首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
cis-Diamminedichloroplatinum(II) (cis-DDP) has a broad clinical application as an effective anticancer drug. However, development of resistance to the cytotoxic effects is a limiting factor. In an attempt to understand the mechanism of resistance, we have employed a host cell reactivation assay of DNA repair using a cis-DDP-damaged plasmid vector. The efficiency of DNA repair was assayed by measuring the activity of an enzyme coded for by the plasmid vector. The plasmid expression vector pRSVcat contains the bacterial gene coding for chloramphenicol acetyltransferase (CAT) in a configuration which permits expression in mammalian cells. The plasmid was transfected into repair-proficient and -deficient Chinese hamster ovary cells, and CAT activity was subsequently measured in cell lysates. In the repair-deficient cells, one cis-DDP adduct per cat gene was sufficient to eliminate expression. An equivalent inhibition of CAT expression in the repair-proficient cells did not occur until about 8 times the amount of damage was introduced into the plasmid. These results implicate DNA intrastrand cross-links as the lesions responsible for the inhibition of CAT expression. This assay was used to investigate the potential role of DNA repair in mediating cis-DDP resistance in murine leukemia L1210 cells. The parent cell line L1210/0 resembled repair-deficient cells in that about one adduct per cat gene eliminated expression. In three resistant L1210 cell lines, 3-6-fold higher levels of damage were required to produce an equivalent inhibition. This did not correlate with the degree of resistance as these cells varied from 10- to 100-fold resistant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Enhanced survival of UV-irradiated human cytomegalovirus (HCMV) is demonstrated in normal human cells exposed to UV light prior to infection. The UV fluence that gave rise to maximum UV reactivation falls in the range of 15 J/m2. A large number of temperature-sensitive HCMV mutants were found under the peak of reactivation. These results confirm the existence of inducible SOS functions in human cells.  相似文献   

3.
S K Das 《Mutation research》1982,105(1-2):15-18
Herpes simplex virus type I (Strain KOS) is inactivated by treatment with MMS, MNNG and HN2 as determined by plaque assay on Vero cell monolayers, or by an infectious center assay with FS2 cells, human foreskin fibroblast line. At a given dose of MMS and MNNG, survival of the virus was significantly higher at a multiplicity of infection of 1.0 PFU/cell compared to 0.01 PFU/cell. These results indicate that HSV-1 infected human cells are capable of repairing chemically induced lesions by way of multiplicity reactivation. No evidence for multiplicity reactivation with HN2-treated virus could be obtained, however.  相似文献   

4.
5.
Cisplatin-based chemotherapy frequently resulted in acquired resistance of cancer cells. The underlying mechanism of such resistance is not fully understood especially the involvement of autophagy and autophagic cell death. This study thus investigated whether an alteration in autophagy could be responsible for cisplatin resistance in the long-term exposure lung carcinoma cells. The cisplatin resistant clone (H460/cis) of H460 cells was established by exposing the cells with gradually increasing concentrations of cisplatin until chemoresistance acquisition was elucidated by MTT, Hoechst 33342 staining and comet assays. Degree of autophagosome formation and level of LC3 marker were evaluated by acridine orange and western blot analysis, respectively. H460/cis cells exhibited irregular shape with ~3-fold resistant to cisplatin-induced apoptosis compared with H460 cells. Proteins analysis for LC3 indicated that the levels of LC3 in resistant cells were significantly lower than those in H460 cells. Moreover, autophagosome formation detected by acridine orange staining was dramatically reduced in the resistant cells, suggesting the role of autophagy in attenuating of cisplatin-induced cell death. Further, co-treatment of cisplatin with autophagy inducer, trifluorperazine, could resensitize H460/cis cells to cisplatin-induced cell death. Our findings reveal the novel mechanisms causing cisplatin resistance in lung carcinoma cells after long-term drug exposure regarding autophagy.  相似文献   

6.
Do host cell repair processes affect the mutagenesis of UV-irradiated virus in human cells? The answer was obtained by investigating the mutagenesis of UV-irradiated herpes simplex virus after the irradiated virus was grown in human cells that possess normal repair capacity (normal) or lack excision repair (XPA) or post-replication repair (XP var). Evidence is presented which indicate that XPA cells express no host cell reactivation, while XP var cells express the normal level. Viral mutagenesis was measured as the fraction of the progeny of the surviving virus capable of plaque formation in the presence of iododeoxycytidine. In the normal and XPA cells mutagenesis of the irradiated virus increased linearly with UV exposure. The UV exposure needed to yield a given mutagenesis level for virus grown in XPA cells was much lower than that for virus grown in normal cells. However, when the mutation frequencies were compared at similar virus survival levels, the data from virus grown in normal cells and in XPA cells were indistinguishable. Mutagenesis in XP var cells increased as dose squared and was similar in magnitude to that in normal cells. Thus the excision repair of normal cells which provided host cell reactivation by removing lethal UV damage also removed mutagenic lesions from the virus with the same efficiency, while the repair deficiency of XP var cells had a minor role in host cell reactivation and in mutagenesis. This demonstrates that in human cells host cell reactivation by excision repair is primarily an error-free process.  相似文献   

7.
Phenotypic reversion of SV40-transformed 3T3 cells by dimethylsulfoxide   总被引:2,自引:0,他引:2  
With dimethylsulfoxide (DMSO) (0.5 to 1.5%) in the medium, SV40-transformed 3T3 cells (SV3T3) changed morphologically from a round to a flat fibroblastic shape. The saturation density of the treated SV3T3 cells decreased and the generation time increased. These cells showed an increased anchorage dependency in soft agar. Hexose uptake by SV3T3 cells was reduced to the level in the parent 3T3 cells and susceptibility of the SV3T3 cells to concanavalin A (con A) also decreased. These phenotypes of transformed cells appeared to change concomitantly from the transformed toward the normal state with the increase of DMSO concentration.  相似文献   

8.
This study demonstrates that whilst some DNA-repair deficiencies can be detected using host cell reactivation of cisplatin (CDDP)-treated adenovirus (Ad5), not all repair deficiencies affected replication of CDDP-treated Ad5 in human cells. A line of fibroblasts (XP25), derived from a patient with a UV-hypersensitive syndrome xeroderma pigmentosum (XP), was found, as previously reported [1], to be deficient in reactivating the treated virus when compared to the apparently repair-proficient human tumor cell lines established from bladder and ovarian carcinomas. However, a testicular teratoma cell line (SuSa), shown previously to be deficient in the repair of guanine-guanine (G-G) intrastrand crosslinks, adenine-guanine (A-G) intrastrand crosslinks and interstrand crosslinks [2], was found to reactivate the treated virus to a similar extent as the repair-proficient ovarian tumor cell line and the similarly repair-proficient RT112 cell line derived from a bladder carcinoma. Therefore, not all repair-deficient cell lines were deficient at CDDP-treated Ad5 reactivation. However, the HCR technique may still prove to be useful as a rapid screen for DNA-repair deficiencies in CDDP-sensitive cells of unknown repair capacity. A CDDP-sensitive ovarian tumor cell line (TR175) was deficient in reactivating CDDP-treated Ad5, whilst another ovarian cell line (TR170) of intermediate CDDP sensitivity reactivated the virus to a marginally higher extent than the other more CDDP-resistant repair proficient ovarian cell line (SKOV3). In addition, sublines of either the SuSa cells or the RT112 cells expressing approximately two-fold levels of resistance or increased sensitivity to CDDP, showed no change in their abilities to reactivate this CDDP-treated virus, compared to their parental lines. CDDP-treated Ad5 was also used as a lethal probe to obtain cell lines specifically deficient in DNA repair. One such deficient line (SKOV3-C3A), derived from the SKOV3 ovarian carcinoma cell line, displayed an unusual biphasic curve for reactivation of the CDDP-treated virus. Further cell lines derived in this novel manner may prove useful in analysing the genetics of CDDP-repair.  相似文献   

9.
Ahn B  Kang D  Kim H  Wei Q 《Molecules and cells》2004,18(2):249-255
DNA repair capacity in a cell could be detected by a host-cell reactivation assay (HCR). Since relation between DNA repair and genetic susceptibility to cancer remains unclear, it is necessary to identify DNA repair defects in human cancer cells. To assess DNA repair for breast cancer susceptibility, we developed a modified HCR assay using a plasmid containing a firefly luciferase gene damaged by mitomycin C (MMC), which forms interstrand cross-link (ICL) adducts. In particular, interstrand cross-link is thought to induce strand breaks being repaired by homologous recombination. The MMC-ICLs were verified by electrophoresis. Damaged plasmids were transfected into apparently normal human lymphocytes and NER-deficient XP cell lines and the DNA repair capacity of the cells were measured by quantifying the activity of the firefly luciferase. MMC lesion was repaired as much as UV adducts in normal lymphocytes and the XPC cells. However, the XPA cells have a lower repair capacity for MMC lesion than the XPC cell, indicating that the XPA protein may be involved in initial damage recognition of MMC-ICL adducts. Since several repair pathways including NER and recombination participate in MMC-ICL removal, this host cell reactivation assay using MMC-ICLs can be used in exploring DNA repair defects in human cancer cells.  相似文献   

10.
The adenosine triphosphate binding cassette (ABC)-transporter ABCC2 (MRP2/cMOAT) can mediate resistance against the commonly used anticancer drugs cisplatin and paclitaxel. To overcome the ABCC2-depending drug resistance, two specific anti-ABCC2 small interfering RNAs (siRNAs) were designed for transient triggering of the gene-silencing RNA interference (RNAi) pathway in the cisplatin-resistant human ovarian carcinoma cell line A2780RCIS. Since both siRNAs showed biological activity, for stable inhibition of ABCC2 a corresponding short hairpin RNA (shRNA)-encoding expression vector was designed. By treatment of A2780RCIS cells with this construct, the expressions of the targeted ABCC2 encoding mRNA and transport protein were inhibited. These effects were accompanied by reversal of resistance against cisplatin and paclitaxel. Thus, the data demonstrate the utility of the analyzed RNAs as powerful laboratory tools and indicate that siRNA- and shRNA-mediated RNAi-based gene therapeutic approaches may be applicable in preventing and reversing ABCC2-depending drug resistance.  相似文献   

11.
12.
Cisplatin analogues with an attached DNA binding moiety have a higher affinity for DNA, but often suffer from poor aqueous solubility. In this study we examined the DNA sequence specificity of more soluble cisplatin analogues containing the maltolato leaving group in both purified DNA and in intact human cells. In both environments the DNA sequence specificity of these analogues was very similar to cisplatin. However, in purified DNA a higher concentration of the two maltolato-containing analogues was needed to achieve a similar level of DNA damage as cisplatin. This difference in reactivity was not observed in intact cells as the two maltolato-containing complexes were capable of producing a similar level of damage as cisplatin at comparable concentrations. This was consistent with the IC50 values obtained for both cisplatin and the maltolato compounds which were also similar. This study indicated that maltolato can be utilised as the leaving group to increase the aqueous solubility of cisplatin analogues without reducing their biological activity.  相似文献   

13.
Intrinsic or acquired resistance to cisplatin in cancer cells remains a major obstacle to successful chemotherapy. The clinically relevant genetic and molecular mechanisms of resistance have not yet been identified. Cisplatin-resistant (CP-r) human KB epidermoid carcinoma cell lines (HeLa) resistant to varying levels of cisplatin after single and multiple selection steps are cross-resistant to other platinum compounds and to methotrexate. Intraspecies hybrids of the sensitive and KB CP-r cells were fused with HeLa D98(OR) CP-s, hypoxanthine-aminopterin-thymidine (HAT) sensitive, ouabain resistant, to determine whether cisplatin resistance is dominant or recessive. Cell-cell hybridization between the sensitive cells and single-step or two-step KB CP-r cells both indicated codominance of cisplatin resistance compared to hybrids between sensitive cell lines (D98(OR)xKB). The hybrids between sensitive cell lines (D98xKB) and a single-step CP-r KB cell line (D98xKB-CP.5) also were cross-resistant to carboplatin and methotrexate. In addition, the relatively slower growth rate of CP-r cells appears to be dominant. In the two-step CP-r KB cell line, KB-CP1, resistance is no more dominant than in the single-step CP-r KB cell line, KB-CP.5, suggesting that one of the two steps of resistance in KB-CP1 may not be dominant. These dominance data suggest that it might be possible to identify one or more genes responsible for cisplatin resistance by gene transfer from a resistant cell line to a sensitive cell line.  相似文献   

14.
15.
目的 研究改构型酸性成纤维细胞生长因子(MaFGF)对顺铂(DDP)引起的体外培养的肾小管上皮细胞损害的保护作用。方法 将原代培养的肾小管上皮细胞接种于96孔培养板:(1)培养72h后加入一系列浓度的DDP,实验组在DDP作用12h后加入不同浓度MaFGF,再培养36h后用WST-8法检测细胞存活率。(2)以DDP建立损伤模型,并在加药后12小时加入一定量的MaFGF,观察MaFGF对肾小管上皮细胞的保护作用。结果 (1) MaFGF能使DDP对肾小管上皮细胞的半数抑制浓度(IC50)升高。(2)DDP组与对照组比较,各生化和酶学指标差异均有统计学意义;而MaFGF + DDP组与对照组比较,SOD、GSH-Px酶活性差异无统计学意义,MDA、NO升高差异仍有统计学意义。结论 MaFGF对DDP损伤的肾小管上皮细胞有明显的保护作用。  相似文献   

16.
We previously described the isolation of colcemid resistant Chinese hamster ovary cell lines containing alpha- and beta-tubulin mutations that increase microtubule assembly and stability. By analyzing colcemid sensitive revertants from one of the beta-tubulin mutants, we now find that loss or inactivation of the mutant allele represents the most common mechanism of reversion. Consistent with this loss, the revertants have 35% less tubulin at steady state, no evidence for the presence of a mutant polypeptide, and a normal extent of tubulin polymerization. In addition to the loss of colcemid resistance, the revertant cells exhibit increased resistance to paclitaxel relative to wild-type cells. This paclitaxel resistance can be suppressed by transfecting the revertant cells with a cDNA for wild-type beta-tubulin, indicating that the reduction in tubulin in the revertant cells is responsible for the resistance phenotype. We propose that reducing tubulin levels may represent a novel mechanism of paclitaxel resistance.  相似文献   

17.
While multiple changes are frequently found to be associated with cisplatin resistance in a variety of tumor cell lines, a cause-effect relationship of these alterations with the resistant phenotype has not been established. In order to identify the resistance-relevant determinants, a series of cisplatinresistant sublines with different degrees of resistance to cisplatin was developed in a human ovarian carcinoma cell line (O-129). Three derived resistant cell lines displayed 2.1-fold (O-129/DDP4, low), 4.1-fold (O-129/DDP8, moderate) and 6.3-fold (O-129/DDP16, high) resistance, respectively, to cisplatin, compared with the sensitive parental line O-129. While the activity of poly(ADP-ribose) polymerase, an enzyme proposed to be involved in DNA repair, was elevated in all three resistant lines, a significant karyotypic change was observed only in the high-resistance line with the karyotype alteration from near diploidy to heteroploidy. The moderate (4.1-fold) and high (6.3-fold) DDP resistance was associated with a slow proliferation rate in drug-free medium, but cellular glutathione level was highly correlated with DDP sensitivity in all four cell lines. Taken together, the present studies establish that while many changes at cellular level can occur with development of cisplatin resistance, only elevation of intracellular glutathione concentration appears to be related to the resistance phenotype in these human ovarian cancer cells.Abbreviations DDP cisplatin - FBS fetal bovine serum - GSH glutathione - IC50 drug concentration required to result in 50% growth inhibition - PARP poly(ADP-ribose) polymerase  相似文献   

18.

Background

Down regulation of genes coding for nucleoside transporters and drug metabolism responsible for uptake and metabolic activation of the nucleoside gemcitabine is related with acquired tumor resistance against this agent. Hydralazine has been shown to reverse doxorubicin resistance in a model of breast cancer. Here we wanted to investigate whether epigenetic mechanisms are responsible for acquiring resistance to gemcitabine and if hydralazine could restore gemcitabine sensitivity in cervical cancer cells.

Methodology/Principal Findings

The cervical cancer cell line CaLo cell line was cultured in the presence of increasing concentrations of gemcitabine. Down-regulation of hENT1 & dCK genes was observed in the resistant cells (CaLoGR) which was not associated with promoter methylation. Treatment with hydralazine reversed gemcitabine resistance and led to hENT1 and dCK gene reactivation in a DNA promoter methylation-independent manner. No changes in HDAC total activity nor in H3 and H4 acetylation at these promoters were observed. ChIP analysis showed H3K9m2 at hENT1 and dCK gene promoters which correlated with hyper-expression of G9A histone methyltransferase at RNA and protein level in the resistant cells. Hydralazine inhibited G9A methyltransferase activity in vitro and depletion of the G9A gene by iRNA restored gemcitabine sensitivity.

Conclusions/Significance

Our results demonstrate that acquired gemcitabine resistance is associated with DNA promoter methylation-independent hENT1 and dCK gene down-regulation and hyper-expression of G9A methyltransferase. Hydralazine reverts gemcitabine resistance in cervical cancer cells via inhibition of G9A histone methyltransferase.  相似文献   

19.
Hepatomas thrive in a hypoxic environment resulting in the induction of a cluster of hypoxia related genes. The protein phenotypic expression include hypoxia inducible factor-alpha, prolyl-4-hydroxylase, vascular endothelear growth factor and erythropoietin. The present study was undertaken to determine if human hepatoma cells when cultured for 72 h in the presence of serum under normoxia would maintain their cancerous phenotypic expression of certain hypoxia inducible genes. Our positive results affords an in vitro model system to test hypoxia inhibitors on the expression and the intracellular compartmentalization or the secretion of these hypoxia-inducible proteins.  相似文献   

20.
Phenotypic transformation of the host cell affected the formation of polyoma pseuodovirions. Polyoma virus infection of various transformed derivatives of mouse 3T3 cells resulted in the formation of predominantly pseudovirions, whereas infection of mouse 3T3 cells produced mainly polyoma virus. The effect that transformation of the host cell had on polyoma pseudovirus formation was further demonstrated by using phenotypic revertants isolated from some of the transformed cell lines. The revertants were characterized by their morphology, saturation densities, and colony-forming ability in methylcellulose suspension. By these criteria they were distinct from their transformed parents and similar to 3T3 cells. After infection, the revertants produced predominantly polyoma virus and few pseudovirus. Thus, for the cell lines used in this study, phenotypic transformation enhanced the formationof polyoma pseudovirions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号