共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobic respiration in the Rhodospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis 总被引:2,自引:0,他引:2
Abstract Recent discoveries relating to pathways of anaerobic electron transport in the Rhodospirillaceae are reviewed. The main emphasis is on the organism Rhodobacter capsulatus ** but comparisons are made with Rhodobacter sphaeroides ** f. sp. denitrificans and Rhodopseudomonas palustris . The known electron acceptors for anaerobic respiration in Rhodobacter capsulatus are trimethylamine- N -oxide (TMAO), dimethyl sulphoxide (DMSO), nitrate and nitrous oxide. In each case respiration generates a proton electrochemical gradient and in some cases can support growth on non-fermentable carbon sources. However, the principal objective of this review is to discuss the possibility that, apart from a role in energy conservation, anaerobic respiration in the photosynthetic bacteria may have a special function in maintaining redox balance during photosynthetic metabolism. Thus the electron acceptors mentioned above may serve as auxiliary oxidants: (a) to maintain an optimal redox poise of the photosynthetic electron transport chain; (b) to provide a sink for electrons during phototrophic growth on highly reduced carbon substrates.
Molecular properties of the nitrate reductase, nitrous oxide reductase and a single enzyme responsible for reduction of TMAO and DMSO are discussed. These enzymes are all located in the periplasm. Electrons destined for all three enzymes can originate from the rotenone-sensitive NADH dehydrogenase but do not proceed through the antimycin- and myxothiazol-sensitive cytochrome b/c1 complex. It is likely, therefor, that the pathways of anaerobic respiration overlap with the cyclic photosynthetic electron transport chain only at the level of the ubiquinone pool. Redox components which might be involved in the terminal branches of anaerobic respiration are discussed. 相似文献
Molecular properties of the nitrate reductase, nitrous oxide reductase and a single enzyme responsible for reduction of TMAO and DMSO are discussed. These enzymes are all located in the periplasm. Electrons destined for all three enzymes can originate from the rotenone-sensitive NADH dehydrogenase but do not proceed through the antimycin- and myxothiazol-sensitive cytochrome b/c
2.
放牧对牧草光合作用、呼吸作用和氮、碳吸收与转运的影响 总被引:8,自引:1,他引:8
研究放牧对草地植物生理活动的影响,对于揭示草地放牧演替的生理机制有重要意义.大量研究表明,家畜放牧对牧草光合作用、呼吸作用以及C和N吸收与转运的影响,可以分为生理伤害和生理恢复2个阶段.放牧通过改变草地冠层结构影响牧草光合作用,净光合作用速率短期内迅速下降,随着叶面积指数增加又逐渐上升,呼吸作用有相似的变化趋势.牧草放牧后再生长所需的C和N最初主要来自根系和留茬中的贮藏物质,此后随着牧草生长恢复逐渐由同化作用供给,C代谢与土壤N水平负相关.放牧后牧草生理活动变化与牧草遗传特性、种间竞争、家畜放牧特征、非生物环境等因素密切相关. 相似文献
3.
Giorgio Forti 《BBA》2008,1777(11):1449-1454
It is reported that O2 is required for the activation of photosynthesis in dark adapted Chlamydomonas reinhardtii in State 1, under low light intensity. The concentration of dissolved O2 of ca. 9 µM is sufficient to saturate the requirement. When the concentration of O2 is 3 μM or below, the activation of photosynthesis is strongly inhibited by myxothiazol, a specific inhibitor of the mitochondrial cytochrome bc1. The effect of this inhibitor decreases as the O2 concentration is raised, to disappear completely above 50 μM. Low concentrations of uncouplers delay the activation of photosynthesis, but do not inhibit it when steady state is reached. It is concluded that in State 1 C. reinhardtii mitochondrial respiration is required for the activation of photosynthesis upon illumination of dark adapted cells only when the concentration of O2 is too low (less than 5 μM) to allow an appreciable activity of the Mehler reaction. The role of respiration does not seem to be due to the synthesis of ATP by oxidative phosphorylation, because photosynthesis activation is not sensitive to oligomycin. 相似文献
4.
目的肝刺激因子(hepatic stimulator substance,HSS)可以保护肝细胞免受各种毒素的影响,但机制尚未清楚,研究探讨肝刺激因子保护肝细胞的可能机制。方法利用稳定转染FLAG-pcDNA3.0/hHss的肝癌细胞BEL-7402为模型,使用Alexa Flour 488、Hoechst 33342、MitoTracker 580分别将HSS、细胞核以及线粒体染色,观察HSS在细胞中的定位情况。当野生型7402细胞、转染空载体FLAG-pcDNA3.0的7402细胞以及转染FLAppcDNA3.0/hHSS的7402细胞受到线粒体膜孔道开放剂羰基氰化间氯苯腙(carbonyl cyanide m—chlorophenylhydrazone,CCCP)的损伤后,用电镜观察线粒体形态、荧光素酶检测ATP、流式细胞仪测定线粒体膜电位(mitoehondrial membrane potential,MMP)等,综合观察过表达HSS的肝细胞的抗损伤能力。结果在稳定转染hHSS基因的7402细胞中,大部分HSS与线粒体共定位;在CCCP作用下,对照组野生型7402细胞以及转染空载体的7402细胞MMP下降明显,线粒体肿胀,嵴断裂、消失,ATP下降显著;实验组稳定转染hHSS基因的7402细胞MMP下降幅度较小,线粒体肿胀与嵴形态的改变明显减轻,ATP的含量较对照组高。结论肝刺激因子HSS在细胞中主要定位于线粒体,可以稳定MMP,维持线粒体形态及细胞内ATP的水平,从而增强肝细胞抗损伤的能力。 相似文献
5.
Effects of N-supply on the rates of photosynthesis and shoot and root respiration of inherently fast- and slow-growing monocotyledonous species 总被引:3,自引:0,他引:3
Adrie van der Werf Marc van Nuenen ries J. Visser Hans Lambers 《Physiologia plantarum》1993,89(3):563-569
Are there intrinsic differences in the rates of photosynthesis, shoot- and root-respiration between inherently fast- and slow-growing monocotyledons at high and low nitrogen supply? To analyze this question we grew 5 monocotyledons, widely differing in their inherent relative growth rate at high and low nitrogen supply in a growth room. Nitrate was exponentially added to the plants, enabling us to compare inherent differences in plant characteristics, without any effect of species differences in the ability to take up nutrients. At high nitrogen supply, the fast-growing species from productive habitats had a higher photosynthetic nitrogen use efficiency and rate of root respiration than the slow-growing ones from unproductive habitats. Only minor differences were observed in their rates of photosynthesis and shoot respiration per unit leaf area. At low nitrogen supply, the rates of photosynthesis and shoot- and root respiration decreased for all species, even though there were no longer any differences in these processes between inherently fast- and slow-growing species. The photosynthetic nitrogen use efficiency increased for all species, and no differences were found among species. Differences in the photosynthetic nitrogen use efficiency among species and nitrogen treatments are discussed in terms of the utilization of the photosynthetic apparatus, whereas differences in respiration rate are discussed in terms of the energy demand for growth, maintenance and ion uptake and their related specific respiratory energy costs. It is concluded that the relatively high abundance of slow-growing species compared to fast-growing ones in unproductive habitats is unlikely to be explained by differences in rates of photosynthesis and respiration or in photosynthetic nitrogen use efficiency. 相似文献
6.
7.
Role of dark respiration in photoinhibition of photosynthesis and its reactivation in the cyanobacterium Anacystis nidulans 总被引:6,自引:0,他引:6
Photoinhibition of photosynthesis and its reactivation was studied in the cyanobaterium A. nidulans in the presence of the respiratory inhibitor sodium azide, the uncouplers carbonyl cyanide p -(trifluoromethoxy)-phenylhydrazone (FCCP) and carbonyl cyanide m -chlorophenylhydrazone (CCCP) and the photosystem I elicitor phenazine methosulphate (PMS). Inhibition of dark respiration by azide increased the susceptibility of the cyanobacterium to photoinhibition. Both FCCP and CCCP also remarkably affected the process of photoinhibition in A. nidulans. The PMS at lower photoinhibitory light intensity partially protected A. nidulans from photoinhibition. The recovery from photoinhibition in the presence of azide or FCCP was slow and normal photosynthesis could not be resumed even after a longer period of incubation under suitable reactivating condition. Thus dark respiration has a key function in the process of photoinhibition of photosynthesis and its reactivation in the cyanobacterium A. nidulans. 相似文献
8.
The role of the hydrolysis products of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and inorganic phosphate (Pi), in the control of myocardial respiration was evaluated in vivo using 31P NMR. These studies were conducted to evaluate whether increases in the ATP hydrolysis products can be detected through the cardiac cycle or during increases in cardiac work. 31P NMR data acquisitions gated to various portions of the cardiac cycle (50 msec time resolution) revealed that cytosolic ATP, ADP and Pi did not change over the course of the cardiac cycle. These metabolites were also monitored during steady-state increases in cardiac work in conjunction with measurements of coronary blood flow and oxygen consumption. No changes were observed during 2 to 3 fold increases in myocardial oxygen consumption induced by various methods. These results demonstrate that the cytosolic ATP, ADP, and Pi concentrations remain relatively constant throughout the cardiac cycle and during physiological increases in cardiac work and oxygen consumption. Furthermore, it is shown that ADP and Pi cannot be solely responsible for the regulation of cardiac respiration in vivo based on the in vitro Km values of these compounds for oxidative phosphorylation. It is concluded that other mechanisms, working in concert with the simple kinetic feedback of ATP hydrolysis products, must be present in the cytosol to provide control of myocardial respiration in vivo. 相似文献
9.
Regulation of photosynthesis in isolated spinach chloroplasts during orthophosphate limitation 总被引:9,自引:0,他引:9
The stromal concentration of orthophosphate in intact spinach chloroplasts (prepared in the absence of orthophosphate or pyrophosphate but supplied with both in the reaction medium) fell from a value of approx. 20 mM in the dark to a steady-state concentration of approx. 8 mM in the light. Chloroplasts illuminated in the absence of orthophosphate or pyrophosphate showed a similar trend. However, in this situation the stromal inorganic phosphate (Pi) concentration rapidly decreased from approx. 10 mM in the dark to a constant steady-state concentration of between 1.5 and 2.5 mM in the light. This Pi concentration was not further diminished (even though CO2-dependent O2 evolution had ceased) and was therefore considered to be stromal orthophosphate not freely available to metabolism. In the Pi-deficient chloroplasts the rate of photosynthesis declined rapidly after 1–2 min in the light such that CO2-dependent O2 evolution ceased with 5 min of the onset of illumination. The decline in O2 evolution was accompanied by an increase in the transthylakoid ΔpH (as measured by 9-aminoacridine fluorescence quenching) and in the high-energy state, non-photochemical component of chlorophyll fluorescence quenching (qE). Measurements of stromal metabolite concentrations showed that the ATP/ADP ratio was decreased in the Pi-deficient chloroplasts relative to chloroplasts illuminated in the presence of Pi. The stromal concentration of glycerate 3-phosphate was comparable in the Pi-deficient chloroplasts and those to which Pi had been supplied. Chloroplasts which were illuminated in Pi-free media showed a large accumulation of ribulose-1,5-bisphosphate relative to those supplied with Pi, suggesting inhibition of ribulose-1,5-bisphosphate carboxylase under these conditions. When Pi was added to chloroplasts illuminated in the absence of Pi, both non-photochemical quenching (qE), photochemical quenching (qQ) and ΔpH increased. This suggests that electron transport was not limited by inability to discharge transthylakoid ΔpH. These observation are consistent with the hypothesis that Pi limitation results in decreased ATP production by the thylakoid ATP synthase. The data presented here show that there are multiple sites of flux control exerted by low stromal Pi in the chloroplast. At least three factors contribute to the inhibition of photosynthesis under phosphate limitation: (1) there appears to be a direct effect of Pi on the energy-transducing system; (2) there is direct inhibition of the Calvin cycle decreasing the ability of the pathway to act as a sink for ATP and NADPH; and (3) feedback inhibition of primary processes occurs either via ΔpH or the redox state of electron carriers. However, ΔpH does not appear to be a limiting factor, but rather an inability to regenerate NADP as electron acceptor is suggested. The addition of DCMU to chloroplasts during illumination in the absence of Pi for periods of up to 10 min showed that there was very little loss of variable fluorescence despite a 60% reduction in the capacity for O2 evolution. This would suggest that photoinhibitory damage to Photosystem II was not the major cause of the inhibition of photosynthesis observed with low Pi. 相似文献
10.
11.
Effects on photosynthesis of the fruit thinning agents naphthaleneaceticacid (NAA) and three commercial plant growth regulator formulations,naphthaleneacetic acid ('Rhodofix') and naphthaleneacetamide('Amidthin') and 2-chloroethylphosphonic acid('Ethrel')were evaluated with respect to the stress they impose on the fruit tree, usingthe alternate-bearing sensitive apple cv. 'Elstar'. This work wasbased on the hypothesis that plant stress in the form of large reductions inleaf photosynthesis are a pre-requisite for successful fruit thinning. A newtechnology was employed for continuous recording of tree canopyphotosynthesis, dark respiration and carbon balance of apple trees. This wasbased on six canopy chambers, which enclosed apple trees under naturalconditions in the field, with on-line measurements and continuous analysis ofCO2 exchange and automated data acquisition. All employed thinningagents reduced whole tree canopy photosynthesis consistently by3–34% on the five days following their application, withphotosynthesis still declining thereafter in the case of the NAA and'Amid-thin' application. The reduction after application of either'Rhodofix' or 'Ethrel', declined within five days, suchthat most of the original photosynthetic potential was restored, indicatingacceptable phytotoxicity of these three plant growth regulators at theconcentrations used. The effects on dark respiration differed markedly. NAA and'Ethrel' increased dark respirationover-proportionally by up to 106%, whereas 'Amid-thin' and'Rhodofix' decreased it by up to 46%inthe first night after application, thereby drastically affecting the carbonbalance of the tree in opposite ways. These results are integrated into ahypothesis linking basipetal auxin transport, phloem loading, translocation anddeficiency of photoassimilates. 相似文献
12.
Klaus S. Larsen Andreas Ibrom Claus Beier Sven Jonasson Anders Michelsen 《Biogeochemistry》2007,85(2):201-213
We measured net ecosystem CO2 flux (F
n) and ecosystem respiration (R
E), and estimated gross ecosystem photosynthesis (P
g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high
and of similar magnitude as for productive forest ecosystems with a net ecosystem carbon gain during the second year of 293 ± 11 g C m−2 year−1 showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem respiration from October
to March was 22% and 30% of annual flux, respectively, suggesting that both cold-season carbon gain and loss were important
in the annual carbon cycle of the ecosystem. Model fit of R
E of a classic, first-order exponential equation related to temperature (second year; R
2 = 0.65) was improved when the P
g rate was incorporated into the model (second year; R
2 = 0.79), suggesting that daytime R
E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R
E decreased from apparent Q
10 values of 3.3 to 3.9 by the classic equation to a more realistic Q
10 of 2.5 by the modified model. The model introduces R
photo, which describes the part of respiration being tightly coupled to the photosynthetic rate. It makes up 5% of the assimilated
carbon dioxide flux at 0°C and 35% at 20°C implying a high sensitivity of respiration to photosynthesis during summer. The
simple model provides an easily applied, non-intrusive tool for investigating seasonal trends in the relationship between
ecosystem carbon sequestration and respiration. 相似文献
13.
《Cryobiology》2019
This study aimed to investigate whether exogenous application of carnitine stimulates transportation of fatty acids into mitochondria, which is an important part of fatty acid trafficking in cells, and mitochondrial respiration in the leaves of maize seedlings grown under normal and cold conditions. Cold stress led to significant increases in lipase activity, which is responsible for the breakdown of triacylglycerols, and carnitine acyltransferase (carnitine acyltransferase I and II) activities, which are responsible for the transport of activated long-chain fatty acids into mitochondria. While exogenous application of carnitine has a similar promoting effect with cold stress on lipase activity, it resulted in further increases in the activity of carnitine acyltransferases compared to cold stress. The highest activity levels for these enzymes were recorded in the seedlings treated with cold plus carnitine. In addition, these increases were correlated with positive increases in the contents of free- and long-chain acylcarnitines (decanoyl-l-carnitine, lauroyl-l-carnitine, myristoyl-l-carnitine, and stearoyl-l-carnitine), and with decreases in the total lipid content. The highest values for free- and long-chain acylcarnitines and the lowest value for total lipid content were recorded in the seedlings treated with cold plus carnitine. On the other hand, carnitine with and without cold stress significantly upregulated the expression level of citrate synthase, which is responsible for catalysing the first reaction of the citric acid cycle, and cytochrome oxidase, which is the membrane-bound terminal enzyme in the electron transfer chain, as well as lipase. All these results revealed that on the one hand, carnitine enhanced transport of fatty acids into mitochondria by increasing the activities of lipase and carnitine acyltransferases, and, on the other hand, stimulated mitochondrial respiration in the leaves of maize seedlings grown under normal and cold conditions. 相似文献
14.
Diel variations in carbon isotopic composition and concentration of organic acids and their impact on plant dark respiration in different species 下载免费PDF全文
M. M. Lehmann F. Wegener R. A. Werner C. Werner 《Plant biology (Stuttgart, Germany)》2016,18(5):776-784
Leaf respiration in the dark and its C isotopic composition (δ13CR) contain information about internal metabolic processes and respiratory substrates. δ13CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated 13C‐enriched organic acids, however, studies simultaneously measuring δ13CR during LEDR and potential respiratory substrates are rare. We determined δ13CR and respiration rates (R) during LEDR, as well as δ13C and concentrations of potential respiratory substrates using compound‐specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ13CR and R patterns during LEDR were strongly species‐specific and showed an initial peak, which was followed by a progressive decrease in both values. The species‐specific differences in δ13CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were 13C‐enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ13C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong 13C enrichment in leaf dark‐respired CO2. 相似文献
15.
Birkedal R Gesser H 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2003,173(6):493-499
The importance of the creatine kinase system in the cardiac muscle of ectothermic vertebrates is unclear. Mammalian cardiac muscle seems to be structurally organized in a manner that compartmentalizes the intracellular environment as evidenced by the substantially higher mitochondrial apparent Km for ADP in skinned fibres compared to isolated mitochondria. A mitochondrial fraction of creatine kinase is functionally coupled to the mitochondrial respiration, and the transport of phosphocreatine and creatine as energy equivalents of ATP and ADP, respectively, increases the mitochondrial apparent ADP affinity, i.e. lowers the Km. This function of creatine kinase seems to be absent in hearts of frog species. To find out whether this applies to hearts of ectothermic vertebrate species in general, we investigated the effect of creatine on the mitochondrial respiration of saponin-skinned fibres from the ventricle of rainbow trout, Atlantic cod and freshwater turtle. For all three species, the apparent Km for ADP appeared to be substantially higher than for isolated mitochondria. Creatine lowered this Km in trout and turtle, thus indicating a functional coupling between mitochondrial creatine kinase and respiration. However, creatine had no effect on Km in cod ventricle. In conclusion, the creatine kinase-system in trout and turtle hearts seems to fulfil the same functions as in the mammalian heart, i.e. facilitating energy transport and communication between cellular compartments. In cod heart, however, this does not seem to be the case.Abbreviations ACR acceptor control ratio - CK creatine kinase - PCr creatine phosphate - VADP ADP-stimulated respiration rate - Vmax maximal respiration rate - V0 respiration rate in the absence of ADPCommunicated by: G. Heidmaier 相似文献
16.
Sebastian Wagner Gerhard Zotz Noris Salazar Allen Maaike Y. Bader 《Annals of botany》2013,111(3):455-465
Background and Aims
There is a conspicuous increase of poikilohydric organisms (mosses, liverworts and macrolichens) with altitude in the tropics. This study addresses the hypothesis that the lack of bryophytes in the lowlands is due to high-temperature effects on the carbon balance. In particular, it is tested experimentally whether temperature responses of CO2-exchange rates would lead to higher respiratory carbon losses at night, relative to potential daily gains, in lowland compared with lower montane forests.Methods
Gas-exchange measurements were used to determine water-, light-, CO2- and temperature-response curves of net photosynthesis and dark respiration of 18 tropical bryophyte species from three altitudes (sea level, 500 m and 1200 m) in Panama.Key Results
Optimum temperatures of net photosynthesis were closely related to mean temperatures in the habitats in which the species grew at the different altitudes. The ratio of dark respiration to net photosynthesis at mean ambient night and day temperatures did not, as expected, decrease with altitude. Water-, light- and CO2-responses varied between species but not systematically with altitude.Conclusions
Drivers other than temperature-dependent metabolic rates must be more important in explaining the altitudinal gradient in bryophyte abundance. This does not discard near-zero carbon balances as a major problem for lowland species, but the main effect of temperature probably lies in increasing evaporation rates, thus restricting the time available for photosynthetic carbon gain, rather than in increasing nightly respiration rates. Since optimum temperatures for photosynthesis were so fine tuned to habitat temperatures we analysed published temperature responses of bryophyte species worldwide and found the same pattern on the large scale as we found along the tropical mountain slope we studied. 相似文献17.
Laurence Maurousset Philippe Raymond Monique Caudillert Jean-Louis Bonnemain 《Physiologia plantarum》1992,84(1):101-105
As in other materials, sodium sulfite (Na2 SO3 ) inhibited both respiration and photosynthesis in leaf tissues of broad-bean L. cv. Aguadulce). Under our experimental conditions, photosynthesis was more sensitive (significant inhibition at 10 μM) to the pollutant than respiration (significant inhibition only for concentrations higher than 0.1 mM). Sulfite concentrations higher than 0.1 mM also caused the energy charge of leaf tissues to decline sharply. These results suggest that the long, term depolarization of the transmembrane potential difference noticed for concentrations of pollutant higher than 0.1 mM (Maurousset and Bonnemain, Physiol. Plant. 80: 233–237,1990) was mainly due to an indirect inhibition of the plasma membrane H+ -ATPase activity following the decrease of the available level of ATP. 相似文献
18.
Rising atmospheric carbon dioxide concentration ([CO2]) has generated considerable interest in the response of agricultural crops to [CO2]. The objectives of this study were to determine the effects of a wide range of daytime [CO2] on dark respiration of rice (Oryza sativa L. cv. IR-30). Rice plants were grown season-long in naturally sunlit plant growth chambers in subambient (160 and 250), ambient (330), or super-ambient (500, 660 and 900 μmol CO2 mol?1 air) [CO2] treatments. Canopy dark respiration, expressed on a ground area basis (Rd) increased with increasing [CO2] treatment from 160 to 500 μmol mol?1 treatments and was very similar among the superambient treatments. The trends in Rd over time and in response to increasing daytime [CO2] treatment were associated with and similar to trends previously described for photosynthesis. Specific respiration rate (Rdw) decreased with time during the growing season and was higher in the subambient than the ambient and superambient [CO2] treatments. This greater Rdw in the subambient [CO2] treatments was attributed to a higher specific maintenance respiration rate and was associated with higher plant tissue nitrogen concentration. 相似文献
19.
Nicolas Pichaud Pierre RiouxPierre U. Blier 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2012,161(4):429-435
The aim of this study was to design a protocol to allow the assessment of normal and alternative pathways for electron transport in mitochondria using an in situ approach (on permeabilized fibers) in high-resolution respirometry. We measured the oxygen consumption of permeabilized fibers from Nereis (Neanthes) virens with different substrates and the presence of ADP. To estimate the alternative oxidase (AOX) activity, antimycin A was introduced in order to inhibit complex III. Moreover, the apparent complex IV (COX) excess capacity was evaluated using different substrates to assess the implication of this complex in the partitioning of electrons during its progressive inhibition. Our in situ method enabled to quantify the activity of the normal COX pathway as well as the AOX pathway when different substrates were oxidized by either complex I, complex II or both. Using this approach, we confirmed that according to the substrates used, each pathway has a different role and consequently is otherwise involved in the partitioning of electrons through the electron transport system, and suggested that the AOX activity is triggered not only by the redox state of the cell but also by the type of substrates provided to mitochondria. 相似文献
20.
Since the discovery of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, it has been postulated that (a) MPTP-like toxin(s) such as 1,2,3,4-tetrahydroisoquinoline (TIQ) may induce Parkinson's disease. As the neuronal degeneration in MPTP-induced parkinsonism is thought to be caused by the inhibition of the mitochondrial respiration by 1-methyl-4-phenylpyridinium ion (MPP+), we studied the effects of TIQ-like alkaloids including dopaminederived ones on the mitochondrial respiration using mouse brains. TIQ, tetrahydropapaveroline (THP), and tetrahydropapaverine (THPV) produced significant inhibition of the state 3 and 4 respiration and respiratory control ratio supported by glutamate + malate, the activity of Complex 1 and the ATP synthesis. Among those compounds, THPV was most potent. Toxic properties of these compounds on mitochondria were quite similar to that of MPP+. Our results support the hypothesis that (a) MPTP- or MPP+-like substance(s) may be responsible for the nigral degeneration in Parkinson's disease.Abbreviations used MPTP
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- MPP+
1-methyl-4-phenylpyridinium ion
- ATP
adenosine triphosphate
- ADP
Adenosine diphosphate
- TCL
tricarboxylic acid
- TIQ
cycle: 1,2,3,4-Tetrahydroisoquinoline
- THPV
Tetrahydropapaverine
- THP
Tetrahydropaveroline 相似文献