首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The submitochondrial localization of the four mitochondrial enzymes associated with urea synthesis in liver of Squalus acanthias (spiny dogfish), a representative elasmobranch, was determined. Glutamine- and acetylglutamate-dependent carbamoyl-phosphate synthetase, ornithine carbamoyltransferase, glutamine synthetase, and arginase were all localized within the matrix of liver mitochondria. The subcellular and submitochondrial localization and activities of several related enzymes involved in nitrogen metabolism and gluconeogenesis in liver and dogfish are also reported. Pyruvate carboxylase and phosphoenolpyruvate carboxykinase were localized in the mitochondrial matrix. Synthesis of citrulline by isolated mitochondria from ornithine proceeds at a near optimal rate at ornithine concentrations as low as 0.08 mM. The same stoichiometry and rates of citrulline synthesis are observed when ornithine is replaced by arginine. The mitochondrial location of arginase does not appear to reflect a mechanism for regulating ornithine availability.  相似文献   

2.
In the presence of citrulline synthesis, we made the following observations. External ornithine is channeled between its transporter and ornithine transcarbamylase; mitochondria preloaded with cold ornithine, then incubated with [3H]ornithine, produced citrulline of the same specific radioactivity as that of external ornithine, while matrix ornithine remained essentially unlabeled. The channeling of ornithine suggests that some soluble enzymes are organized within the mitochondrial matrix. The rate of ornithine transport can be greater than 80 nmol/min/mg. At rates of carbamyl phosphate synthesis of 10-50 nmol/min/mg, the rate of citrulline synthesis is controlled by external ornithine in the range 0.03-0.2 mM; at greater than or equal to 0.2 mM ornithine, transport is not limiting for citrulline synthesis. At external ornithine concentrations less than or equal to 1 mM, i.e. within the physiological range, this amino acid is undetectable in the matrix. Given the rates of citrulline and urea synthesis which occur in vivo and the concentrations of ornithine present in the liver, our findings indicate that ornithine may contribute to the physiological regulation of urea synthesis. Preliminary reports of parts of this work have been published (Raijman, L., Cheung, C-W., and Cohen, N. S. (1984) Fed. Proc. 43, 1831; Cohen, N. S., Cheung, C-W., and Raijman, L. (1986) Fed. Proc. 45, 2677).  相似文献   

3.
The activities of key glutamine and urea cycle enzymes were assayed in liver homogenates from control and chronically acidotic rats and compared with citrulline and urea productions by isolated mitochondria and intact liver slices, respectively. Glutamine-dependent urea and citrulline synthesis were increased significantly in isolated mitochondria and in liver slices; the activities of carbamoyl phosphate synthetase and arginase were unchanged and increased, respectively. Glutamine was not a precursor in the carbamoyl phosphate synthetase system, suggesting that the glutamine effect is an indirect one and that glutamine requires prior hydrolysis. Increased mitochondrial citrulline synthesis was associated with enhanced oxygen consumption, suggesting glutamine acts both as a nitrogen and fuel source. Hepatic phosphate-dependent glutaminase was elevated by chronic acidosis. The results indicate that the acidosis-induced reduction in ureagenesis and reversal from glutamine uptake to release observed in vivo are not reflections of corresponding changes in the hepatic enzyme content. Rather, when available, glutamine readily supports ureagenesis, suggesting a close coupling of hepatic glutaminase flux with citrulline synthesis.  相似文献   

4.
Increases in dietary protein have been reported to increase the rate of citrulline synthesis and the level of N-acetylglutamate in liver. We have confirmed this effect of diet on citrulline synthesis in rat liver mitochondria and show parallel increases in N-acetylglutamate concentration. The magnitude of the effect of arginine in the suspending medium on citrulline synthesis was also dependent on dietary protein content. Mitochondria from rats fed on a protein-free diet initially contained low levels of N-acetylglutamate, and addition of arginine increased the rate of its synthesis. Citrulline synthesis and acetylglutamate content in these mitochondria increased more than 5-fold when 1 mM-arginine was added. A diet high in protein results in mitochondria with increased N-acetylglutamate and a high rate of citrulline synthesis; 1 mM-arginine increased citrulline synthesis in such mitochondria by only 36%. The concentration of arginine in portal blood was 47 microM in rats fed on a diet lacking protein, and 182 microM in rats fed on a diet containing 60% protein, suggesting that arginine may be a regulatory signal to the liver concerning the dietary protein intake. The rates of citrulline synthesis were proportional to the mitochondrial content of acetylglutamate in mitochondria obtained from rats fed on diets containing 0, 24, or 60% protein, whether incubated in the absence or presence of arginine. Although the effector concentrations are higher than the Ka for the enzymes, these results support the view that concentrations of both arginine and acetylglutamate are important in the regulation of synthesis of citrulline and urea. Additionally, the effects of dietary protein level (and of arginine) are exerted in large part by way of modulation of the concentration of acetylglutamate.  相似文献   

5.
The rate at which isolated rat liver mitochondria synthesized citrulline with NH4C1 as nitrogen source was markedly dependent on the protein content of the diet. 2. Citrulline synthesis was not rate-limited by substrate concentration, substrate transport or ornithine transcarbamoylase activity under the conditions used. 3. The intramitochondrial content of an activator of carbamoyl phosphate synthase, assumed to be N-acetyl-glutamate, varied markedly with dietary protein content. The variation in the concentration of this activator was sufficient to account for the observed variation in the rates of citrulline synthesis if this synthesis were rate-limited by the activity of carbamoyl phosphate synthase. 4. The rates of urea formation from NH4Cl as nitrogen source in isolated liver cells showed variations in response to diet that closely paralleled the variations in the rates of citrulline synthesis observed in isolated mitochondria. 5. These results are consistent with the postulate that when NH4Cl plus ornithine are present in an excess, the rate of urea synthesis is regulated at the level of carbamoyl phosphate synthase activity.  相似文献   

6.
Varying osmolarity with sucrose/KCl media resulted in similar effects on the oxidation of glutamate by mitochondria isolated from the livers of an elasmobranch, Raja erinacea, and a teleost, Pseudopleuronectes americanus. In both species trimethylamine oxide (TMAO) inhibited mitochondrial oxidation of glutamate. Urea penetrated the inner mitochondrial membrane of both species and equilibrated with a ratio ureai/ureao of unity. Urea had little effect on the oxidation of glutamate in both species at concentrations as high as 760 mM. Addition of urea (urea/TMAO, 2:1) did not overcome the detrimental effects of TMAO in the mitochondria of either species. In the case of the elasmobranch, the osmolarity of the urea/TMAO media giving the optimal rate of respiration was hypoosmotic with respect to the intracellular osmolarity. The rate of glutamate oxidation steadily declined as osmolarity increased above this value. Assuming the osmotic profile obtained with the urea/TMAO (2:1) medium resembled most closely the in vivo situation, higher rates of oxidation or organic solutes at low osmolarity would help deplete the cell of these solutes and could contribute to cell volume regulation during hypoosmotic stress. It is suggested that two broad classes of intracellular solutes can be defined based on their effects on mitochondrial respiration. Solutes such as K+, C1-, and TMAO penetrate the inner mitochondrial membrane slowly or not at all. Increasing concentrations of these solutes result in lower rates of oxidation. This capacity may be important in regulating intracellular levels of organic solutes during osmotic stress. Solutes such as urea rapidly penetrate the cell and inner mitochondrial membrane reducing the mitochondrial volume changes associated with osmotic stress. The known detrimental effects of urea on protein structure may prevent its exclusive use as an intracellular osmotic effector.  相似文献   

7.
Citrulline synthesis from ammonia by hepatic mitochondria in elasmobranchs involves intermediate formation of glutamine as the result of the presence of high levels of glutamine synthetase and a unique glutamine- and N-acetyl-glutamate-dependent carbamoyl phosphate synthetase, both of which have properties unique to the function of glutamine-dependent synthesis of urea, which is retained in the tissues of elasmobranchs at high concentrations for the purpose of osmoregulation [P.M. Anderson and C.A. Casey (1984) J. Biol. Chem. 259, 456-462; R.A. Shankar and P.M. Anderson (1985) Arch. Biochem. Biophys. 239, 248-259]. The objective of this study was to determine if ornithine carbamoyl transferase, which catalyzes the last step of mitochondrial citrulline synthesis and which has not been previously isolated from any species of fish, also has properties uniquely related to this function. Ornithine carbamoyl transferase was highly purified from isolated liver mitochondria of Squalus acanthias, a representative elasmobranch. The purified enzyme is a trimer with a subunit molecular weight of 38,000 and a native molecular weight of about 114,000. The effect of pH is significantly influenced by ornithine concentration; optimal activity is at pH 7.8 when ornithine is saturating. The apparent Km values for ornithine and carbamoyl phosphate at pH 7.8 are 0.71 and 0.05 mM, respectively. Ornithine displays considerable substrate inhibition above pH 7.8. The activity is not significantly affected by physiological concentrations of the osmolyte urea or trimethylamine-N-oxide or by a number of other metabolites. The results of kinetic studies are consistent with a steady-state ordered addition of substrates (carbamoyl phosphate binding first) and rapid equilibrium random release of products. Except for an unusually low specific activity, the properties of the purified elasmobranch enzyme are similar to the properties of ornithine carbamoyl transferase from mammalian ureotelic and other species and do not appear to be unique to its role in glutamine-dependent synthesis of urea for the purpose of osmoregulation.  相似文献   

8.
The possible synthesis of citrulline, a rate limiting step for urea synthesis via the ornithine-urea cycle (OUC) in teleosts was tested both in the presence of ammonia and glutamine as nitrogen-donating substrates by the isolated liver mitochondria of ureogenic air-breathing walking catfish, C. batrachus. Both ammonia and glutamine could be used as nitrogen-donating substrates for the synthesis of citrulline by the isolated liver mitochondria, since the rate of citrulline synthesis was almost equal in presence of both the substrates. The citrulline synthesis by the isolated liver mitochondria requires succinate at a concentration of 0.1 mM as an energy source, and also requires the involvement of intramitochondrial carbonic anhydrase activity for supplying HCO3 as another substrate for citrulline synthesis. The rate of citrulline synthesis was further stimulated significantly by the isolated liver mitochondria of the fish after pre-exposure to 25 mM NH4Cl for 7 days. Due to possessing this biochemical adaptational strategy leading to the amelioration of ammonia toxicity mainly by channeling ammonia directly and/or via the formation of glutamine to the OUC, this air-breathing catfish could succeed in surviving in high external ammonia, which it faces in its natural habitat in certain seasons of the year.  相似文献   

9.
1. In the presence of physiological concentrations of Na+ and Mg2+, the rate of citrulline synthesis by isolated rat liver mitochondria respiring on a range of substrates was stimulated by up to 60% when the extramitochondrial Ca2+ concentration was raised from 130 pM to 770 nM. 2. Our findings suggest that hormonal stimulation of the urea cycle may be mediated by Ca2+.  相似文献   

10.
Liver mitochondria isolated from rats starved overnight, or fed rats injected with glucagon, exhibited a similar increase of the respiration rate with succinate (by 30-40%) and glutamate plus malate (by 20-30%), as compared to mitochondria from control fed animals. The content of mitochondrial adenine nucleotides was elevated by 30-45% by glucagon treatment or starvation. Mitochondrial respiration and citrulline synthesis were stimulated by 30-40% when mitochondria isolated from fed rats were briefly preincubated with the extract from liver glycogen granules, ATP and MgCl2. This effect was abolished by heating the extract at 100 degrees C.  相似文献   

11.
Fully-developed eggs of the monogenean Entobdella soleae from the skin of the common sole (Solea solea) hatch when treated with dilute solutions of urea or ammonium chloride in sea water. There is some evidence that arginine may stimulate hatching but the eggs do not respond when treated with sea water solutions containing trimethylamine oxide or glutamine. Sole skin mucus contains sufficient urea to stimulate hatching but insufficient ammonia. Solutions of urea in sea water stimulate hatching in the monogenean parasite Acanthocotyle lobianchi found on ray skin. Sea water solutions containing ammonium chloride and trimethylamine oxide failed to hatch the eggs of A. lobianchi and the eggs were also insensitive to various amino acids made up at concentrations found in host mucus. Experiments with urease confirmed that urea in ray ventral skin mucus is the host hatching factor for A. lobianchi. Skin mucus from the common sole failed to stimulate hatching in A. lobianchi. The role as hatching factors of excretory products in host gill effluent, skin mucus and urine is discussed.  相似文献   

12.
Nitric oxide is a potent modulator of mitochondrial respiration, ATP synthesis, and KATP channel activity. Recent studies show the presence of a potentionally new isoform of the nitric oxide synthase (NOS) enzyme in mitochondria, although doubts have emerged regarding the physiological relevance of mitochondrial NOS (mtNOS). The aim of the present study were to: (i) examine the existence and distribution of mtNOS in mouse tissues using three independent methods, (ii) characterize the cross-reaction of mtNOS with antibodies against the known isoforms of NOS, and (iii) investigate the effect of hypoxia on mtNOS activity. Nitric oxide synthase activity was measured in isolated brain and liver mitochondria using the arginine to citrulline conversion assay. Mitochondrial NOS activity in the brain was significantly higher than in the liver. The calmodulin inhibitor calmidazolium completely inhibited mtNOS activity. In animals previously subjected to hypoxia, mtNOS activity was significantly higher than in the normoxic controls. Antibodies against the endothelial (eNOS), but not the neuronal or inducible isoform of NOS, showed positive immunoblotting. Immunogold labeling of eNOS located the enzyme in the matrix and the inner membrane using electron microscopy. We conclude that mtNOS is a constitutively active eNOS-like isoform and is involved in altered mitochondrial regulation during hypoxia.  相似文献   

13.
1. The relationship between urea synthesis, intracellular N-acetylglutamate and the capacity of rat-liver mitochondria to synthesize citrulline was investigated. 2. Treatment of rats with glucagon prior to killing results not only in an increased intramitochondrial ATP concentration and an increased capacity of the mitochondria to synthesize citrulline, but also in an increased concentration of intramitochondrial N-acetylglutamate. 3. Comparison of the rate of citrulline synthesis in mitochondria from glucagon-treated and from control rats, incubated under different conditions, shows that the increased N-acetylglutamate concentration after glucagon treatment is at least in part responsible for the observed increased capacity of the mitochondria to synthesize citrulline. 4. Ureogenic flux in isolated hepatocytes under different incubation conditions correlated with the intracellular concentration of N-acetylglutamate and with the capacity of the mitochondria to synthesize citrulline. 5. When isolated hepatocytes were incubated with NH3, ornithine, lactate and oleate, intracellular N-acetylglutamate increased about eightfold in the first 10 min; during this period the rate of urea synthesis increased considerably. 6. It is concluded that the concentration of intramitochondrial N-acetylglutamate plays an important role in the short-term control of flux through the urea cycle under different nutritional and hormonal conditions.  相似文献   

14.
The urea cycle in the liver of adjuvant-induced arthritic rats was investigated using the isolated perfused liver. Urea production in livers from arthritic rats was decreased during substrate-free perfusion and also in the presence of the following substrates: alanine, alanine + ornithine, ammonia, ammonia + lactate, ammonia + pyruvate and glutamine but increased when arginine and citrulline + aspartate were the substrates. No differences were found with ammonia + aspartate, ammonia + aspartate + glutamate, aspartate, aspartate + glutamate and citrulline. Ammonia consumption was smaller in the arthritic condition when the substance was infused together with lactate or pyruvate but higher when the substance was simultaneously infused with aspartate or aspartate + glutamate. Glucose production tended to correlate with the smaller or higher rates of urea synthesis. Blood urea was higher in arthritic rats (+25.6%), but blood ammonia was lower (–32.2%). Critical for the synthesis of urea from various substrates in arthritic rats seems to be the availability of aspartate, whose production in the liver is probably limited by both the reduced gluconeogenesis and aminotransferase activities. This is indicated by urea synthesis which was never inferior in the arthritic condition when aspartate was exogenously supplied, being even higher when both aspartate and citrulline were simultaneously present. Possibly, the liver of arthritic rats has a different substrate supply of nitrogenous compounds. This could be in the form of different concentrations of aspartate or other aminoacids such as citrulline or arginine (from the kidneys) which allow higher rates of hepatic ureogenesis.  相似文献   

15.
The relationship between intra- and extramitochondrial ATP utilization was investigated in liver mitochondria isolated from normally fed, starved and high-protein fed rats. ATP export was provoked by adding a hexokinase-glucose-trap and intramitochondrial ATP consumption by adding ammonia, bicarbonate and ornithine in order to stimulate citrulline synthesis. Both processes compete for ATP produced via oxidative phosphorylation; the rate of citrulline formation declines as the extramitochondrial [ATP]/[ADP] ratio decreases. It is concluded that ATP for adenine nucleotide translocation and that for carbamoyl phosphate synthesis are delivered from a common intramitochondrial pool of adenine nucleotides. In mitochondria from rats with a high-protein diet, citrulline synthesis greatly stimulates the rate of oxidative phosphorylation (about two thirds of state 3 respiration). Under these conditions the intramitochondrial [ATP]/[ADP] ratio is significantly reduced. The intramitochondrial [ATP]/[ADP] ratio is not in thermodynamic equilibrium with the extramitochondrial one.  相似文献   

16.
1. The influence of ammonia and ornithine on the oxygen uptake and the formation of citrulline was investigated with isolated rat liver mitochondria. The experiments were performed in a cytosol-like saline medium at 38 degrees C. 2. Under these conditions an increase of the respiration rate by ammonia and ornithine was observed, but a small response to external ADP, only. The missing stimulation by ADP was due to a partial inhibition of the respiratory chain by traces of zinc (approximately 1 microM) present in the medium. This inhibition was only detected at low concentrations of mitochondria. 3. For activation of respiration by ammonia plus ornithine two different processes were responsible: (i) chelation of the inhibiting zinc by ornithine, which could be prevented by EDTA; (ii) ADP production in the matrix space during formation of carbamoyl phosphate, which could be prevented by oligomycin but not by carboxyatractyloside. 4. This stimulus of the carbamoyl phosphate formation and of the equivalent citrulline synthesis on the mitochondrial respiration ran to 12% of that increase caused by phosphorylation of external ADP. The maximum rate of citrulline formation was limited by the activity of carbamoyl phosphate synthetase. 5. Added ADP suppresses the production of citrulline probably by the exchange of extramitochondrial ADP versus intramitochondrial ATP. The data suggest a common adenine nucleotide pool delivering ATP to the adenine nucleotide translocase as well as to the carbamoyl phosphate synthetase.  相似文献   

17.
The respiration of rat liver mitochondria was stimulated by three different ways of energy drain: (a) partial uncoupling (equivalent to direct collapse of the proton-motive force), (b) intramitochondrial utilization of ATP for citrulline synthesis, and (c) extramitochondrial utilization of ATP for glucose phosphorylation. At identical rates of respiration, the intramitochondrial ATP: ADP ratios were the same in all three systems. Furthermore, the proton-motive force was the same in partially uncoupled mitochondria and in the presence of hexokinase plus glucose up to a respiration rate amounting to about 60% of that of the fully active state. However, external ATP: ADP ratios were considerably different in various systems at comparable rates of oxygen uptake, being the lowest under conditions when ATP was being utilized externally. On this basis, it is concluded that the respiratory rate is controlled directly by the proton-motive force and the mitochondrial ATP-synthesizing system operates under near-equilibrium conditions with respect to the membrane energy state parameters. However, a disequilibrium exists at the step of the transport of ATP from mitochondria to the external (cytoplasmic) compartment.  相似文献   

18.
1. Citrulline synthesis was measured in mitochondria from rats fed on a standard diet, a high-protein diet, or on glucose. 2. With NH(4)Cl as the nitrogen source the rate of citrulline synthesis was higher in mitochondria from rats fed on a high-protein diet than in those from rats fed on a standard diet. When rats were fed solely on glucose the rate of synthesis of citrulline from NH(4)Cl was very low. 3. With glutamate as the nitrogen source the relative rates of citrulline synthesis were much lower than when NH(4)Cl was present, but similar adaptive changes occurred. 4. The activity of the mitochondrial glutamate-transporting system increased two to three times on feeding rats on a high-protein diet, but the K(m) for glutamate was unchanged. 5. Adaptive changes in certain intramitochondrial enzymes were also measured. 6. The results were interpreted to indicate that when an excess of substrate was present, citrulline synthesis from NH(4)Cl was rate-limited by the intramitochondrial concentration of N-acetyl-glutamate, but citrulline synthesis from glutamate was rate-limited primarily by the activity of the glutamate-transporting system.  相似文献   

19.
When rats were placed on a low-protein (5%) diet for 24 h or less, liver mitochondrial acetylglutamate decreased rapidly, carbamyl phosphate synthetase (ammonia) and ornithine transcarbamylase decreased little, and carbamyl phosphate synthesis (measured as citrulline) by isolated mitochondria occurred at very low rates. The matrix acetylglutamate content of these mitochondria, whether coupled or uncoupled, was increased similarly by preincubating them with added acetylglutamate, but citrulline synthesis increased from less than 1 to 2.3 nmol min-1 mg-1 in the coupled state, and from less than 1 to 35 nmol min-1 mg-1 in the uncoupled state. However, when coupled mitochondria were incubated with the substrates required for the synthesis of acetylglutamate in the matrix, citrulline synthesis increased to 48 nmol min-1 mg-1; this rate was similar to that of mitochondria from control rats (fed a normal diet). When mitochondria from controls were incubated with up to 5mM acetylglutamate, citrulline synthesis by coupled mitochondria was increased by 10 to 40%, while synthesis by uncoupled mitochondria was 1.5 to 4 times higher than that observed with the coupled mitochondria; matrix acetylglutamate in both conditions rose to levels similar to those in the medium. The reason for the different behavior of carbamyl phosphate synthetase (ammonia) in coupled and uncoupled mitochondria was not apparent; neither oxidative phosphorylation nor ornithine transport were limiting in the coupled system. These observations are an example of the restrictions imposed upon enzymatic systems by the conditions existing in the mitochondrial matrix, and of the different behavior of carbamyl phosphate synthetase in situ and in solution. In addition, they show that conclusions about the characteristics of the enzyme in coupled mitochondria based on observations made in uncoupled mitochondria are not necessarily justified.  相似文献   

20.
1. Acetylsalicylate and salicylate inhibited urea synthesis by isolated rat hepatocytes and citrulline synthesis by isolated rat mitochondria. The effects were dose-dependent and occurred at drug concentrations seen in salicylate induced hepatoxicity. 2. Although ATP concentration was decreased in the hepatocytes the effect of the salicylates on citrulline synthesis remained after treatment with oligomycin and carbonyl cyanide m-chlorophenyl hydrazone. This suggests that the effect is independent of uncoupling of oxidative phosphorylation. 3. This in vitro inhibition of urea synthesis by salicylates is similar to that produced by valproate and endogenous organic acids, which are also associated with hyperammonaemic clinical toxicity, and is a possible mechanism for the action of salicylates in the hyperammonaemia of Reye's syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号