首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phospholipids in rat brain microsomes were labeled with tritium by intracerebral administration of radioactive fatty acids and converted to diacylglycerol with phospholipase C. The latter lipid was hydrolyzed in situ at pH 4.8, to monoacylglycerol and fatty acid by the endogenous microsomal lipase. This paper provides an experimental approach to determine whether the lipid was degraded by enzyme molecules residing in its own membrane (intramembrane interaction) or an adjacent membrane (intermembrane interaction). Direct interaction between separate membranes containing enzyme or substrate showed the existence of the inter-membrane route while dilution experiments provided evidence for the presence of the intramembrane interaction as well. A probable difference in the mechanisms of these two interactions is suggested by different shapes of the curves that describe the reaction rate as a function of the endogenous substrate. The curve resulting from the intermembrane interaction was hyperbolic while that representing the intramembrane route was of a parabola-like shape. Competition experiments suggested that when given a choice between the two, the enzyme utilized preferentially the substrate molecules in its own membrane.  相似文献   

2.
S Gatt  B Morag    S Rottem 《Journal of bacteriology》1982,151(3):1095-1101
Mycoplasma gallisepticum strains have a membrane-bound lysophospholipase which hydrolyzes lysophospholipid generated in these membranes by treatment with an external phospholipase. This paper studies the hydrolysis of the membranous lysophospholipids by an enzyme residing in the same membrane (intramembrane utilization) or in adjacent membranes (intermembrane utilization). To study intermembrane hydrolysis, the phospholipids of M. gallisepticum were labeled with [3H]oleic acid. Membranes were prepared, heated at 65 degrees C, and subsequently treated with pancreatic phospholipase A2. This resulted in membranes whose enzyme was heat inactivated, but which contained lysophospholipid. When these membranes were mixed with M. gallisepticum cells or membranes, the lysophospholipid was hydrolyzed by the membranous lysophospholipase. To study intramembrane hydrolysis, [3H]oleyl-labeled membranes of M. gallisepticum were treated with pancreatic phospholipase A2 at pH 5.0. At this pH, lysophospholipid was generated but not hydrolyzed. Adjustment of the pH to 7.4 resulted in hydrolysis of the lysophospholipid by the membranous lysophospholipase. These procedures permitted measuring the initial rates of intramembrane and intermembrane hydrolysis of the lysophospholipid, showing that the time course and dependence on endogenous substrate concentration were different in the intramembrane and intermembrane modes of utilization. They also permitted calculation of the molar concentration of the lysophospholipid in the membrane and its rate of hydrolysis, expressed as moles per minute per cell or per square centimeter of cell surface.  相似文献   

3.
Conversion of membrane-bound substrates by membrane-associated enzymes can proceed in principle via intramembrane and intermembrane action. By using rat-liver mitochondria containing labeled phosphatidylethanolamine and inactivated phospholipase A2 as substrate source, and mitochondria containing unlabeled substrate and active enzyme, it is shown that hydrolysis of phosphatidylethanolamine by mitochondrial phospholipase A2 proceeds nearly entirely via intramembrane enzyme action. A study of the characteristics of this mode of enzyme action showed that all mitochondrial phosphoglycerides were hydrolyzed. Plots of approximate initial velocities of hydrolysis against the remaining amounts of each individual phospholipid, indicated that phosphatidylethanolamine was hydrolyzed fastest, with a rate about twice that for phosphatidylcholine and about 10-fold that for cardiolipin. The initial rates remained nearly constant in the initial phase of the hydrolysis, suggesting that the enzyme is surrounded by excess substrate.  相似文献   

4.
The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on a number of hepatic and extrahepatic foreign-compound-metabolizing enzyme systems in microsomes from rats, rabbits and guinea pigs were investigated.Following TCDD treatment, the N-demethylation of benzphetamine, aminopyrine and ethylmorphine was suppressed in hepatic microsomes from male but not from female rats. However, both cytochrome P-450 and benzpyrene hydroxylase were significantly stimulated in hepatic microsomes from both male and female rate at doses as small as 1 μg TCDD/kg body weight. The inductive effect on rat hepatic microsomal enzymes was considerably more persistent than the suppressive effect. Following a single oral dose of 25 μg TCDD/kg body weight, benzpyrene hydroxylase of male rat liver microsomes remained significantly elevated for 73 days but the suppression of benzphetamine N-demethylase had gone after 35 days.The induction of benzpyrene hydroxylase in male rat liver microsomes by TCDD was independent of the age of the rat and the levels to which this enzyme was increased was similar in male rats of all ages. However, the suppression of benzphetamine N-demethylase in male rat liver microsomes was age related: the suppression was seen only in adult animals and in the very young (10 days old) the enzyme was actually induced by TCDD. Inductive effects appeared in both smooth and rough-surfaced hepatic microsomes from male rats but the suppression of N-demethylidon occurred perhaps the derepression arises through the interaction of TCDD or metabolite of TCDD, with the operator gene itself.  相似文献   

5.
Glutathione-insulin transhydrogenase (EC 1.8.4.2) catalyzes the inactivation of insulin through scission of the disulfide bonds to form insulin A and B chains. In the liver, the transhydrogenase occurs primarily in the microsomal fraction where most of the enzyme is present in a latent (‘inactive’) state. We have isolated rat hepatic microsomes with latent transhydrogenase activity being an integral part of the vesicles. We have used these vesicles to study the topological location of glutathione-insulin transhydrogenase by investigating the effects of detergents (Triton X-100 and sodium deoxycholate), phospholipase A2 and proteinases (trypsin and thermolysin) on the latent enzyme activity. Treatment of intact vesicles with variable concentrations of detergents and phospholipase A2 resulted in the unmasking of latent transhydrogenase activity. The extent of unmasking of transhydrogenase activity is dependent upon the concentration of detergent or phospholipase used and is accompanied by a parallel release of the enzyme into the soluble fraction. Activation of the transhydrogenase by phospholipase A2 is partially inhibited by bovine serum albumin and the extent of inhibition is inversely proportional to the phospholipase concentration. In intact vesicles, latent transhydrogenase activity is resistant to proteolytic inactivation by both trypsin and thermolysin, while in semipermeable and permeable vesicles these proteases inactivate 60 and 25% of the total transhydrogenase activity, respectively. Together these results indicate that in microsomes transhydrogenase is probably weakly bound to membrane phospholipid components and that most of the enzyme is present on the cisternal surface (i.e., the luminal surface of endoplasmic reticulum) of microsomes. Each detergent and phospholipase apparently unmasks glutathione-insulin transhydrogenase activity through disruption of the phospholipid-enzyme interaction followed by translocation of the enzyme to the soluble (cytoplasmic) fraction and not through increases in substrate availability.  相似文献   

6.
The rates of synthesis of some glucuronides by liver microsomes from the Gunn strain of rat are abnormally low, but previous investigators of the activity of the p-nitrophenol metabolizing form of UDPglucuronyltransferase (UDPglucuronate glucuronyltransferase, EC 2.4.1.17) have reported normal levels of activity in these animals. Data presented in this paper indicate, however, that this enzyme is abnormal in Gunn rats. Thus, treatment of liver microsomes from normal Wistar rats with phospholipase A (EC 3.1.1.4) or Triton X-100 increases the activity of the p-nitrophenol metabolizing form of UDPglucuronyltransferase 10- and 20-fold, respectively, but these agents do not alter activity in microsomes from homozygous Gunn rats. Similarly, phospholipase A and Triton X-100 activate the o-aminophenol and o-aminobenzoate metabolizing forms of UDPglucuronyltransferase in microsomes from normal rats, but are without effect on the enzyme in microsomes from Gunn rats. In contrast, the rates of synthesis of o-aminophenyl- and o-aminobenzoylglucuronides are increased several fold by addition of diethylnitrosamine to microsomes from Gunn rats indicating that the maximum potential activities of UDPglucuronyltransferases are constrained in liver microsomes from both normal and Gunn rats.These data indicate that assays of UDPglucuronyltransferase in native microsomes are not sufficient for delineating the full extent of the defect in the Gunn rat, that there are defects in the function of at least two proteins in liver microsomes from these animals, and that there are abnormal interrelations between some forms of microsomal UDPglucuronyltransferase and their phospholipid environments.  相似文献   

7.
1. The pretreatment of rat liver microsomes with phospholipase C or D decreased the N-demethylation of (+)-benzphetamine. The hydroxylation of aniline was essentially unchanged by pretreatment of microsomes with phospholipase C. 2. Some components of the microsomal mixed-function oxidase system were impaired by phospholipases. 3. The fluorescence of 1-anilinonaphthalene-8-sulphonate (ANS) was greatly enhanced by microsomes. Phospholipase C or D markedly decreased ANS–microsome fluorescence. Quantum yield of ANS–microsome fluorescence appeared to be related directly to phospholipid content of microsomes. 4. Most of the drugs studied enhanced ANS–microsome fluorescence. Warfarin, however, displaced ANS fluorescence competitively from microsomes. The latter effect was postulated as being due to warfarin competing with ANS for the cationic site on microsomal phosphatidylcholine. 5. ANS fluorescence was also increased by the presence of phospholipid micelles. The fluorescence of ANS–phosphatidylcholine micelles was modified by warfarin and (+)-benzphetamine in a manner similar to that observed with microsomes. Warfarin decrease of fluorescence was absent when ANS was bound to phosphatidic acid, which lacks a cationic site. 6. Trypsin pretreatment of microsomes did not modify ANS–microsome fluorescence, including drug-induced changes. 7. It was postulated that phospholipids have a permissive role in the metabolism of most drugs by hepatic microsomes and that the ANS probe might reflect interactions of compounds with microsomal membrane phospholipids.  相似文献   

8.
Two separate pools of glyoxalase II were demonstrated in rat liver mitochondria, one in the intermembrane space and the other in the matrix. The enzyme was purified from both sources by affinity chromatography on S-(carbobenzoxy)glutathione-Affi-Gel 40. From both crude and purified preparations polyacrylamide gel-electrophoresis resolved multiple forms of glyoxalase II, two from the intermembrane space and five from the matrix. Among the thioesters of glutathione tested as substrates, S-D-lactoylglutathione was hydrolyzed most efficiently by the enzymes from both sources. Significant differences were observed in the specificities between the intermembrane space and matrix enzymes with S-acetoacetylglutathione, S-acetylglutathione, S-propionylglutathione and S-succinylglutathione as substrates. Pure glyoxalase II from rat liver cytosol was chemically polymerized and used as antigen. Antibodies were raised in rabbits and the antiserum was used for comparison of the two purified mitochondrial enzymes with cytosolic glyoxalase II by immunoblotting. The enzyme purified from the intermembrane space cross-reacted with the antiserum, but the matrix glyoxalase II did not. The results give evidence for the presence in rat liver mitochondria of two species of glyoxalase II with differing characteristics. Only the enzyme from the intermembrane space appears to resemble the cytosolic glyoxalase II forms.  相似文献   

9.
Mouse liver microsomes were shown to be active in the synthesis of sphingomyelin from ceramide and phosphatidylcholine in a reaction independent of CDPcholine. The conversion was not inhibited by calcium chelating reagents, and no evidence for the involvement of phospholipase C activity in the transformation could be adduced. Activity was also demonstrated in monkey liver and heart microsomes. Mouse brain microsomes produced a sphingomyelin analogue, tentatively identified as ceramide phosphorylethanolamine, but not sphingomyelin. Both [14C]ceramide and [G-14]phosphatidylethanolamine were precursors of the brain product, while phosphatidylcholine was inactive. Progress in the partial characterization of the liver enzyme is also described.  相似文献   

10.
Acyltransferase activity is present in a variety of membranes species, including liver microsomes. The substrates of this enzyme are lysophosphatides and acyl CoA derivatives. We have found that the detergent effect of these substrates can be used to solubilize rat liver microsomes. If the solubilized fraction in incubated, the acyltransferase acylates the lysophosphatide and thereby degrades the detergent effect so that vesicular membranes re-form. Gel electrophoresis patterns show that the reconstituted membranes contain all of the major protein components of the original microsomes. A marker enzyme for liver microsomes, NADPH-cytochrome c reductase, was present in the reconstituted membranes at 70% of the specific activity in the original microsomes, and freeze-fracture electron microscopy showed intramembrane particles on all fracture faces. The system may provide a useful model for studies particles on all fracture faces. This system may provide a useful model for studies of certain membrane biogenesis reactions that utilize acyltransferase in vivo.  相似文献   

11.
Transport of the co-substrate UDPGA (UDP-glucuronic acid) into the lumen of the endoplasmic reticulum is an essential step in glucuronidation reactions due to the intraluminal location of the catalytic site of the enzyme UGT (UDP-glucuronosyltransferase). In the present study, we have characterized the function of several NSTs (nucleotide sugar transporters) and UGTs as potential carriers of UDPGA for glucuronidation reactions. UDPGlcNAc (UDP-N-acetylglucosamine)-dependent UDPGA uptake was found both in rat liver microsomes and in microsomes prepared from the rat hepatoma cell line H4IIE. The latency of UGT activity in microsomes derived from rat liver and V79 cells expressing UGT1A6 correlated well with mannose-6-phosphatase latency, confirming the UGT in the recombinant cells retained a physiology similar to rat liver microsomes. In the present study, four cDNAs coding for NSTs were obtained; two were previously reported (UGTrel1 and UGTrel7) and two newly identified (huYEA4 and huYEA4S). Localization of NSTs within the human genome sequence revealed that huYEA4S is an alternatively spliced form of huYEA4. All the cloned NSTs were stably expressed in V79 (Chinese hamster fibroblast) cells, and were able to transport UDPGA after preloading of isolated microsomal vesicles with UDPGlcNAc. The highest uptake was seen with UGTrel7, which displayed a V(max) approx. 1% of rat liver microsomes. Treatment of H4IIE cells with beta-naphthoflavone induced UGT protein expression but did not affect the rate of UDPGA uptake. Furthermore, microsomes from UGT1-deficient Gunn rat liver showed UDPGA uptake similar to those from control rats. These data show that NSTs can act as UDPGA transporters for glucuronidation reactions, and indicate that UGTs of the 1A family do not function as UDPGA carriers in microsomes. The cell line H4IIE is a useful model for the study of UDPGA transporters for glucuronidation reactions.  相似文献   

12.
Plasma membranes as well as mitochondrial and microsomal subfractions were subjected to zone electrophoresis. Treatment with neuraminidase, phospholipase A or C does not influence the movement of plasma membranes and smooth microsomes. Trypsin increases mobility of plasma membranes and smooth by about 20%, and further treatment with phospholipase C decreases mobility of plasma membranes, total smooth and smooth I microsomes, which, however, is not the case with smooth II microsomes. Low concentrations of trypsin also solubilize enzyme proteins of smooth microsomes from phenobarbital-treated rat liver, but electrophoretic mobility is not increased, indicating structural differences in induced membranes. The mobility of the outer and inner mitochondrial membranes is significantly higher than that of submitochondrial particles. For microsomes the negative surface charge density occurs in the decreasing order of: ribosomes — rough — smooth I — smooth II. A 10 mM CsCl gradient decreases the mobility of rough microsomes by 40% and of ribosomes by 20% but has no effect on total smooth microsomes. On the other hand, 5 mM MgCl2 decreased the mobility of all three fractions. EDTA-treated rough and EDTA-treated smooth microsomes have the same electrophoretic mobilities. However, the mobilities of non-treated rough and smooth microsomes differ significantly from each other.  相似文献   

13.
A single dose of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) (160 mg/kg i.p.) enhanced the monooxygenase step of drug biotransformation in rat liver. The O-demethylation of p-nitroanisole was especially increased, a peak in activity approximately 5-fold compared with controls being attained in 7 days. On the other hand, there was only a 2-fold increase in aryl hydrocarbon hydroxylase activity.DDT increased the cytochrome P-450 content of the liver, this increase coincided well with that in p-nitroanisole O-demethylation activity.The UDPglucuronosyltransferase activity of liver microsomes was not enhanced by DDT administration, unless the microsomes were pretreated to reveal latent activity prior to assay. After trypsin digestion of microsomes a maximum increase in activity of approximately 3-fold was observed as a result of DDT dosage. The canonic surfactant cetylpyridinium chloride was less active in revealing the latent UDP-glucuronosyltransferase activity, and two other membrane perturbants, the detergent digitonin and phospholipase A, were unable to show enhancement in UDPglucuronosyltransferase as a result of DDT dosage.  相似文献   

14.
The lipid dependence of pyrophosphatase activity was studied by treatment of liver and hepatoma microsomes with phospholipase C from Cl. perfringens and B. cereus and a subsequent incorporation of various classes of phospholipids into the delipidated microsomes. Phospholipase C hydrolysis sharply lowers the pyrophosphatase activity of liver and hepatoma microsomes. The enzyme activity is restored after introduction of phospholipids into delipidated liver microsomes, the maximal effect being achieved on incorporation of phosphatidylcholine. All the phospholipids tested exerted the same reactivation effects on the delipidated microsomes of hepatoma. However, a more complete delipidation of hepatoma microsomes by phospholipase C hydrolysis and a subsequent organic solvent extraction revealed a specific dependence of the enzyme activity on phosphatidylserine.  相似文献   

15.
The efficiency of alpha-tocopherol as a 7-etoxycumarine deethylase protector in rat liver microsomes damaged by phospholipase A2 at various levels of vitamin E was studied. No selective damage of cytochrome P-450 isoforms possessing a catalytic activity towards 7-etoxycumarine under vitamin E deficiency was observed. Phospholipase A2 decreased the deethylase activity of cytochrome P-450, the efficiency of the damaging action being dependent on vitamin E content in the liver. Exogenous alpha-tocopherol exerts an antiphospholipase effect and protects 7-etoxycumarine deethylase; the protective action is inversely proportional to vitamin E level in the liver. Under normal conditions the damaging effect of phospholipase A2 on cytochrome P-450 is mainly provided for by lysophospholipids, while under vitamin E deficiency both lysophospholipids and free fatty acids exert a damaging action. A possible mechanism of the stabilizing effect of alpha-tocopherol may consist in the interaction of the chromanol nucleus in the vitamin E molecyule both with lysophospholipids and with free fatty acids.  相似文献   

16.
A sensitive method for the determination of cytochrome P450 (P450 or CYP) 1A activities such as ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) in liver microsomes from human, monkey, rat and mouse by high-performance liquid chromatography with fluorescence detection is reported. The newly developed method was found to be more sensitive than previous methods using a spectrofluorimeter and fluorescence plate reader. The detection limit for resorufin (signal-to-noise ratio of 3) was 0.80 pmol/assay. Intra-day and inter-day precisions (expressed as relative standard deviation) were less than 6% for both enzyme activities. With this improved sensitivity, the kinetics of EROD and MROD activities in mammalian liver microsomes could be determined more precisely. EROD activities in human and monkey liver microsomes, and MROD activities in liver microsomes from all animal species exhibited a monophasic kinetic pattern, whereas the pattern of EROD activities in rat and mouse liver microsomes was biphasic. In addition, the method could determine the non-inducible and 3-methylcholanthrene-inducible activities of EROD and MROD in rat and mouse liver microsomes under the same assay conditions. Therefore, this method is applicable to in vivo and in vitro studies on the interaction of xenobiotic chemicals with cytochrome CYP1A isoforms in mammals.  相似文献   

17.
Plasma membranes as well as mitochondrial and microsomal subfractions were subjected to zone electrophoresis. Treatment with neuraminidase, phospholipase A or C does not influence the movement of plasma membranes and smooth microsomes. Trypsin increases mobility of plasma membranes and smooth by about 20%, and further treatment with phospholipase C decreases mobility of plasma membranes, total smooth and smooth I microsomes, which, however, is not the case with smooth II microsomes. Low concentrations of trypsin also solubilize enzyme proteins of smooth microsomes from phenobarbital-treated rat liver, but electrophoretic mobility is not increased, indicating structural differences in induced membranes. The mobility of the outer and inner mitochondrial membranes is significantly higher than that of submitochondrial particles. For microsomes the negative surface charge density occurs in the decreasing order of: ribosomes--rough--smooth I--smooth II. A 10 mM CsCl gradient decreases the mobility of rough microsomes by 40% and of ribosomes by 20% but has no effect on total smooth micromes. On the other hand, 5mM MgCl2 decreased the mobility of all three fractions. EDTA-treated rough and EDTA-treated smooth microsomes have the same electrophoretic mobilities. However, the mobilities of non-treated rough and smooth microsomes differ significantly from each other.  相似文献   

18.
The autocatalytic destruction of cytochrome P-450 by the following six substrates has been investigated in vivo and in vitro with microsomal and purified, reconstituted rat liver enzymes: 2-isopropyl-4-pentenamide (AIA), 1-ethinylcyclopentanol, 17α-propadienyl-19-nortestosterone, fluroxene, 5,6-dichloro-1,2,3-benzothiadiazole (DCBT), and 1-aminobenzotriazole (ABT). Administration of the first three substrates to rats pretreated with either phenobarbital (Pb) or 3-methylcholanthrene (3-MC), or their incubation with hepatic microsomes from such rats, produced a larger decrease in cytochrome P-450 levels in the membranes from Pb- than 3-MC-treated rats. Comparable losses, however, were observed in microsomes from rats pretreated with both Pb and 3-MC when the last three agents were used. Similar experiments were carried out using the major cytochrome P-450 isozymes purified from liver microsomes of Pb- or 3-MC-treated rats. The Pb isozyme was inactivated during catalytic turnover of all six substrates while only three substrates (DCBT, ABT, and fluroxene) were found to inactivate the 3-MC isozyme. Oxygen consumption studies with purified enzymes have shown that AIA is not a measurable substrate for the 3-MC isozyme, a fact which explains its failure to inactivate this isozyme. Similar studies with the Pb isozyme establish that one enzyme molecule is inactivated for approximately every 230–320 AIA molecules processed by the enzyme.  相似文献   

19.
1. At low concentrations the local anesthetic dibucaine stimulates hydrolysis by pancreatic phospholipase A2 of phospholipids extracted from rat liver mitochondria or microsomes, whereas at higher concentrations it inhibits. The action of this enzyme towards membrane-bound substrates is barely influenced by low, but inhibited by high concentrations of dibucaine. 2. Butacaine, which is a weaker anesthetic, stimulates hydrolysis of extracted phospholipids and inhibits that of membrane-bound substrates, both actions being concentration dependent. 3. The inhibitory potency of dibucaine is several times higher in NaCl than in sucrose solutions and strongly increases with decreasing pH. Neither one of these two effects is the result of a change in binding efficiency of the anesthetic to the substrates. 4. Extracted total membrane lipids bind considerably less anesthetic than an equivalent amount of native membrane. Liver phosphatidylethanolamine is more effective in binding of dibucaine than liver phosphatidylcholine. 5. Binding of dibucaine to the phospholipase, as studied by equilibrium dialysis is at the lower level of detectability. According to the same method dibucaine is unable to displace 45Ca2+ bound to the enzyme. 6. These results are interpreted as to support the view that local anesthetics interfere with pancreatic phospholipase activity by means of interaction with the substrate rather than with the enzyme.  相似文献   

20.
Zolmitriptan is a novel and highly selective 5-HT(1B/1D) receptor agonist used as an acute oral treatment for migraine. There are few reports regarding the in vitro metabolism of zolmitriptan. Previous studies indicated zolmitriptan was metabolized via CYP1A2 in human hepatic microsomes. In order to study the enzyme kinetics and drug interaction, the metabolism of zolmitriptan and possible drug-drug interactions were investigated in rat hepatic microsomes induced with different inducers. An active metabolite, N-demethylzolmitriptan, was detected and another minor, inactive metabolite that was reported in human hepatic microsomes was not detected in this study. The enzyme kinetics for the formation of N-demethylzolmitriptan from zolmitriptan in rat liver microsomes pretreated with BNF were 96+/-22 microM (K(m)), 11+/-3 pmol min(-1)mg protein(-1) (V(max)), and 0.12+/-0.02 microl min(-1)mg protein(-1) (CL(int)). Fluvoxamine and diphenytriazol inhibited zolmitriptan N-demethylase activity catalyzed by CYP1A2 (K(i)=3.8+/-0.3 and 3.2+/-0.1 microM, respectively). Diazepam and propranolol elicited a slight inhibitory effect on the metabolism of zolmitriptan (K(i)=70+/-11 and 90+/-18 microM, respectively). Cimetidine and moclobemide produced no significant effect on the metabolism of zolmitriptan. Fluvoxamine yielded a k(inactivation) value of 0.16 min(-1), and K(i) of 57 microM. The results suggest that rat hepatic microsomes are a reasonable model to study the metabolism of zolmitriptan, although there is a difference in the amount of minor, inactive metabolites between human hepatic microsomes and rat liver microsomes. The results of the inhibition experiments provided information for the interactions between zolmitriptan and drugs co-administrated in clinic, and it is helpful to explain the drug-drug interactions of clinical relevance on enzyme level. This study aso demonstrated that fluvoxamine may be a mechanism-based inactivator of CYP1A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号