首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Murine T cell replacing factor (TRF) was purified from a cellfree supernatant of a T cell hybridoma (B151K12) that constitutively produces TRF. Two assay systems for TRF activity were employed: 1) induction of anti-DNP IgG PFC responses in cultures of splenic B cells from DNP-KLH-primed BALB/c mice, and 2) induction of IgM PFC in chronic B cell leukemic cells (BCL1). The purification scheme consisted of ammonium sulfate precipitation, DEAE-cellulose chromatography, Blue-Sepharose chromatography, hydroxylapatite chromatography, gel permeation with fast protein liquid chromatography (FPLC), and disc polyacrylamide gel electrophoresis. Overall, TRF was purified approximately 34,000-fold with a maximum 3.8% recovery of activity, and the specific activity of the purified TRF was approximately 9.6 X 10(4) U/mg. The TRF that is active in these systems is distinct from the other lymphokines such as IL 1, IL 2, BCGFI (now known as BSFp1), and gamma-interferon. The TRF is extremely hydrophobic, with an apparent m.w. of 50,000 to 60,000 on gel permeation chromatography and 18,000 on SDS-PAGE under reducing conditions. Highly purified B151-TRF abrogated the activity by treatment with trypsin but not with RNase. Moreover, it bound to lima bean agglutinin-Sepharose specific for N-acetylgalactosamine residues, indicating that B151-TRF is a glycosylated glycoprotein containing N-acetylgalactosamine residues. The role of N-acetylgalactosamine residues on TRF activity was additionally substantiated by the fact that the addition of appropriate amounts of N-acetylgalactosamine in the assay systems for TRF preferentially induced a profound suppression for TRF-mediated PFC responses.  相似文献   

2.
Human tumor necrosis factor. Production, purification, and characterization   总被引:88,自引:0,他引:88  
Human tumor necrosis factor (TNF) was purified to homogeneity from serum-free tissue culture supernatants of the HL-60 promyelocytic leukemia cell line induced by 4 beta-phorbol 12-myristate 13-acetate. The purification scheme consisted of controlled-pore glass and DEAE-cellulose chromatography, Mono Q-fast-protein liquid chromatography, and reverse-phase high performance liquid chromatography. The purified protein was homogeneous by the criteria of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and NH2-terminal sequence analysis. The specific activity of purified tumor necrosis factor is approximately 10(8) units/mg. The protein has a molecular weight of approximately 17,000, an isoelectric point of 5.3, and contains two cysteines involved in a disulfide bridge. Approximately 50% homology between TNF and another cytolytic lymphokine, lymphotoxin, exists when the NH2-terminal 34 residues of TNF and internal sequence generated by tryptic, Staphylococcus aureus V8 protease, and chymotryptic digests of TNF are aligned with the complete amino acid sequence of lymphotoxin.  相似文献   

3.
Pea (Pisum sativum) ornithine transcarbamylase (OTC) was purified to homogeneity from leaf homogenates in a single-step procedure, using δ-N-(phosphonacetyl)-l-ornithine-Sepharose 6B affinity chromatography. The 1581-fold purified OTC enzyme exhibited a specific activity of 139 micromoles citrulline per minute per milligram of protein at 37°C, pH 8.5. Pea OTC represents approximately 0.05% of the total soluble protein in the leaf. The molecular weight of the native enzyme was approximately 108,200, as estimated by Sephacryl S-200 gel filtration chromatography. The purified protein ran as a single molecular weight band of 36,500 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that the pea OTC is a trimer of identical subunits. The overall amino acid composition of pea OTC is similar to that found in other eukaryotic and prokaryotic OTCs, but the number of arginine residues is approximately twofold higher. The increased number of arginine residues probably accounts for the observed isoelectric point of 7.6 for the pea enzyme, which is considerably more basic than isoelectric point values that have been reported for other OTCs.  相似文献   

4.
The functional significance of amino acid residues Lys-265, Asp-270, Lys-277, Asp-288, Asp-347, Glu-349, and Arg-351 of Bacillus kaustophilus leucine aminopeptidase was explored by site-directed mutagenesis. Variants with an apparent molecular mass of approximately 54 kDa were overexpressed in Escherichia coli and purified to homogeneity by nickel-chelate chromatography. The purified mutant enzymes had no LAP activity, implying that these residues are important for the catalytic reaction of the enzyme.  相似文献   

5.
Purification, composition, and structure of macrophage adhesion molecule   总被引:2,自引:0,他引:2  
Macrophage adhesion molecule (MAM) is a surface heterodimer consisting of the trypsin- and plasmin-sensitive glycopeptide gp160 (MAM-alpha) and the glycopeptide gp93 (MAM-beta). MAM, which is the guinea pig analogue of Mo1 and Mac-1, was purified from detergent lysates of peritoneal neutrophils by lentil lectin chromatography and M2-antibody chromatography. The pure heterodimer molecule was dissociated by acidic conditions (pH 3.5), and MAM-alpha and MAM-beta were separated by M7-antibody chromatography. MAM-beta is an approximately 640 amino acid residue polypeptide with exceptionally high cysteine content. At 7.2 residues per 100 amino acids, Cys/2 of MAM-beta is more than 3 times the mean for 200 purified proteins. Reactivity with six beta-subunit-specific monoclonal antibodies recognizing at least four epitopes demonstrated that intrapeptide disulfide bonds are required to maintain the structure of MAM-beta. All six antibodies failed to react when MAM-beta was treated with reducing agents. MAM-beta is 18% carbohydrate; the major monosaccharides are mannose, N-acetylglucosamine, galactose, and sialic acid. MAM-beta is estimated to contain five to six N-linked carbohydrate units. MAM-alpha is an approximately 1100-residue polypeptide with lower Cys/2 content (2.0 residues per 100 amino acid residues). MAM-alpha is 21% carbohydrate. The major monosaccharides are mannose, N-acetylglucosamine, galactose, and sialic acid; the mannose content is higher in MAM-alpha than MAM-beta. MAM-alpha is estimated to contain 12 N-linked carbohydrate units.  相似文献   

6.
A DNA fragment coding for the human CD4 cytoplasmic domain (residues 394-433) was cloned into the pET15b expression vector. The resulting plasmid was used for synthesis of the polyhistidine-tagged 5.10(3) M(r) CD4 peptide in Escherichia coli BL21(DE3)Star. The CD4 cytoplasmic domain was purified under denaturing and reducing conditions by a two-step procedure using immobilized metal affinity chromatography and gel permeation chromatography. The purified CD4 cytoplasmic domain is soluble and functional without any specific refolding steps. The yield of the described purification procedure was approximately 5 mg peptide per liter culture volume.  相似文献   

7.
The functional significance of amino acid residues Lys-265, Asp-270, Lys-277, Asp-288, Asp-347, Glu-349, and Arg-351 of Bacillus kaustophilus leucine aminopeptidase was explored by site-directed mutagenesis. Variants with an apparent molecular mass of approximately 54 kDa were overexpressed in Escherichia coli and purified to homogeneity by nickel-chelate chromatography. The purified mutant enzymes had no LAP activity, implying that these residues are important for the catalytic reaction of the enzyme.  相似文献   

8.
Uracil-DNA glycosylase from rat liver mitochondria, an inner membrane protein, has been purified approximately 575,000-fold to apparent homogeneity. During purification two distinct activity peaks, designated form I and form II, were resolved by phosphocellulose chromatography. Form I constituted approximately 85% while form II was approximately 15% of the total activity; no interconversion between the forms was observed. The major form was purified as a basic protein with an isoelectric point of 10.3. This enzyme consists of a single polypeptide with an apparent Mr of 24,000 as determined by recovering glycosylase activity from a sodium dodecyl sulfate-polyacrylamide gel. A native Mr of 29,000 was determined by glycerol gradient sedimentation. The purified enzyme had no detectable exonuclease, apurinic/apyrimidinic endonuclease, DNA polymerase, or hydroxymethyluracil-DNA glycosylase activity. A 2-fold preference for single-stranded uracil-DNA over a duplex substrate was observed. The apparent Km for uracil residues in DNA was 1.1 microM, and the turnover number is about 1000 uracil residues released per minute. Both free uracil and apyrimidinic sites inhibited glycosylase activity with Ki values of approximately 600 microM and 1.2 microM, respectively. Other uracil analogues including 5-(hydroxymethyl)uracil, 5-fluorouracil, 5-aminouracil, 6-azauracil, and 2-thiouracil or analogues of apyrimidinic sites such as deoxyribose and deoxyribose 5'-phosphate did not inhibit activity. Both form I and form II had virtually identical kinetic properties, and the catalytic fingerprints (specificity for uracil residues located in a defined nucleotide sequence) obtained on a 152-nucleotide restriction fragment of M13mp2 uracil-DNA were almost identical. These properties differentiated the mitochondrial enzyme from that of the uracil-DNA glycosylase purified from nuclei of the same source.  相似文献   

9.
We report the identification, purification, and characterization of a farnesyl:protein transferase that transfers the farnesyl moiety from farnesyl pyrophosphate to a cysteine in p21ras proteins. The enzyme was purified approximately 60,000-fold from rat brain cytosol through use of a chromatography step based on the enzyme's ability to bind to a hexapeptide containing the consensus sequence (Cys-AAX) for farnesylation. The purified enzyme migrated on gel filtration chromatography with an apparent molecular weight of 70,000-100,000. High resolution SDS-polyacrylamide gels showed two closely spaced approximately 50 kd protein bands in the final preparation. The enzyme was inhibited competitively by peptides as short as 4 residues that contained the Cys-AAX motif. These peptides acted as alternative substrates that competed with p21H-ras for farnesylation. Effective peptides included the COOH-terminal sequences of all known p21ras proteins as well as those of lamin A and B.  相似文献   

10.
利用DEAE-52离子交换层析和FPLC的Mono Q离子交换柱,从鼠的腹水液中提纯抗苯丙氨酸羟化酶单克隆抗体,再利用FPLC的Superose 12凝胶柱分离它们的轻链和重链。经SDS-凝胶电泳,氨基酸组成分析和N端顺序测定,确定轻链的分子量约为24 kD,约含有215个残基,轻链的N端的顺序是:D-V-V-M-T-Q-T-P-L-S-L-P-V-S-L-G-D-Q-A-S-I-S-C-R-S-D?-Q-N(D)-,并确认该轻链为鼠KaPPa轻链Ⅱ型。重链的分子量约为52 kD,它的末端被焦谷氨酰封闭。  相似文献   

11.
Purified human serum butyrylcholinesterase (approximately 90-kDa subunit) is known to exhibit aryl acylamidase and peptidase activity. Limited alpha-chymotrypsin digestion of the purified butyrylcholinesterase gave three major protein fragments of approximately 50 kDa, approximately 21 kDa and approximately 20 kDa. In our earlier studies [Rao and Balasubramanian (1989) Eur. J. Biochem. 179, 639-644] we characterized the approximately 20-kDa fragment and showed that it exhibited both butyrylcholinesterase and aryl acylamidase activities. In the present studies the approximately 50-kDa fragment is characterized. This fragment, after isolation by Sephadex G-75 chromatography from a chymotryptic digest of purified butyrylcholinesterase, exhibited only peptidase activity and was devoid of cholinesterase and aryl acylamidase activities. It could bind to a column of Ricinus communis agglutinin bound to Sepharose, indicating its glycosylated nature and the presence of galactose. The peptidase activity in the approximately 50-kDa fragment could be immuno-precipitated by a polyclonal antibody raised against purified butyrylcholinesterase. SDS-gel electrophoresis of this fragment isolated by R. communis agglutinin-Sepharose and Sephadex G-75 chromatography showed a protein band of approximately 50 kDa by silver staining. Amino-terminal sequence analysis of the approximately 50-kDa fragment gave the sequence of Gly-Pro-Thr-Val-Asp which corresponded to amino acid residues 291-295 in the butyrylcholinesterase sequence [Lockridge et al. (1987) J. Biol. Chem. 262, 549-557]. The combined results suggested that alpha-chymotrypsin digestion of human serum butyrylcholinesterase resulted in the formation of a approximately 20-kDa fragment exhibiting both cholinesterase and aryl acylamidase activities and a approximately 50-kDa fragment exhibiting only peptidase activity.  相似文献   

12.
Plasma from the bullfrog, Rana catesbeiana, contains a soluble component of unknown function that specifically binds the neurotoxin, [3H]saxitoxin, with a Kd of approximately 0.2 nM. Saxiphilin, the protein responsible for this activity, was purified approximately 440-fold from bullfrog plasma by column chromatography on heparin-Sepharose followed by chromatofocusing. The purified saxiphilin preparation exhibits a binding capacity of 9.6 nmol/mg protein and a Kd of 0.32 nM for [3H]saxitoxin. Analysis of the preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows a predominant band migrating with an apparent Mr of approximately 89,000 which is similar to the expected size of saxiphilin previously estimated by nondenaturing size exclusion chromatography. Amino-terminal sequencing of the approximately 89-kDa protein and sequencing of four different tryptic peptide fragments revealed that each of the partial saxiphilin sequences can be aligned by homology with members of the transferrin protein family with sequence identity as high as 69%. The available sequence corresponding to conserved residues that comprise part of the two Fe3+ binding sites in lacto-transferrin show several substitutions in saxiphilin, suggesting that saxiphilin is not an Fe(3+)-binding protein. Saxiphilin appears to be a monomeric approximately 89-kDa protein that is evolutionarily related to transferrin but which binds saxitoxin instead of Fe3+.  相似文献   

13.
Human neutrophil cathepsin G from normal donors has been purified 82-fold using an isolation procedure which included sequential sodium chloride extraction, Aprotonin-Sepharose affinity chromatography, CM-cellulose ion-exchange chromatography, and AcA44 gel filtration chromatography. The inclusion of this last purification step was crucial for separating inactive lower molecular weight species from the active forms of neutrophil cathepsin G and resulted in a higher specific activity of the final preparation. SDS polyacrylamide gradient gel electrophoresis of the purified reduced protein demonstrated three discrete polypeptides of Mr 31,000, 30,000, and 29,500. Peptide analysis of tryptic digests indicated that these three polypeptides are structurally related to each other and represent microheterogeneity of the purified protein. The cathepsin G peptide maps were distinctly different from the peptide maps of neutrophil elastase. The apparent isoelectric points of these forms as determined by two-dimensional electrophoresis was approximately 8.0. Utilizing microsequencing techniques, the first 25 residues of normal neutrophil cathepsin G have been determined and shown to be identical (except for residue 11) with the sequence of 21 residues of cathepsin G isolated from leukemic myeloid cells. A high degree of homology was found when the amino-terminal regions of neutrophil cathepsin G, rat mast cell protease II (65%) and two human serine proteinases, factor D (52%) and neutrophil elastase (48%), were compared. A precipitating monospecific antiserum to cathepsin G was produced by repeated immunizations of guinea pigs. This antiserum has been used in immunoblotting experiments to demonstrate that the intracellular form(s) of this enzyme is the same approximate Mr as the purified enzyme, and to develop a solid-phase radioimmunoassay for measuring neutrophil cathepsin G in the range 5-50 ng/ml.  相似文献   

14.
We have developed an expression, refolding, and purification protocol for the catalytic domain of human Phosphodiesterase 3B (PDE3B). High level expression in Escherichia coli has been achieved with yields of up to 20mg/L. The catalytic domain of the enzyme was purified by affinity chromatography utilizing a novel affinity ligand. PDE3B, purified by affinity chromatography, with no single impurity #10878;1% as determined by SDS-PAGE, has a specific activity of 2210+/-442nmol/min/mg and a KM for cAMP of 44+/-4.5nM. Reducing the size of the expressed catalytic domain from residues 387-1112 to residues 654-1086 greatly reduced the aggregation phenomena observed with the affinity purified PDE3B. The definition of the N-terminus of the catalytic core was examined through the generation of several truncation mutants spanning amino acid residues 636-674. Constructs starting at E665 and M674 were fully active and devoid of activity, respectively. A construct starting at D668 had a Vmax reduced by approximately 10-fold relative to the longer constructs, yet the KM was not affected. This indicates the minimal N-terminus of the catalytic core lies between E665 and Y667. Refolding and affinity purification of the 654-1073 catalytic core of PDE3B has been employed to produce large quantities of highly pure enzyme for structural studies.  相似文献   

15.
Recombinant human parathyroid hormone (hPTH)-(1-84) was obtained from Escherichia coli using a cleavable fusion protein strategy. The fusion protein contains residues 1-138 of human growth hormone as the amino-terminal region and residues 1-84 of hPTH as the carboxyl-terminal region. A 7-residue linker containing the recognition/cleavage sequence of the site-specific blood coagulation protease activated factor X (factor Xa) joins the two regions. Intact hPTH-(1-84) is released from this fusion protein by cleavage in vitro with factor Xa. The fusion protein was produced at a high level and formed inclusion bodies which allowed it to be easily purified by low speed centrifugation, with a yield of approximately 50 mg/liter of culture. After factor Xa cleavage and high performance liquid chromatography purification, highly purified hPTH was obtained, with a final yield of 1.5-3 mg/liter. Physical and biological characterization of the purified hormone demonstrated that it was intact and active hPTH-(1-84).  相似文献   

16.
Carnocin H, a bacteriocin produced by a Carnobacterium sp., inhibited lactic acid bacteria, clostridia, enterococci, and some Staphylococcus aureus strains. Some strains of Listeria and Pediococcus were also sensitive to carnocin H. The bacteriocin was produced during the late stationary growth phase. Carnocin H was purified by cation exchange chromatography and reverse phase chromatography. Amino acid sequence and composition indicate that carnocin H is a novel bacteriocin belonging to the class II bacteriocins. The bacteriocin consists of approximately 75 amino acid residues with a highly cationic N-terminal containing six succeeding lysines. Activity, as measured by agar diffusion zones, was reduced at increased pH values, levels of indicator bacteria, NaCl, agar, and soy oil.  相似文献   

17.
Human myelin basic protein (MBP) was fragmented into three major polypeptides comprised of a NH2-terminal domain (residues 1-83), a middle domain (residues 84-119) which contains an experimental allergic encephalitogenic determinant and a highly conserved triproline sequence, and a COOH-terminal domain (residues 120-170) by Staphylococcus aureus V8 protease at pH 4.0. These three polypeptides could be identified and purified by reversed-phase high-performance liquid chromatography. Analysis of the sites of phosphorylation of the component 1 of human MBP, the most cationic species, catalyzed by a purified Ca2+-activated and phospholipid-dependent protein kinase and cAMP-dependent protein kinase revealed that although these protein kinases could incorporate approximately 6 and 4 mol 32P, respectively, into MBP, none of the potential sites were located within the middle domain.  相似文献   

18.
alpha-Amylase inhibitor from fungus Cladosporium herbarum F-828   总被引:1,自引:0,他引:1  
A strain of fungus Cladosporium herbarum extracellularly produced an inhibitor specific for mammalian alpha-amylase. The inhibitor was purified 81-fold by freeze-thawing, heat treatment, and column chromatography on DEAE-cellulose, Sephadex G-75, DEAE-Sephacel, and Bio-Gel P-100. An apparent molecular weight of approximately 18,000 was estimated for the inhibitor using Bio-Gel P-100 filtration. The purified inhibitor preparation was a glycoprotein containing about 10% carbohydrate. The amino acid analysis of the inhibitor showed abundances of Gly, Asp, Glu, Ser, Ala, and Thr residues. The inhibitor was stable between pH 5 and 12 at 4 degrees C, and below 80 degrees C at pH 7.0. A binary complex formation out of equimolar amounts of the inhibitor and alpha-amylase, was demonstrated by polyacrylamide gel electrophoresis, and Bio-Gel P-100 chromatography. Kinetic studies exhibited that the inhibitor noncompetitively inhibited the enzyme reaction with a Ki value of 2.3 approximately 4.8 x 10(-10) M, by combining with the enzyme molecule at a different site from the substrate binding site.  相似文献   

19.
A hemagglutinin which specifically agglutinates human type A erythrocytes (mannose resistant) was isolated from the growth medium of cultures of Escherichia coli GV-12, serotype O1:H-, and purified by chromatography on Bio-Gel A-1.5 and DEAE-Sephadex A-25. The purity of the hemagglutinin was established by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoelectrophoresis. N-terminus analysis indicated that only asparagine resides on the amino terminus. The native hemagglutinin is an aggregate exhibiting a sedimentation coefficient of 9.25, which corresponds to a molecular weight of approximately 200,000. The monomeric molecular weight was found to be approximately 16,300. Amino acid analysis indicated that the hemagglutinin consists of 131 residues, corresponding to a molecular weight of 13,400.  相似文献   

20.
The gene encoding (6R)-2,2,6-trimethyl-1,4-cyclohexanedione (levodione) reductase was cloned from the genomic DNA of the soil isolate bacterium Corynebacterium aquaticum M-13. The gene contained an open reading frame consisting of 801 nucleotides corresponding to 267 amino acid residues. The deduced amino acid sequence showed approximately 35% identity with other short chain alcohol dehydrogenase/reductase (SDR) superfamily enzymes. The probable NADH-binding site and three catalytic residues (Ser-Tyr-Lys) were conserved. The enzyme was sufficiently produced in recombinant Escherichia coli cells using an expression vector pKK223-3, and purified to homogeneity by two-column chromatography steps. The enzyme purified from E. coli catalyzed stereo- and regio-selective reduction of levodione, and was strongly activated by monovalent cations, such as K+, Na+, and NH4+, as was the case of that from C. aquaticum M-13. To our knowledge, this is the first sequencing report of a monovalent cation-activated SDR enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号