首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In plants, most water is absorbed by roots and transported through vascular conduits of xylem which evaporate from leaves during photosynthesis. As photosynthesis and transport processes are interconnected, it was hypothesized that any variation in water transport demand influencing water use efficiency (WUE), such as the evolution of C4 photosynthesis, should affect xylem structure and function. Several studies have provided evidence for this hypothesis, but none has comprehensively compared photosynthetic, hydraulic and biomass allocation properties between C3 and C4 species. In this study, photosynthetic, hydraulic and biomass properties in a closely related C3 Tarenaya hassleriana and a C4 Cleome gynandra are compared. Light response curves, measured at 30°C, showed that the C4 C. gynandra had almost twice greater net assimilation rates than the C3 T. hassleriana under each increasing irradiation level. On the contrary, transpiration rates and stomatal conductance were around twice as high in the C3, leading to approximately 3.5 times higher WUE in the C4 compared with the C3 species. The C3 showed about 3.3 times higher hydraulic conductivity, 4.3 times greater specific conductivity and 2.6 times higher leaf‐specific conductivity than the C4 species. The C3 produced more vessels per xylem area and larger vessels. All of these differences resulted in different biomass properties, where the C4 produced more biomass in general and had less root to shoot ratio than the C3 species. These results are in support of our previous findings that WUE, and any changes that affect WUE, contribute to xylem evolution in plants.  相似文献   

2.
Xylella fastidiosa is a xylem‐limited bacterial plant pathogen that causes bacterial leaf scorch in its hosts. Our previous work showed that water stress enhances leaf scorch symptom severity and progression along the stem of a liana, Parthenocissus quinquefolia, infected by X. fastidiosa. This paper explores the photosynthetic gas exchange responses of P. quinquefolia, with the aim to elucidate mechanisms behind disease expression and its interaction with water stress. We used a 2 × 2‐complete factorial design, repeated over two growing seasons, with high and low soil moisture levels and infected and non‐infected plants. In both years, low soil moisture levels reduced leaf water potentials, net photosynthesis and stomatal conductance at all leaf positions, while X. fastidiosa‐infection reduced these parameters at basally located leaves only. Intercellular CO2 concentrations were reduced in apical leaves, but increased at the most basal leaf location, implicating a non‐stomatal reduction of photosynthesis in leaves showing the greatest disease development. This result was supported by measured reductions in photosynthetic rates of basal leaves at high CO2 concentrations, where stomatal limitation was eliminated. Repeated measurements over the summer of 2000 showed that the effects of water stress and infection were progressive over time, reaching their greatest extent in September. By reducing stomatal conductances at moderate levels of water stress, P. quinquefolia maintained relatively high leaf water potentials and delayed the onset of photosynthetic damage due to pathogen and drought‐induced water stress. In addition, chlorophyll fluorescence measurements showed that P. quinquefolia has an efficient means of dissipating excess light energy that protects the photosynthetic machinery of leaves from irreversible photoinhibitory damage that may occur during stress‐induced stomatal limitation of photosynthesis. However, severe stress induced by disease and drought eventually led to non‐stomatal decreases in photosynthesis associated with leaf senescence.  相似文献   

3.
Plants using the C4 photosynthetic pathway have greater water use efficiency (WUE) than C3 plants of similar ecological function. Consequently, for equivalent rates of photosynthesis in identical climates, C4 plants do not need to acquire and transport as much water as C3 species. Because the structure of xylem tissue reflects hydraulic demand by the leaf canopy, a reduction in water transport requirements due to C4 photosynthesis should affect the evolution of xylem characteristics in C4 plants. In a comparison of stem hydraulic conductivity and vascular anatomy between eight C3 and eight C4 herbaceous species, C4 plants had lower hydraulic conductivity per unit leaf area (KL) than C3 species of similar life form. When averages from all the species were pooled together, the mean KL for the C4 species was 1.60 × 10?4 kg m?1 s?1 MPa?1, which was only one‐third of the mean KL of 4.65 × 10?4 kg m?1 s?1 MPa?1 determined for the C3 species. The differences in KL between C3 and C4 species corresponded to the two‐ to three‐fold differences in WUE observed between C3 and C4 plants. In the C4 species from arid regions, the difference in KL was associated with a lower hydraulic conductivity per xylem area, smaller and shorter vessels, and less vulnerable xylem to cavitation, indicating the C4 species had evolved safer xylem than the C3 species. In the plants from resource‐rich areas, such as the C4 weed Amaranthus retroflexus, hydraulic conductivity per xylem area and xylem anatomy were similar to that of the C3 species, but the C4 plants had greater leaf area per xylem area. The results indicate the WUE advantage of C4 photosynthesis allows for greater flexibility in hydraulic design and potential fitness. In resource‐rich environments in which competition is high, an existing hydraulic design can support greater leaf area, allowing for higher carbon gain, growth and competitive potential. In arid regions, C4 plants evolved safer xylem, which can increase survival and performance during drought events.  相似文献   

4.
Six open‐top chambers were installed on the shortgrass steppe in north‐eastern Colorado, USA from late March until mid‐October in 1997 and 1998 to evaluate how this grassland will be affected by rising atmospheric CO2. Three chambers were maintained at current CO2 concentration (ambient treatment), three at twice ambient CO2, or approximately 720 μmol mol?1 (elevated treatment), and three nonchambered plots served as controls. Above‐ground phytomass was measured in summer and autumn during each growing season, soil water was monitored weekly, and leaf photosynthesis, conductance and water potential were measured periodically on important C3 and C4 grasses. Mid‐season and seasonal above‐ground productivity were enhanced from 26 to 47% at elevated CO2, with no differences in the relative responses of C3/C4 grasses or forbs. Annual above‐ground phytomass accrual was greater on plots which were defoliated once in mid‐summer compared to plots which were not defoliated during the growing season, but there was no interactive effect of defoliation and CO2 on growth. Leaf photosynthesis was often greater in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) plants in the elevated chambers, due in large part to higher soil water contents and leaf water potentials. Persistent downward photosynthetic acclimation in P. smithii leaves prevented large photosynthetic enhancement for elevated CO2‐grown plants. Shoot N concentrations tended to be lower in grasses under elevated CO2, but only Stipa comata (C3) plants exhibited significant reductions in N under elevated compared to ambient CO2 chambers. Despite chamber warming of 2.6 °C and apparent drier chamber conditions compared to unchambered controls, above‐ground production in all chambers was always greater than in unchambered plots. Collectively, these results suggest increased productivity of the shortgrass steppe in future warmer, CO2 enriched environments.  相似文献   

5.
Summary Seasonal changes in photosynthesis were examined in the desiccation-tolerant fern Polypodium virginianum growing in a forest understory along cliff edges of the Niagara Escarpment in southern Ontario, Canada. For plants growing in situ, the photosynthetic response to irradiance was examined on a seasonal basis, to determine the degree to which the utilization of light changed over the growing season. Experiments were executed on control plants, on previously desiccated then rehydrated plants, and on continuously hydrated plants to determine if prior desiccation influenced the response to light. Soil and xylem water potential and temperature were monitored and used as covariates in analyses. The results showed that carbon gain in the spring greatly exceeded that of any other season. Despite this, there was little change in the photosynthetic response to light on a seasonal basis even though plants were exposed to highly variable and highly limited light most of the time. Prior desiccation had a slight influence on photosynthetic rate but not on other photosynthetic parameters such as the light compensation point and Lhalf. Temperature was a significant seasonal covariate and additional experiments conducted in the laboratory showed that the response of photosynthesis to temperature was broad. Xylem water potential was correlated with seasonal changes in relative humidity. The results suggest that P. virginanum persists in hostile cliff-edge habitats by being able to exploit high-light periods in the spring and by thereafter maintaining a low but relatively constant rate of carbon despite prior exposure to fluctuating supplies of light and water.  相似文献   

6.
Summary Common generalizations concerning the ecologic significance of C4 photosynthesis were tested in a study of plant gas exchange, productivity, carbon balance, and water use in monospecific communities of C3 and C4 salt desert shrubs. Contrary to expectations, few of the hypotheses concerning the performance of C4 species were supported. Like the C3 species, Ceratoides lanata, the C4 shrub, Atriplex confertifolia, initiated growth and photosynthetic activity in the cool spring months and also exhibited maximum photosynthetic rates at this time of year. To compete successfully with C3 species, Atriplex may have been forced to evolve the capacity for photosynthesis at low temperatures prevalent during the spring when moisture is most abundant. Maximum photosynthetic rates of Atriplex were lower than those of the C3 species. This was compensated by a prolonged period of low photosynthetic activity in the dry late summer months while Ceratoides became largely inactive. However, the annual photosynthetic carbon fixation per ground area was about the same in these two communities composed of C3 and C4 shrubs. The C4 species did not exhibit greater leaf diffusion resistance than the C3 species. The photosynthesis/transpiration ratios of the two species were about the same during the period of maximum photosynthetic rates in the spring. During the warm summer months the C4 species did have superior photosynthesis/transpiration ratios. Yet, since Ceratoides completed a somewhat greater proportion of its annual carbon fixation earlier in the season, the ratio of annual carbon fixation/transpiratory water loss in the two communities was about the same. Atriplex did incorporate a greater percentage of the annual carbon fixation into biomass production than did Ceratoides. However, this is considered to be a reflection of properties apart from the C4 photosynthetic pathway. Both species displayed a heavy commitment of carbon to the belowground system, and only about half of the annual moisture resource was utilized in both communities.  相似文献   

7.
Summary Plant and soil water relationships in a typical nebraska Sandhills prairie were examined to 1) explain the observed distribution patterns of several dominant grasses along a topographic gradient, and 2) show how spatial and temporal variations in soil moisture are critical to community organization on a sandy substrate. An experimental transect encompassing the major community and soil types along a steep, west-facing vegetated dune was established. Maximum available water was shown to be significantly higher in the fine textured surface soils of the lowland sites than the coarse textured sands of the dune sites. Seasonal (1979) patterns of available soil moisture of the sampling sites on the transect showed that in the upper elevation dune sands, moisture was available in the entire profile with surface depletions not occurring until mid to late summer. In contrast, moisture in the surface 60–80 cm in the fine textured lowland soils was exhausted by early to mid-summer with the entire profile nearly dry by late summer. Deep-rooted, C4 species, Andropogon hallii and Calamovilfa longifolia which are common on upper, coarser sandy soils showed significantly greater water stress on fine textured soils than on dune sands. C3, shallowrooted species, Agropyron smithii, Stipa comata, and Koeleria cristata always experienced lower mid-day and predawn leaf water potentials than the C4 species. The C3 species, with the exception of Koeleria are most abundant on finer textured soils that provide substantial moisture during their peak activity in the spring. It appears that the C4 species show more conservative water use patterns than the C3 species as significantly lower leaf conductances in the C4's were measured when soil water was abundant. The C3 species appear to be opportunistic with available water and rapidly deplete surface soil moisture as a result of high transpiration rates. These data suggest that the temporal and spatial distribution of available water along this gradient controls species distribution according to rooting morphology, photosynthetic physiology, and water deficits, incurred by transpirational losses. Competitive interactions between species that utilize soil moisture differently may be an important factor in community organization.  相似文献   

8.
Abstract Diurnal and seasonal water relations were measured in understorey species from a Banksia woodland. The shrubs exhibited various responses to summer drought. Stirlingia latifolia had high xylem pressure potential and transpiration in late summer. Adenanthos cygnorum maintained high xylem pressure potential year round with dawn values around ? 0.3 MPa and minimum values around ?1.3 MPa, but showed severe restriction of transpiration in late summer. Eremaea pauciflora and Jacksonia floribunda had high transpiration and xylem pressure potential levels in early summer, but exhibited water stress in late summer when transpiration rates were low and minimum xylem pressure potentials were as low as ? 5.5 MPa. Late summer xylem pressure potentials in 27 other shrub species were, in general, inversely related to root system depth with minimum values below ? 5.0 MPa in some species. The water relations of S. latifolia, E. pauciflora and J. floribunda indicated a phreatophytic habit: all possessed deep roots of sufficient size to reach groundwater that was located 6–7 m deep at the study site. Stirlingia latifolia functioned phreatophytically year round, while E. pauciflora and J. floribunda were phreatophytes until the falling water table carried ground-water beyond the reach of their roots in late summer. However, most understorey species depended on soil-stored water. Water use by the understorey was greatest in early summer.  相似文献   

9.
Seasonal variations in photosynthesis and water relations parameters were quantified for Myrica cerifera, the dominant woody species on the barrier islands along the eastern shore of Virginia. From June through September of 1989, maximum values were 35 μmol m−-2 sec−-1 for net CO2 assimilation, 10.5 mm sec−-1 for stomatal conductance to water vapor diffusion, and –0.3 MPa for xylem pressure potential at the field site on Hog Island. Midday minimum xylem pressure potential often was less than –1.5 MPa. Data from the field and measurements on glasshouse plants indicated that stomatal opening and photosynthesis were sensitive to leaf water potential (<–0.8 MPa) and the leaf-to-air humidity deficit (>1.5 kPa). Using meteorological data and derived photosynthetic responses, predictions indicated that M. cerifera photosynthesis would have been limited at the field site due to nonoptimal air temperatures and humidity deficits on at least 90% of the days during the relatively wet summer of 1989. By comparison, these parameters were expected to limit photosynthesis on all but 2 d, or more than 98% of the time during the relatively dry summer of 1990. The sensitivity of Myrica cerifera to atmospheric humidity and plant moisture status may explain the distributional preference for the more mesic swale sites of barrier islands.  相似文献   

10.
Summary Gas exchange characteristics of droughted and rewatered Portulacaria afra were studied during the seasonal shift from CAM to C3 photosynthesis. 14CO2 uptake, stomatal conductance, and total titratable acidity were determined for both irrigated and 2, 4, and 7.5 month waterstressed plants from summer 1984 to summer 1985. Irrigated P. afra plants were utilizing the CAM pathway throughout the summer and shifted to C3 during the winter and spring. Beginning in September, P. afra plants shifted from CAM to CAM-idling after 2 months of water-stress. When water-stress was initiated later in the fall, exogenous CO2 uptake was still measurable after 4 months of drought. After 7.5 months of stress, exogenous CO2 uptake was absent. The shift from CAM to CAM-idling or C3 in the fall and winter was related to when water stress was initiated and not to the duration of the stress. Gas exchange resumed within 24 h of rewatering regardless of the duration of the drought. In the winter and spring, rewatering resulted in a full resumption of daytime CO2 uptake. Whereas during the summer, rewatering quickly resulted in early morning CO2 uptake, but nocturnal CO2 uptake through the CAM pathway was observed after 7 days. Gas exchange measurements, rewatering characteristics, and transpirational water loss support the hypothesis that the C3 pathway was favored during the winter and spring. The CAM pathway was functional during the summer when potential for water loss was greater. Our investigations indicate that P. afra has a flexible photosynthetic system that can withstand long-term drought and has a rapid response to rewatering.  相似文献   

11.
We examined factors that limit diurnal and seasonal photosynthesis in Leymus cinereus, a robust tussock grass from shrub-steppes of western North America. Data from plants in a natural stand and in experimental field plots indicate that this bunchgrass has 1) a high photosynthetic capacity, 2) high leaf nitrogen content and high nitrogen-use efficiency, 3) a steep leaf-to-air diffusion gradient for carbon dioxide, which enhances intrinsic water-use efficiency, and 4) photosynthetic tissues that tolerate severe water stress and recover quickly from moderate water stress. Midday depressions of CO2 assimilation (A) and stomatal conductance were slight in plants with plentiful water, but marked in plants subject to moderate water stress. Midday stomatal closure in moderately stressed plants reduced intercellular carbon dioxide concentration (ci) by ≈40 μl liter-1. The maximum rate of A achieved during the day for severely stressed plants (predawn water potential = -4 MPa) was one-third and daily carbon gain per unit leaf area was about one-fourth that of well-watered plants. For plants in the natural stand, CO2-saturated photosynthesis declined almost linearly with decreasing soil water availability over the growing season, whereas there was little effect on A at CO2 ambient levels or on carboxylation efficiency until predawn water potentials reached -1.8 MPa. Nitrogen-use efficiency declined with diminishing soil moisture, but there was no seasonal change in stomatal limitation or instantaneous water-use efficiency as estimated from A vs. ci curves at optimal leaf temperature and moderate atmospheric evaporative demand. Thus, reduced stomatal conductance in response to increased evaporative demand may increase stomatal limitation diumally, but over the growing season, stomatal limitation estimated from A vs. ci curves is relatively constant because maximum stomatal conductance is closely tuned to the CO2 assimilatory capacity of the mesophyll.  相似文献   

12.
Most plants show considerable capacity to adjust their photosynthetic characteristics to their growth temperatures (temperature acclimation). The most typical case is a shift in the optimum temperature for photosynthesis, which can maximize the photosynthetic rate at the growth temperature. These plastic adjustments can allow plants to photosynthesize more efficiently at their new growth temperatures. In this review article, we summarize the basic differences in photosynthetic reactions in C3, C4, and CAM plants. We review the current understanding of the temperature responses of C3, C4, and CAM photosynthesis, and then discuss the underlying physiological and biochemical mechanisms for temperature acclimation of photosynthesis in each photosynthetic type. Finally, we use the published data to evaluate the extent of photosynthetic temperature acclimation in higher plants, and analyze which plant groups (i.e., photosynthetic types and functional types) have a greater inherent ability for photosynthetic acclimation to temperature than others, since there have been reported interspecific variations in this ability. We found that the inherent ability for temperature acclimation of photosynthesis was different: (1) among C3, C4, and CAM species; and (2) among functional types within C3 plants. C3 plants generally had a greater ability for temperature acclimation of photosynthesis across a broad temperature range, CAM plants acclimated day and night photosynthetic process differentially to temperature, and C4 plants was adapted to warm environments. Moreover, within C3 species, evergreen woody plants and perennial herbaceous plants showed greater temperature homeostasis of photosynthesis (i.e., the photosynthetic rate at high-growth temperature divided by that at low-growth temperature was close to 1.0) than deciduous woody plants and annual herbaceous plants, indicating that photosynthetic acclimation would be particularly important in perennial, long-lived species that would experience a rise in growing season temperatures over their lifespan. Interestingly, across growth temperatures, the extent of temperature homeostasis of photosynthesis was maintained irrespective of the extent of the change in the optimum temperature for photosynthesis (T opt), indicating that some plants achieve greater photosynthesis at the growth temperature by shifting T opt, whereas others can also achieve greater photosynthesis at the growth temperature by changing the shape of the photosynthesis–temperature curve without shifting T opt. It is considered that these differences in the inherent stability of temperature acclimation of photosynthesis would be reflected by differences in the limiting steps of photosynthetic rate.  相似文献   

13.
Larrea tridentata is a xerophytic evergreen shrub, dominant in the arid regions of the southwestern United States. We examined relationships between gasexchange characteristics, plant and soil water relations, and growth responses of large versus small shrubs of L. tridentata over the course of a summer growing season in the Chihuahuan Desert of southern New Mexico, USA. The soil wetting front did not reach 0.6 m, and soils at depths of 0.6 and 0.9 m remained dry throughout the summer, suggesting that L. tridentata extracts water largely from soil near the surface. Surface soil layers (<0.3 m) were drier under large plants, but predawn xylem water potentials were similar for both plant sizes suggesting some access to deeper soil moisture reserves by large plants. Stem elongation rates were about 40% less in large, reproductively active shrubs than in small, reproductively inactive shrubs. Maximal net photosynthetic rates (Pmax) occurred in early summer (21.3 mol m-2 s-1), when pre-dawn xylem water potential (XWP) reached ca. -1 MPa. Although both shrub sizes exhibited similar responses to environmental factors, small shrubs recovered faster from short-term drought, when pre-dawn XWP reached about -4.5 MPa and Pmax decreased to only ca. 20% of unstressed levels. Gas exchange measurements yielded a strong relationship between stomatal conductance and photosynthesis, and the relationship between leaf-to-air vapor pressure deficit and stomatal conductance was found to be influenced by pre-dawn XWP. Our results indicate that stomatal responses to water stress and vapor pressure deficit are important in determining rates of carbon gain and water loss in L. tridentata.  相似文献   

14.
Kocacinar F  Sage RF 《Oecologia》2004,139(2):214-223
Xylem structure and function is proposed to reflect an evolutionary balance between demands for efficient movement of water to the leaf canopy and resistance to cavitation during high xylem tension. Water use efficiency (WUE) affects this balance by altering the water cost of photosynthesis. Therefore species of greater WUE, such as C4 plants, should have altered xylem properties. To evaluate this hypothesis, we assessed the hydraulic and anatomical properties of 19 C3 and C4 woody species from arid regions of the American west and central Asia. Specific conductivity of stem xylem (Ks ) was 16%–98% lower in the C4 than C3 shrubs from the American west. In the Asian species, the C3 Nitraria schoberi had similar and Halimodendron halodendron higher Ks values compared with three C4 species. Leaf specific conductivity (KL ; hydraulic conductivity per leaf area) was 60%–98% lower in the C4 than C3 species, demonstrating that the presence of the C4 pathway alters the relationship between leaf area and the ability of the xylem to transport water. C4 species produced similar or smaller vessels than the C3 shrubs except in Calligonum, and most C4 shrubs exhibited higher wood densities than the C3 species. Together, smaller conduit size and higher wood density indicate that in most cases, the C4 shrubs exploited higher WUE by altering xylem structure to enhance safety from cavitation. In a minority of cases, the C4 shrubs maintained similar xylem properties but enhanced the canopy area per branch. By establishing a link between C4 photosynthesis and xylem structure, this study indicates that other phenomena that affect WUE, such as atmospheric CO2 variation, may also affect the evolution of wood structure and function.  相似文献   

15.
Summary Seasonal patterns of the responses of net photosynthesis, transpiration, leaf diffusive conductance, water-use efficiency and respiration to temperature, light and CO2 concentration were determined on intact plants of the short and tall height forms of Spartina alterniflora. The studies were conducted on in situ plants in an undisturbed marsh community on Sapelo Island, Ga. Net photosynthesis of the tall form at full sunlight was significantly higher than the short form except during the winter months. Tall S. alterniflora did not light saturate during any season, whereas the short form tended to saturate during all seasons except the summer. The temperature optima of photosynthesis of both forms were similar and showed acclimation to prevailing seasonal temperatures. Leaf conductances to water vapor decreased with increasing temperature and were significantly different between the height forms only at higher temperatures. Dark respiration was relatively low at seasonal temperatures, but increased with temperature. Dark respiration and the respiratory Q10 of the short form tended to be slightly higher than those of the tall form during all seasons. Transpiration rates and water-use efficiency of the tall form were generally higher than the short form.The seasonal response patterns showed intrinsic differences in the capacities of the height forms to metabolize CO2 and respond to prevailing environmental parameters. Analyses of the components of the CO2 diffusion pathway suggested that metabolic or internal components were more important than stomatal factors in determining the photosynthetic patterns of the short height form. It is suggested that the observed differences in the physiological responses of the height forms of the C4 species are due to micro-habitat differences between the low and high marsh. Higher salinity, lower nitrogen availability and other soil factors may limit the CO2 and water vapor exchange capacity of the short form compared to the tall.Contribution No. 401 from the University of Georgia Marine Institute  相似文献   

16.
Larrea divaricata, a desert evergreen shrub, has a remarkable ability to adjust its photosynthetic temperature response characteristics to changing temperature conditions. In its native habitat on the floor of Death Valley, California, plants of this C3 species when provided with adequate water are able to maintain a relatively high and constant photosynthetic activity throughout the year even though the mean daily maximum temperature varies by nearly 30 C from winter to summer. The temperature dependence of light-saturated net photosynthesis varies in concert with these seasonal temperature changes whereas the photosynthetic rate at the respective optimum temperatures shows little change.

Experiments on plants of the same age, grown at day/night temperatures of 20/15, 35/25, and 45/33 C with the same conditions of day length and other environmental factors, showed a similar photosynthetic acclimation response as observed in nature. An analysis was made of a number of factors that potentially can contribute to the observed changes in the temperature dependence of net CO2 uptake at normal CO2 and O2 levels. These included stomatal conductance, respiration, O2 inhibition of photosynthesis, and nonstomatal limitations of CO2 diffusive transport. None of these factors, separately or taken together, can account for the observed acclimation responses. Measurements under high saturating CO2 concentrations provide additional evidence that the observed adaptive responses are primarily the result of changes in intrinsic characteristics of the photosynthetic machinery at the cellular or subcellular levels. Two apparently separate effects of the growth temperature regime can be distinguished: one involves an increased capacity for photosynthesis at low, rate-limiting temperatures with decreased growth temperature, and the other an increased thermal stability of key components of the photosynthetic apparatus with increased growth temperature.

  相似文献   

17.
Abstract

Ecological aspects of C3, C4 and CAM photosynthetic pathways. - Three different photosynthetic CO2 fixation pathways are known to occur in higher plants. However all three pathways ultimately depend on the Calvin-Benson cycle for carbon reduction. The oxygenase activity of RuBP carboxilase is responsible for photorespiratory CO2 release. Both C4 and CAM pathways behave as a CO2 concentrating mechanism which prevent photorespiration. The CO2-concentrating mechanism in C4 plants is based on intracellular symplastic transport of C4 dicarboxylic acids from mesophyll-cells to the adjacent bundle-sheath cells. On the contrary in CAM plants the CO2-concentrating mechanism is based on the intracellular transport of malic acid into and out of the vacuole.

The C4 photosynthetic pathway as compared to the C3 pathway permits higher rates of CO2 fixation in high light and high temperature environments at low costs in terms of water loss, given the stability of the photosynthetic apparatus under such conditions.

CAM is interpreted as an adaptation to arid environments because it enables carbon assimilation to take place at very low water costs during the night when the evaporative demand is low. Nevertheless many aquatic species of Isoetes and some relatives are CAM, suggesting the adaptive role of CAM to environments which become depleted in CO2.

The photosynthetic carbon fixation pathway certainly contributes to the ecological success of plants in different environments. However the distribution of plants may also reflect their biological history. On the other hand plants with different photosynthetic pathways coexist in many communities and tend to share resources in time. In any case some generalizations are possible: C4 plants enjoy an ecological advantage in hot, moist, high light regions while the majority of species in desert environments are C3; CAM plants are more frequent in semiarid regions with seasonal rainfall, coastal fog deserts, and in epiphytic habitats in tropical rain forests.  相似文献   

18.
Summary The influence of irrigation and nitrogen fertilization in early summer on root and shoot growth of Atriplex confertifolia, a C4 shrub species, was examined in a cold-winter desert community in northern Utah. Soil water and xylem pressure potentials were monitored during the summer period.At the time of watering the surface soil (0–30 cm) was dry but there were turgid fine roots in this horizon. Watering of the soil reduced plant water stress from-30 to-15 bars (dawn values) indicating that roots near the surface were capable of absorbing water, and induced root growth in the 0–30 cm zone. The addition of N to the water treatment did not further increase root production. However, watering and watering +N fertilizer failed to stimulate shoot elongation or any dry weight increase of shoots. This shoot dormancy during summer is not typical of C4 plants and is probably associated with adaptation to the cool arid environment.This work was carried out while the senior author was on study leave from CSIRO  相似文献   

19.
Summary During the winter in greenhouse culture, Frerea indica(Asclepiadaceae) is a leafless stem succulent resembling the other members of the Stapelieae subfamily. However, in spring it produces leaves which persist during the summer period. CO2 exchange measurements were carried out with Frerea indica at its different seasonal states of development. The leafless stems in winter as well as the defoliated ones in summer show all characteristics of Crassulacean acid metabolism. The leaves, on the other hand, fix CO2 with high rates according to the C3 pathway; no diurnal malate fluctuations are detectable. This feature can be interpreted as an ecological adaptation where a seasonal plant dimorphism enables a functional change in the prevailing mode of CO2 metabolism. In the leafless state, which probably represents the appearance of the plant during the dry period in nature, it is saving water by pursuing CAM. The season with enough water available can be used for high photosynthetic gain by C3 leaves.  相似文献   

20.
The photosynthetic behavior of leaves and twigs was compared in Hymenoclea salsola T. and G., a subshrub of the Mohave and Sonoran deserts, in which both leaves and green twigs make substantial contributions to whole-plant carbon gain. Light saturated photosynthesis in twigs was 0.62 times that of leaves (36.9 μmol m-2 s-1) when plants were well watered. Similar ratios were consistently observed in contrasting the photosynthetic responses of the two organ types to light, temperature, and intercellular CO2, regardless of whether rates were compared under saturating or highly limiting conditions of light or intercellular CO2. These scalar differences in photosynthetic rate between leaves and green twigs under a wide range of conditions were correlated with contrasting anatomical features such as chlorenchyma volume per projected area. Under normal ambient CO2 concentrations (350 μl 1-1), twigs on well watered plants operated at lower intercellular CO2 concentrations than the leaves. Possible causes of this difference are discussed with respect to performance under well-watered conditions, organ lifespans, and contrasting anatomical constraints. Twigs require larger investments than do leaves of both carbon and nitrogen per projected area of the respective organs, yet they realize lower photosynthetic rates per intercepted light. Twigs, however, fulfill additional roles besides photosynthesis such as structural support and vascular transport which does not allow them to be as anatomically specialized as leaves for photosynthesis. Twigs also have a longer expected lifespan than leaves with a larger fraction of them surviving the summer drought period. This was correlated with a greater tolerance of twig than leaf photosynthesis to low plant water potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号