首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《BBA》1985,806(2):283-289
Treatment of Photosystem II particles with 1.2 M CaCl2 released three proteins of 33, 24 and 18 kDa of the photosynthetic oxygen evolution system, but left Mn bound to the particles as demonstrated by Ono and Inoue (Ono, T. and Inoue, Y. (1983) FEBS Lett. 164, 252–260). Oxygen-evolution activity of the CaCl2-treated particles was very low in a medium containing 10 mM NaCl as a salt, but could be restored by the 33-kDa protein. When the particles were incubated in 10 mM NaCl at 0°C, two of the four Mn atoms per oxygen-evolution system were released with concomitant loss of oxygen-evolution activity. The 33-kDa protein suppressed the release of Mn and the inactivation during the incubation. These findings from reconstitution experiments suggest that the 33-kDa protein acts to preserve Mn atoms in the oxygen-evolution system. The 33-kDa protein could be partially substituted by 100 or 150 mM Cl for the preservation of the Mn and oxygen-evolution activity. The Mn in Photosystem II particles enhanced rebinding of the 33-kDa protein to the particles.  相似文献   

2.
Treatment of Photosystem II particles from spinach chloroplasts with Triton X-100 with 2.6 M urea in the presence of 200 mM NaCl removed 3 polypeptides of 33 kDa, 24 kDa and 18 kDa, but left Mn bound to the particles. The (urea + NaCl)-treated particles could evolve oxygen in 200 mM, but not in 10 mM NaCl. Mn was gradually released with concomitant loss of oxygen-evolution activity in 10 mM NaCl but not in 200 mM Cl?. The NaCl-treated particles, which contained Mn and the 33-kDa polypeptide but not the 24-kDa and 18-kDa polypeptides, did not lose Mn or oxygen-evolution activity in 10 mM NaCl. These observations suggest that the 33-kDa polypeptide maintains the binding of Mn to the oxygen-evolution system and can be functionally replaced by 200 mM Cl?.  相似文献   

3.
Divalent salt-washing of O2-evolving PS II particles caused total liberation of 33-, 24- and 16-kDa proteins, but the resulting PS II particles retained almost all amounts of Mn present in initial particles. The retained Mn was EPR-silent when the particles were kept in high concentrations of divalent salt. By divalent salt-washing, the activity of diphenylcarbazide (DPC) photooxidation was not affected at all, neither suppressed nor enhanced, while O2 evolution was totally inactivated. These results indicate that Mn can be kept associated with PS II particles even after liberation of the 33-kDa protein, and suggest that the 33-kDa protein is probably not responsible for binding Mn onto membranes, but is possibly responsible for maintaining the function of Mn atoms in the O2-evolving center.  相似文献   

4.
Tomohiko Kuwabara  Norio Murata 《BBA》1982,680(2):210-215
The 33-kDa protein was purified in a high yield from thylakoid membranes of spinach chloroplasts. The extinction coefficient and A1%1cm value at 276 nm of the protein were 22000 M?1·cm?1 and 6.8, respectively. The 33-kDa protein and a polypeptide appearing at 32 kDa in the SDS-polyacrylamide gel electrophoresis of thylakoid membranes were compared by peptide mapping after limited proteolysis. This indicates that the 32-kDa band is entirely due to the 33-kDa protein. The molar ratio of chlorophyll to the 33-kDa protein in the chloroplasts was estimated to be 300. This suggests that one photosynthetic unit possesses one or two molecules of the 33-kDa protein.  相似文献   

5.
Extraction conditions have been found which result in the retention of managanese to the 33–34 kDa protein, first isolated as an apoprotein by Kuwabara and Murata (Kuwabara, T. and Murata, N. (1979) Biochim. Biophys Acta 581, 228–236). By maintaining an oxidizing-solution potential, with hydrophilic and lipophilic redox buffers during protein extraction of spinach grana-thylakoid membranes, the 33–34 kDa protein is observed to bind a maximum of 2 Mn/protein which are not released by extended dialysis versus buffer. This manganese is a part of the pool of 4 Mn/Photosystem II normally associated with the oxygen-evolving complex. The mechanism for retention of Mn to the protein during isolation appears to be by suppression of chemical reduction of natively bound, high-valent Mn to the labile Mn(II) oxidation state. This protein is also present in stoichiometric levels in highly active, O2-evolving, detergent-extracted PS-II particles which contain 4–5 Mn/PS II. Conditions which result in the loss of Mn and O2 evolution activity from functional membranes, such as incubation in 1.5 mM NH2OH or in ascorbate plus dithionite, also release Mn from the protein. The protein exists as a monomer of 33 kDa by gel filtration and 34 kDa by gel electrophoresis, with an isoelectric point of 5.1 ± 0.1. The protein exhibits an EPR spectrum only below 12 K which extends over at least 2000 G centered at g = 2 consisting of non-uniformly separated hyperfine transitions with average splitting of 45–55 G. The magnitude of this splitting is nominally one-half the splitting observed in monomeric manganese complexes having O or N donor ligands. This is apparently due to electronic coupling of the two 55Mn nuclei in a presumed binuclear site. Either a ferromagnetically coupled binuclear Mn2(III,III) site or an antiferromagnetically coupled mixed-valence Mn2(II,III) site are considered as possible oxidation states to account for the EPR spectrum. Qualitatively similar hyperfine structure splittings are observed in ferromagnetically coupled binuclear Mn complexes having even-spin ground states. The extreme temperature dependence suggests the population of low-lying excited spin states such as are present in weakly coupled dimers and higher clusters of Mn ions, or, possibly, from efficient spin relaxation such as occurs in the Mn(III) oxidation state. Either 1.5 mM NH2OH or incubation with reducing agents abolishes the low temperature EPR signal and releases two Mn(II) ions to solution. This is consistent with the presence of Mn(III) in the isolated protein. The intrinsically unstable Mn2(II,III) oxidation state observed in model compounds favors the assignment of the stable protein oxidation state to the Mn2(III,III) formulation. This protein exhibits characteristics consistent with an identification with the long-sought Mn site for photosynthetic O2 evolution. An EPR spectrum having qualitatively similar features is observable in dark-adapted intact, photosynthetic membranes (Dismukes, G.C., Abramowicz, D.A., Ferris, F.K., Mathur, P., Upadrashta, B. and Watnick, P. (1983) in The Oxygen-Evolving System of Plant Photosynthesis (Inoue, Y., ed.), pp. 145–158, Academic Press, Tokyo) and in detergent-extracted, O2-evolving Photosystem-II particles (Abramowicz, D.A., Raab, T.K. and Dismukes, G.C. (1984) Proceedings of the Sixth International Congress on Photosynthesis (Sybesma, C., ed.), Vol. I, pp. 349–354, Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands), thus establishing a direct link with the O2 evolving complex.  相似文献   

6.
Tang Jun  Wu Shupin  Bai Juan  Sun Daye 《Planta》1996,198(4):510-516
A 21-kDa calmodulin (CaM)-binding protein and a 19-kDa calmodulin-binding protein were detected in 0.1 M CaCl2 extracts of Angelica dahurica L. suspension-cultured cells and carrot (Daucus carota L.) suspension-cultured cells, respectively, using a biotinylated cauliflower CaM gel-overlay technique in the presence of 1 mM Ca2+. No bands, or very weak bands, were shown on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels overlayed with biotinylated cauliflower CaM when 1 mM Ca2+ was replaced by 5 mM EGTA, indicating that the binding of these two CaM-binding proteins to CaM was dependent on Ca2+. Less 21-kDa CaM-binding protein was found in culture medium of Angelica dahurica suspension cells; however, a 21-kDa protein was abundant in the cell wall. We believe that the 21-kDa CaM-binding protein is mainly in the cell wall of Angelica dahurica. Based on its reaction with periodic acid-Schiff (PAS) reagent, this 21-kDa protein would appear to be a glycoprotein. The 21-kDa CaM-binding protein was purified by a procedure including Sephadex G-100 gel filtration and CM-Sepharose cation-exchange column chromatography. The purity reached 91% according to gel scanning. The purified 21-kDa CaM-binding protein inhibited the activity of CaM-dependent NAD kinase and the degree of inhibition increased with augmentation of the 21-kDa protein, which appeared to be the typical characteristic of CaM-binding protein.  相似文献   

7.
The manganese (Mn)-oxidizing protein (MopA) from Erythrobacter sp. strain SD21 is part of a unique enzymatic family that is capable of oxidizing soluble Mn(II). This enzyme contains two domains, an animal heme peroxidase domain, which contains the catalytic site, followed by a C-terminal calcium binding domain. Different from the bacterial Mn-oxidizing multicopper oxidase enzymes, little is known about MopA. To gain a better understanding of MopA and its role in Mn(II) oxidation, the 238-kDa full-length protein and a 105-kDa truncated protein containing only the animal heme peroxidase domain were cloned and heterologously expressed in Escherichia coli. Despite having sequence similarity to a peroxidase, hydrogen peroxide did not stimulate activity, nor was activity significantly decreased in the presence of catalase. Both pyrroloquinoline quinone (PQQ) and hemin increased Mn-oxidizing activity, and calcium was required. The Km for Mn(II) of the full-length protein in cell extract was similar to that of the natively expressed protein, but the Km value for the truncated protein in cell extract was approximately 6-fold higher than that of the full-length protein, suggesting that the calcium binding domain may aid in binding Mn(II). Characterization of the heterologously expressed MopA has provided additional insight into the mechanism of bacterial Mn(II) oxidation, which will aid in understanding the role of MopA and Mn oxidation in bioremediation and biogeochemical cycling.  相似文献   

8.
The interaction of Cl with the extrinsic proteins of 18 kDa, 24 kDa and 33 kDa in the photosynthetic oxygen-evolution complex was studied by comparing spinach photosystem II particles of different protein compositions. The 33-kDa protein decreased the Cl concentration optimum for oxygen evolution from 150 to 30 mM, and the 24-kDa protein decreased it from 30 to 10 mM. The 18-kDa protein did not change the optimum Cl concentration, but sustained oxygen evolution at Cl concentrations lower than 3 mM. The presence of the 24-kDa and 18-kDa proteins, but not each protein alone, markedly suppressed inactivation of oxygen evolution at a very low Cl concentration and its restoration by readdition of Cl.  相似文献   

9.
In this study, we report a bacterium, Achromobacter sp. TY3-4, capable of concurrently removing Mn (II) and Cr (VI) under oxic condition. TY3-4 reduced as much as 2.31?mM of Cr (VI) to Cr (III) in 70?h, and oxidized as much as 20?mM of Mn(II) to Mn oxides in 80?h. When 0.58?mM Cr (VI) and 10?mM Mn(II) were present together, both Cr(VI) and Mn(II) were completely removed by TY3-4 and the generated precipitates are MnIIIOOH, MnIII,IV3O4, MnIVO2 and CrIII(OH)3. Experiments also show that both biosroption and bioreduction of Mn(II) are the driving forces for Mn(II) removal, whereas bioreduction of Cr(VI) is the driving force for Cr(VI) removal. On the basis of these results, a possible reaction was proposed that TY3-4 concurrently reduces Cr(VI) and oxidizes Mn(II). This study is fundamental for Mn and Cr cycles. The strain shows potential for practical application.  相似文献   

10.
《BBA》1987,890(2):151-159
The effect of the extrinsic 33-kDa protein on the photosynthetic oxygen evolution was studied by comparing spinach Photosystem II particles depleted of the 33-kDa protein with those reconstituted with the protein. The light-intensity dependence of the oxygen-evolution activity under continuous illumination suggests that a dark step, but not a light step, in the oxygen-evolving reaction is accelerated by the 33-kDa protein. Consistently, the pattern of oxygen yield with a series of short saturating flashes, which showed a maximum on the third flash and a damped oscillation with a period of 4, was not much affected by the removal and rebinding of the 33-kDa protein, when the dark interval between the flashes was long enough, i.e., longer than 0.5 s. The millisecond kinetics of oxygen release after the third flash was retarded by the removal of the 33-kDa protein and stimulated by its rebinding, suggesting that the transition from S3 to S0 is accelerated by the 33-kDa protein. The stability of the S2 and S3 states in darkness was higher in the absence of the 33-kDa protein than its presence.  相似文献   

11.
Extraction of PS II particles with 1 M CaCl2 caused complete disappearance of the light-induced signal of the possible Kok S2 state of the water-splitting complex and total loss of the O2, evolving activity, concomitant with perfect removal of the 17-, 23- and 34-kDa proteins from the particles. The recovery of the multiline signal in the CaCl2-treated PS II was performed by reinserting the 34-kDa protein, when CI? was present in the solution for the EPR measurement. However, in the absence of Cl?, besides the 34-kDa protein, the 17- and 23-kDa proteins were required for the recovery of the signal. These results are compared with the results on the recovery of the O2, evolution in the reconstituted PS II to examine the role of these three proteins on the water splitting.  相似文献   

12.
  • 1.1. Mammalian major apurinic/apyrimidinic (AP) endonuclease, APEX nuclease (Mr 35.4 kDa) was purified from HeLa cells. A hybrid protein (Mr 36.4 kDa), which was expressed in BW2001 strain cells of E. coli, comprising human APEX nuclease headed by 10 additional amino acids was also purified.
  • 2.2. The purified preparations were frequently associated with 31-, 33- and 35-kDa peptides having AP endonuclease activity.
  • 3.3. The 33- and 35-kDa peptides were suggested to be formed from the hybrid protein or APEX nuclease during their purification processes by proteolytic cleavage with subtilisin-like protease. The 31-kDa peptide was thought to be produced by chemical cleavage of the aspartyl-prolyl bond of APEX nuclease.
  • 4.4. The results support the notion that some of AP endonuclease heterogeneity based on the molecular weight difference are caused by proteolytic (and chemical) cleavage of a species of AP endonucleases during the extraction and purification.
  相似文献   

13.
A series of truncated gene products from an alkaline cellulase from an alkalophilic Bacillus sp. No. 1139 has been prepared. The variously sized proteins were products of in vitro insertional mutagenesis constructs made by gene inserts containing translational terminators. One product, a 46-kDa protein, which had about half the Mr of the original cellulase, had a similar enzyme activity and pH optimum to the original 92-kDa protein. In contrast, a slightly smaller product protein (43 kDa) did not show cellulase activity.  相似文献   

14.
The recombinant form of the extrinsic 23 kDa protein (psbP) of Photosystem II (PSII) was studied with respect to its capability to bind Mn. The stoichiometry was determined to be one manganese bound per protein. A very high binding constant, KA = 10− 17 M− 1, was determined by dialysis of the Mn containing protein against increasing EDTA concentration. High Field EPR spectroscopy was used to distinguish between specific symmetrically ligated Mn(II) from those non-specifically Mn(II) attached to the protein surface. Upon Mn binding PsbP exhibited fluorescence emission with maxima at 415 and 435 nm when tryptophan residues were excited. The yield of this blue fluorescence was variable from sample to sample. It was likely that different conformational states of the protein were responsible for this variability. The importance of Mn binding to PsbP in the context of photoactivation of PSII is discussed.  相似文献   

15.
Maria T. Giardi 《Planta》1993,190(1):107-113
The presence of heterogeneity in phosphorylated PSII core populations in grana membranes of spinach (Spinacia oleracea L.) was previously demonstrated (Giardi et al., 1991, Biochem. Biophys. Res. Commun. 176, 1298–1304). The effect of photoinhibitory conditions on the distribution of these phosphorylated PSII core populations in thylakoids and PSII particles has been investigated. The sensitivity of the PSII core to strong illumination depended on the phosphorylation state of D1 and D2 proteins as well as on the content of the 9-kDa PsbH phosphoprotein. When D1 and D2 proteins are under-phosphorylated, the 9-kDa phosphoprotein is tightly bound to the PSII core; thus, a partial protection from photoinhibition is observed. Of the different PSII core populations isolated from membranes photoinhibited for 10 min, the highly phosphorylated populations lack internal antennae CP43 and CP47; perhaps these migrate out to the non-appressed regions of thylakoids. The degradation of the D1 protein seems to follow the disassembly of the PSII core.  相似文献   

16.
Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10−6±0.21 M·min−1 and 0.32±0.02 s−1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a potential biocatalyst for Mn(II) removal.  相似文献   

17.
The oxygen-evolving complex (OEC) of Mn-depleted photosystem II (PSII) can be reconstituted in the presence of exogenous Mn or a Mn complex under weak illumination, a process called photoactivation. Synthetic Mn complexes could provide a powerful system to analyze the assembly of the OEC. In this work, four mononuclear Mn complexes, [(terpy)2MnII(OOCH3)]·2H2O (where terpy is 2,2′:6′,2″-terpyridine), MnII(bzimpy)2, MnII(bp)2(CH3CH2OH)2 [where bzimpy is 2,6-bis(2-benzimidazol-2-yl)pyridine] and [MnIII(HL)(L)(py)(CH3OH)]CH3OH (where py is pyridine) were used in photoactivation experiments. Measurements of the photoreduction of 2,6-dichorophenolindophenol and oxygen evolution demonstrate that photoactivation is more efficient when Mn complexes are used instead of MnCl2 in reconstructed PSII preparations. The most efficient recoveries of oxygen evolution and electron transport activities are obtained from a complex, [MnIII(HL)(L)(py)(CH3OH)]CH3OH, that contains both imidazole and phenol groups. Its recovery of the rate of oxygen evolution is as high as 79% even in the absence of the 33-kDa peptide. The imidazole ligands of the Mn complex probably accelerate P 680 •+ reduction and consequently facilitate the process of photoactivation. Also, the strong intermolecular hydrogen bond probably facilitates interaction with the Mn-depleted PSII via reorganization of the hydrogen-bonding network, and therefore promotes the recovery of oxygen evolution and electron transport activities.  相似文献   

18.
Vibrio anguillarum serotype O2 strains express a 40-kDa outer membrane porin protein. Immunoblot analysis revealed that antigenic determinants of the V. anguillarum O2 40-kDa porin were conserved within bacterial species of the genus Vibrio. The relative amounts of the V. anguillarum O2 40-kDa porin were enhanced by growth of V. anguillarum O2 in CM9 medium containing 5 to 10% sucrose or 0.1 to 0.5 M NaCl. In contrast, the levels of the porin were significantly reduced when cells were grown at 37°C, and a novel 60-kDa protein was also observed. However, the osmolarity or ionic concentration of the growth medium did not influence expression of the 60-kDa protein. Growth in medium containing greater than 0.6 mM EDTA reduced production of the V. anguillarum O2 40-kDa porin and enhanced levels of a novel 19-kDa protein. Thus, expression of the V. anguillarum O2 40-kDa porin was osmoregulated and possibly coregulated by temperature. The N-terminal amino acid sequence of the V. anguillarum O2 40-kDa protein and the effect of environmental factors on the cellular levels of the porin suggested that the V. anguillarum O2 40-kDa porin was functionally similar to the OmpC porin of Escherichia coli. However, pore conductance assays revealed that the V. anguillarum O2 40-kDa porin was a general diffusion porin with a pore size in the range of that of the OmpF porin of E. coli.  相似文献   

19.
《BBA》1987,890(1):6-14
The removal of peripheral membrane proteins of a molecular mass of 17 and 23 kDa by washing of spinach Photosystem-II (PS II) membranes in 1 M salt between pH 4.5 and 6.5 produces a minimal loss of the S1 → S2 reaction, as seen by the multiline EPR signal for the S2 state of the water-oxidizing complex, while reversibly inhibiting O2 evolution. The multiline EPR signal simplifies from a ‘19-line’ spectrum to a ‘16-line’ spectrum, suggestive of partial uncoupling of a cluster of 3 or 4 to yield photo-oxidation of a binuclear Mn site. Alkaline salt washing progressively releases a 33 kDa peripheral protein between pH 6.5 and 9.5, in direct parallel with the loss of O2 evolution and the S2 multiline EPR signal. The 33 kDa protein can be partially removed (20%) at pH 8.0 prior to managanese release. Salt treatment releases four Mn ions between pH 8.0 and 9.5 with the first 2 or 3 Mn ions released cooperatively. A common binding site is thus suggested in agreement with earlier EPR spectroscopic data establishing a tetranuclear Mn site. At least two of these Mn ions bind directly at a site in the PS II complex for which photooxidation by the reaction center is controlled by the 33 kDa protein. The washing of PS II membranes with 1 M CaCl2 to affect the release of the 33 kDa protein, while preserving Mn binding to the membrane (Ono, T.-A. and Inoue, Y. (1983) FEBS Lett. 164, 255–260), is found to leave some 33 kDa protein undissociated in proportion to the extent of O2 evolution and S2 multiline yield. These depleted membranes do not oxidize water or produce the normal S2 state without the binding of the 33 kDa protein. A method for the accurate determination of relative concentrations of the peripheral membrane proteins using gel electrophoresis is presented.  相似文献   

20.
A set of proteins that changed their levels of synthesis during growth of Acidithiobacillus ferrooxidans ATCC 19859 on metal sulfides, thiosulfate, elemental sulfur, and ferrous iron was characterized by using two-dimensional polyacrylamide gel electrophoresis. N-terminal amino acid sequencing and mass spectrometry analysis of these proteins allowed their identification and the localization of the corresponding genes in the available genomic sequence of A. ferrooxidans ATCC 23270. The genomic context around several of these genes suggests their involvement in the energetic metabolism of A. ferrooxidans. Two groups of proteins could be distinguished. The first consisted of proteins highly upregulated by growth on sulfur compounds (and downregulated by growth on ferrous iron): a 44-kDa outer membrane protein, an exported 21-kDa putative thiosulfate sulfur transferase protein, a 33-kDa putative thiosulfate/sulfate binding protein, a 45-kDa putative capsule polysaccharide export protein, and a putative 16-kDa protein of unknown function. The second group of proteins comprised those downregulated by growth on sulfur (and upregulated by growth on ferrous iron): rusticyanin, a cytochrome c552, a putative phosphate binding protein (PstS), the small and large subunits of ribulose biphosphate carboxylase, and a 30-kDa putative CbbQ protein, among others. The results suggest in general a separation of the iron and sulfur utilization pathways. Rusticyanin, in addition to being highly expressed on ferrous iron, was also newly synthesized, as determined by metabolic labeling, although at lower levels, during growth on sulfur compounds and iron-free metal sulfides. During growth on metal sulfides containing iron, such as pyrite and chalcopyrite, both proteins upregulated on ferrous iron and those upregulated on sulfur compounds were synthesized, indicating that the two energy-generating pathways are induced simultaneously depending on the kind and concentration of oxidizable substrates available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号