-kDa complex containing annexin V. The 85-kDa complex is also recognized by antibodies against actin, suggesting that annexin V interacts with actin. In addition, annexin V was found to associate with filamentous actin in the presence of millimolar Ca(2+). Annexin V was also shown by immunofluorescence microscopy to be associated with platelet cytoskeletons, colocalizing with actin in the presence of micromolar Ca(2+). These findings provide the first evidence for annexin V binding to the plasma membrane and to the actin-based cytoskeleton in activated platelets and indicate that annexin V may function in both cytoskeletal and membrane domains.  相似文献   

4.
Association of fibrin with the platelet cytoskeleton   总被引:2,自引:0,他引:2  
We have previously postulated that surface membrane proteins become specifically associated with the internal platelet cytoskeleton upon platelet activation (Tuszynski, G.P., Walsh, P.N., Piperno, J., and Koshy, A. (1982) J. Biol. Chem. 257, 4557-4563). Four lines of evidence are in support of this general hypothesis since we now show that platelet surface receptors for fibrin become specifically associated with the platelet Triton-insoluble cytoskeleton. 1) Fibrin was detected immunologically in the washed Triton-insoluble cytoskeletons of thrombin-activated platelets under conditions where fibrin polymerization and resultant precipitation was blocked with Gly-Pro-Arg-Pro, a synthetic peptide that inhibits polymerization of fibrin monomer. 2) Radiolabeled fibrin bound to thrombin-activated platelets and became associated with the cytoskeleton. 3) The amount of radiolabeled fibrin bound to thrombin-activated thrombasthenic platelets and their cytoskeletons amounted to about 20% of the fibrin bound to thrombin-activated control platelets and their cytoskeletons. 4) The association of fibrin with cytoskeletons and with the platelet surface was nearly quantitatively blocked by an antibody prepared against cytoskeletons (anti-C), an antibody against isolated membranes of Pronase-treated platelets (anti-M1), and a monoclonal antibody to the platelet surface glycoprotein complex, GPIIb-GPIII (anti-GPIII). These antibodies blocked ADP and thrombin-induced platelet aggregation as well as thrombin-induced clot retraction. Analysis of the immunoprecipitates obtained with anti-C, anti-M1, and anti-GPIII from detergent extracts of 125I-surface labeled platelets revealed that these antibodies recognized GPIIb-GPIII. These data suggest that thrombin activation of platelets results in the specific association of fibrin with the platelet cytoskeleton, that this association may be mediated by the GPIIb-GPIII complex, and that these mechanisms may play an important role in platelet aggregation and clot retraction induced by thrombin.  相似文献   

5.
Triton-insoluble cytoskeletons prepared from either normal or thrombasthenic platelets were found to contain approximately 1.3 micrograms of fibronectin/10(9) platelets as measured by a radioimmunoassay. Total endogenous platelet fibronectin was quantitatively retained on the platelet cytoskeleton, whereas 70% of exogenously added fibronectin that bound the surface of thrombin-activated platelets was recovered with the Triton-insoluble cytoskeleton. The exogenously added fibronectin specifically bound platelets and cytoskeletons with the same affinity giving an apparent binding constant of 1.47 X 10(-7) M. The possibility that fibrin associated with the platelet cytoskeleton could serve as the fibronectin receptor was investigated by measuring the binding constant of fibronectin for polymerizing fibrin and by measuring the amount of fibronectin associated with cytoskeletons of thrombasthenic platelets which contain 4-fold less fibrin than controls. The binding constant of fibronectin for polymerizing fibrin was 14-fold lower than that for cytoskeletons and cytoskeletons prepared from thrombasthenic platelets contained approximately the same amount of fibronectin as controls. Therefore, it is unlikely that fibrin is the platelet fibronectin receptor. These results support the hypothesis that platelet fibronectin is released from platelet alpha granules upon thrombin stimulation and becomes bound to the platelet surface and cytoskeleton either directly or through some intermediate protein that spans the membrane and interacts both with fibronectin and the internal cell cytoskeleton.  相似文献   

6.
We have purified a reduced and alkylated tryptic fragment of von Willebrand factor (vWF) which migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 52/48-kDa doublet, but behaved as a single 46-kDa species after partial deglycosylation. After extensive treatment with denaturants, the 52/48-kDa polypeptide retained its ability to inhibit ristocetin-induced platelet aggregation in the presence of native vWF, as well as aggregation induced by desialylated vWF alone. Therefore, the 52/48-kDa polypeptide interacts with the platelet glycoprotein Ib receptor even in the absence of ristocetin. Both the 52/48- and the 46-kDa species inhibited ristocetin-induced binding of the intact molecule to platelets, but did not affect thrombin-induced binding. Determination of the NH2-terminal sequence of both members of the doublet gave identical results: VTLNPSDPEHCQ. This provided additional evidence that differences between the doublet constituents were only of carbohydrate composition and established the position of this peptide within the vWF polypeptide chain of approximately 2050 amino acid residues as beginning with the residue tentatively designated 449. These studies suggest that native conformation is not necessary for binding of vWF to platelets at the glycoprotein Ib receptor and that a linear amino acid sequence following residue 449 defines a domain responsible for this interaction.  相似文献   

7.
Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein (or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.  相似文献   

8.
The platelet cytoskeleton contains elements of the prothrombinase complex   总被引:1,自引:0,他引:1  
Triton-insoluble cytoskeletons prepared from thrombin-activated platelets were found to potentiate the activation of prothrombin (prothrombinase activity). Cytoskeletons prepared from red cells or lymphoblasts contained no prothrombinase activity. The platelet prothrombinase activity was dependent on cytoskeletal-associated Factor Va, and exogenously added Factor Xa and prothrombin. Cytoskeletons contained 38% of the total platelet prothrombinase activity. Both platelets and cytoskeletons displayed half-maximal activities at similar prothrombin concentrations. The role of lipids in the cytoskeletal prothrombinase activity was investigated. Cytoskeletons were found to contain 3.8% of the total platelet phospholipids, consisting of the following lipids expressed as percentage of total present in platelets: 6.0% sphingomyelin, 3.8% phosphatidylcholine, 2.9% phosphatidyl-ethanolamine, 4.4% phosphatidylinositol, and 2.2% phosphatidylserine. The cytoskeletal prothrombinase activity and the lipid phosphorus content of cytoskeletons decreased after treatment of cytoskeletons with various doses of phospholipase C. Incubation of cytoskeletons with the highest concentrations tested (10 micrograms/ml) resulted in a 72% loss of phosphatidylserine and 84% loss of cytoskeletal prothrombinase activity. Cytoskeletal prothrombinase activity destroyed by phospholipase C treatment could be restored to control levels by treatment of hydrolyzed cytoskeletons with total cytoskeletal lipid or mixtures of phosphatidylserine/phosphatidylcholine (25:75% by weight). These results suggest that the cytoskeletal prothrombinase complex in addition to containing Factor Va, as has been previously shown (15), contains a lipid cofactor activity consisting in part of phosphatidylserine.  相似文献   

9.
We have examined the effect of a mercurial sulfhydryl reagent, mersalyl, on the protein composition of cytoskeletons by SDS-polyacrylamide gel electrophoresis after treatment of human platelets with Triton X-100 (Triton) containing mersalyl and Ca2+, and have found that mersalyl alters the protein composition of cytoskeletons in a Ca2+-dependent manner. At 1 X 10(-7) M Ca2+, 0.2 mM mersalyl, which represents approximately the equivalent amount of sulfhydryl of platelet suspensions that we used, specifically made myosin insoluble. The amount of myosin in Triton-mersalyl residues was increased by increasing the Ca2+ concentration of Triton lysis buffer. Actin-binding protein, 235 kDa polypeptide and alpha-actinin-like protein were decreased in Triton residues by mersalyl at Ca2+ concentrations less than 1 X 10(-7) M, while these polypeptides in Triton residues were increased by mersalyl in the presence of more than 2 X 10(-7) M Ca2+. Electron microscopic study revealed the presence of thick filaments with an appearance similar to that of the thick filaments of platelet myosin. Thus, the modification with mersalyl of sulfhydryls of platelet polypeptides along with changes in Ca2+ concentrations within a physiological range leads to changes in solubility of, and filament formation of, myosin, actin and other cytoskeletal proteins.  相似文献   

10.
The effect of platelet tropomyosin on the ATPase activity of a muscle actin-myosin subfragment 1 system has been examined in 30 mM KCl, 5 mM MgCl2, 2 mM ATP, 0.1 mM EGTA, 2 mM Tris, pH 7.8. Whereas muscle tropomyosin inhibits the activity by 60%, the platelet protein had no effect. Addition of muscle troponin in the absence of Ca2+ to the system inhibited the activity by up to 80% irrespective of whether muscle or platelet tropomyosin was used. The release of this inhibition by the addition of Ca2+ was much less in the case of platelet tropomyosin. This may result from the fact that platelet tropomyosin aggregates poorly in a head-to-tail manner and interacts only weakly with muscle troponin-T. In the presence of troponin-I and platelet tropomyosin, inhibition of the ATPase activity was 80%. This inhibition was largely released by the addition of troponin-C irrespective of the presence of Ca2+. The addition of brain calmodulin, however, released the inhibition in the presence of calcium but not in its absence. These effects can be correlated with the binding or lack of binding of the platelet tropomyosin to the actin filament.  相似文献   

11.
In this study, the presence of actin in cultured trypanosomatids was investigated using polyclonal antibodies to heterologous actin. Polyclonal antisera to rabbit muscle actin and a monospecific anti-actin antibody react with a 43-kDa polypeptide in extracts of Trypanosoma cruzi, Herpetomonas samuelpessoai and Leishmania mexicana amazonensis on protein immunoblots. The 43-kDa polypeptide co-migrates with skeletal muscle actin and is retained within trypanosomatid cytoskeletons. Attempts to isolate H. samuelpessoai actin through DNase I affinity chromatography showed that the 43-kDa polypeptide did not bind to the column. Instead, low yields of a 47-kDa polypeptide were obtained indicating that the trypanosomatid actin displays unusual DNase I binding behavior when compared to actins from higher eukaryotes. Immunofluorescence studies confirmed that cytoskeletons retain the actin-like protein. In H. samuelpessoai , actin is localized in the region close to the flagellum, whereas in T. cruzi it is more homogeneously distributed. The data presented here show that trypanosomatid actin displays biochemical characteristics similar to actins of other protozoa.  相似文献   

12.
In this study, the presence of actin in cultured trypanosomatids was investigated using polyclonal antibodies to heterologous actin. Polyclonal antisera to rabbit muscle actin and a monospecific anti-actin antibody react with a 43-kDa polypeptide in extracts of Trypanosoma cruzi, Herpetomonas samuelpessoai and Leishmania mexicana amazonensis on protein immunoblots. The 43-kDa polypeptide co-migrates with skeletal muscle actin and is retained within trypanosomatid cytoskeletons. Attempts to isolate H. samuelpessoai actin through DNase I affinity chromatography showed that the 43-kDa polypeptide did not bind to the column. Instead, low yields of a 47-kDa polypeptide were obtained indicating that the trypanosomatid actin displays unusual DNase I binding behavior when compared to actins from higher eukaryotes. Immunofluorescence studies confirmed that cytoskeletons retain the actin-like protein. In H. samuelpessoai, actin is localized in the region close to the flagellum, whereas in T. cruzi it is more homogeneously distributed. The data presented here show that trypanosomatid actin displays biochemical characteristics similar to actins of other protozoa.  相似文献   

13.
We found that a small, reproducible amount of calmodulin is present in the cytoskeleton of human platelets. Triton-insoluble materials (cytoskeletons), which were prepared by cetrifugation at 1000 × g for 10 min of platelets after lysis by Triton X-100, stimulated cyclic AMP phosphodiesterase activity in the presence of Ca2+ but not in the presence of the calcium chelator, EGTA, or the calmodulin antagonist, trifluoperazine. The activation of the enzyme was also obtained after heating Triton-insoluble materials. An alkaline glycerol polyacrylamide gel electrophoresis of fractions obtained after gel fitration of solubilized Triton residues showed a protein band which had a faster electrophoretic mobility in the absence than in the presence of Ca2+. Upon thrombin activation of platelets, calmodulin in the Triton-insoluble cytoskeletons increased rapidly parallel to actin, actin-binding protein and myosin. With other stimulants such as collagen, epinephrine and ADP, similar results were obtained but with slower association of these proteins with cytoskeletons. However, after treatment with the Ca2+-inophore A23187, calmodulin, actin and actin-binding protein in Triton residues decreased rapidly, whereas the association of myosin increased. Thus, calmodulin seems to be associated with actin filaments rather than myosin filaments, and may be involved in the generation of contractile force in the cell.  相似文献   

14.
Summary A mouse monoclonal antibody (mAb 1D122G9) raised against human tropomyosin IEF 52 (HeLa protein catalogue number, Mr=35 kd) has been characterized both in terms of specificity and patterns of immunofluorescence staining in Triton extracted cultured cells. As determined by two dimensional gel immunoblotting of HeLa cell proteins the antibody recognized IEF 52 and two other acidic proteins (IEF 55, Mr=31.8 kd; IEF 56, Mr=31 kd) previously identified as putative tropomyosin-like proteins. Immunofluorescence staining of Triton extracted cultured cells revealed the striated or interrupted pattern on the actin cables characteristic of tropomyosin staining. Quantitation of the three tropomyosins in Triton cytoskeletons from normal and SV 40 transformed human MRC-5 fibroblasts showed that the latter contained significantly less of tropomyosin IEF's 52 (52%) and 56 (72%) as compared to their normal counterparts. The ratios of these two tropomyosins to actin however was very similar for both types of cytoskeletons. This was not the case for tropomyosin IEF 55, which was present in nearly twice the amount in the cytoskeletons from the SV 40 transformed cells. The ratio of actin to total tropomyosin for whole cells was found to be unchanged on transformation. This ratio however was 31% lower in the cytoskeletons from the transformed cells. These and other results presented here suggest that changes in the levels of these three tropomyosins are not enough to account for the magnitude of the loss of actin cables observed in the transformed cells.Abbreviations IEF isoelectric focusing - mAb monoclonal antibody - NEPHGE non equilibrium pH gradient electrophoresis  相似文献   

15.
Using an assay for rat platelet cAMP, we investigated the organ distribution of peptides that increase cAMP in rat platelets in porcine tissues. Marked activity was observed in the duodenum, pancreas and brain. By analysis with reverse phase high performance liquid chromatography (HPLC), three major peaks of activity were observed in porcine tissues. The first peak was vasoactive intestinal polypeptide (VIP), and the second peak was calcitonin gene-related peptide (CGRP). The third peak of activity was isolated from porcine duodenum. By analysis with a gas phase sequencer and with an amino acid analyzer, this peptide was identified as peptide histidine isoleucine (PHI). In a glucagon-secretin family of neuropeptides, pituitary adenylate cyclase activating polypeptide (PACAP) significantly increased platelet cAMP levels in a dose-dependent manner; however, glucagon did not. These results suggest that not only VIP and CGRP but also PHI and PACAP act upon platelets, as well as vascular tissues.  相似文献   

16.
An inositol 1,4,5-trisphosphate 3-kinase purified from human platelets contains two major components, 53 and 36 kDa polypeptides. Each polypeptide expresses Ca2+/calmodulin-dependent enzymatic activity and is phosphorylated by an unidentified protein kinase in the enzyme preparation. The 36-kDa polypeptide may be further phosphorylated on serine residues by protein kinase C to a stoichiometry of 0.8 mole phosphate per mole of protein. Phosphorylation of the 36-kDa component is correlated with inhibition of the kinase activity; the inhibitory effect is dependent upon Ca2+ and phosphatidylserine/diolein and may be blocked by a selective peptide inhibitor of protein kinase C. Phosphorylation by protein kinase C decreases the Vmax of the enzyme from 160 to 28 nmol/mg/min; the Km (0.76 microM) is not altered. These data suggest that protein kinase C may negatively regulate inositol 1,4,5-trisphosphate 3-kinase activity in the human platelet.  相似文献   

17.
In previous studies, a strong synergism between low concentrations of hydrogen peroxide and nitric oxide in the inhibition of agonist-induced platelet aggregation has been established and may be due to enhanced formation of cyclic GMP. In this investigation, hydrogen peroxide and NO had no effect on the activity of pure soluble guanylyl cyclase or its activity in platelet lysates and cytosol. H(2)O(2) was found to increase the phosphorylation of vasodilator-stimulated phosphoprotein (VASP), increasing the amount of the 50-kDa form that results from phosphorylation at serine(157). This occurs both in the presence and in the absence of low concentrations of NO, even at submicromolar concentrations of the peroxide, which alone was not inhibitory to platelets. These actions of H(2)O(2) were inhibited to a large extent by an inhibitor of cyclic AMP-dependent protein kinase, even though H(2)O(2) did not increase cyclic AMP. This inhibitor reversed the inhibition of platelets induced by combinations of NO and H(2)O(2) at low concentrations. The results suggest that the action on VASP may be one site of action of H(2)O(2) but that this event alone does not lead to inhibition of platelets; another unspecified action of NO is required to complete the events required for inhibition.  相似文献   

18.
Rabbit cardiac tropomyosin was hybridized with its nonpolymerizable form, produced by treatment with carboxypeptidase A, and with a naturally occurring nonpolymerizable tropomyosin from horse platelets. Hybridization was achieved by heating equimolar mixtures to 60 degrees C in the presence of 10 mM dithiothreitol, followed by recooling. Samples of intact and carboxypeptidase-truncated tropomyosins treated in this way show lower viscosities at low ionic strength than predicted assuming random reformation of the coiled coils, suggesting that hybrids formed with one intact COOH-terminus are unable to polymerize normally. Hybridization of cardiac and platelet tropomyosins was detected by observation of the fluorescence of pyrene groups attached to cysteine residues on platelet tropomyosin.  相似文献   

19.
Proteolytic studies on the structure of bovine von Willebrand factor   总被引:1,自引:0,他引:1  
M A Mascelli  E P Kirby 《Biochemistry》1988,27(4):1274-1284
Bovine von Willebrand factor (vWF) was digested with protease I (P-I), a metalloprotease isolated from rattlesnake venom. Digestion of vWF for 24 h with P-I yielded a terminal digest consisting of an equimolar mixture of two major fragments (apparent Mr 250K and 200K). The 250-kilodalton (kDa) fragment consists of a 125-kDa chain from one subunit and a 45- and 78-kDa polypeptide chain from an adjacent subunit. The 200-kDa fragment consists of a 97-kDa chain from one subunit and a 35- and 61-kDa polypeptide chain from an adjacent subunit. The 200-kDa fragment binds to heparin, and the heparin binding domain is located on the 97-kDa polypeptide chain. This fragment also competes with labeled, native vWF for binding to formalin-fixed human platelets, with an IC50 of 12.5 micrograms/mL (65 nM). However, native vWF has an IC50 of 2.5 micrograms/mL, indicating that the affinity of the 200-kDa fragment for platelets is approximately one-fifth that of vWF. The 200-kDa fragment agglutinates platelets, but its agglutinating ability is only 5% that of the native molecule. Only the 200-kDa fragment is recognized by monoclonal antibodies 2 and H-9, which are directed against vWF and inhibit vWF binding to platelet glycoprotein Ib (GPIb). Immunological studies, using nine monoclonal antibodies directed against vWF, and the demonstration that the heparin and GPIb binding domains are located on only one fragment suggest that the two fragments are composed of different regions of the vWF subunit. Analysis of the P-I cleavage pattern suggests that all vWF subunits are not cleaved in the same fashion. The first cleavage on half of the subunits generates the 45-kDa terminal and 175-kDa intermediate digest products. The 175-kDa chain is again cleaved, producing the 97- and 78-kDa terminal polypeptide chains. However, the first cleavage of the other subunits generates the 35-kDa terminal and the 186-kDa intermediate digest product, which upon cleavage produces the 125- and 61-kDa terminal polypeptide chains. Immunological data support the asymmetric cleavage pattern. An epitope for a monoclonal antibody is present on both the 186- and 175-kDa intermediate digest products but is only found on one terminal digest fragment, the 78-kDa polypeptide chain, suggesting that the 186- and 175-kDa polypeptides are cleaved at different sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Human platelets express a protein phosphorylation system on their surface. A specific protein kinase C (PKC) antibody, monoclonal antibody (MAb) 1.9, which binds to the catalytic domain of PKC and inhibits its activity, causes the aggregation of intact platelets while inhibiting the phosphorylation of platelet surface proteins. Photoaffinity labeling with 100 nM 8-azido-[alpha(32)P]ATP identified this ecto-PKC as a single surface protein of 43 kDa sensitive to proteolysis by extracellular 0.0005% trypsin. Inhibition of the binding of 8-azido-[alpha(32)P]ATP to the 43-kDa surface protein by MAb 1.9 identified this site as the active domain of ecto-PKC. Covalent binding of the azido-ATP molecule to the 43-kDa surface protein inhibited the phosphorylative activity of the platelet ecto-PKC. Furthermore, PKC pseudosubstrate inhibitory peptides directly induced the aggregation of platelets and inhibited azido-ATP binding to the 43-kDa protein. Platelet aggregation induced by MAb 1.9 and by PKC inhibitory peptides required the presence of fibrinogen and resulted in an increase in the level of intracellular free calcium concentration. This increase in intracellular free calcium concentration induced by MAb 1.9 was found to be dependent on the binding of fibrinogen to activated GPIIb/IIIa integrins, suggesting that MAb 1.9 causes Ca(2+) flux through the fibrinogen receptor complex. We conclude that a decrease in the state of phosphorylation of platelet surface proteins caused by inhibition of ecto-PKC results in membrane rearrangements that can induce the activation of latent fibrinogen receptors, leading to platelet aggregation. Accordingly, the maintenance of a physiological steady state of phosphorylation of proteins on the platelet surface by ecto-PKC activity appears to be one of the homeostatic mechanisms that maintain fibrinogen receptors of circulating platelets in a latent state that cannot bind fibrinogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号