首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A number of defined desiccation treatments without low temperature exposure were able to induce freezing tolerance in 20 cultivars of winter cereals. A maximal degree of freezing tolerance was induced in epicotyls at 24°C in 24 hours at 40% relative humidity in rye and wheat, 7 days at 54% RH in barley, and 4 days at 70% RH in oats. Freezing tolerance was not correlated to water content of the plants after desiccation treatment but was related to the genetic capacity of the cultivars to frost harden. Levels of freezing tolerance induced by desiccation were similar to those induced by cold acclimation in rye and wheat, but considerably less in barley and oats. This is associated with a more rapid desiccation injury in barley and oats, precluding the completion of the hardening process.  相似文献   

3.
We investigated whether cold acclimation leads to increased activity of the antioxidant defense enzymes and muscle injury. Comparisons were between short track skaters (n=6) and inline skaters (n=6) during rest and at submaximal cycling (65% VO2max) in cold (ambient temperature: 5+/-1 degrees C, relative humidity: 41+/-8%) and warm conditions (ambient temperature: 21+/-1 degrees C, relative humidity: 35+/-5%), during 60 min, respectively, and during the recovery phase. Erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHpx), reduced glutathione (GSH), thiobarbituric substance acid (TBARS), serum creatine kinase (CK), lactate dehydrogenase (LDH), plasma myoglobin (Mb) and cortisol were determined. Activities of CAT and GSHpx and the level of GSH and TBARS in erythrocyte and the level of LDH in serum were elevated in cold acclimated subjects. We suggested that the compensatory increase in antioxidative defense enzymes resulting from long-term cold exposure may reflect the elevated reactive oxygen species (ROS) production and muscle injury at this environment acclimation.  相似文献   

4.
5.
Cold injury is frequently seen in the commercially important shrub Hydrangea macrophylla but not in Hydrangea paniculata. Cold acclimation and deacclimation and associated physiological adaptations were investigated from late September 2006 to early May 2007 in stems of field-grown H. macrophylla ssp. macrophylla (Thunb.) Ser. cv. Blaumeise and H. paniculata Sieb. cv. Kyushu. Acclimation and deacclimation appeared approximately synchronized in the two species, but they differed significantly in levels of mid-winter cold hardiness, rates of acclimation and deacclimation and physiological traits conferring tolerance to freezing conditions. Accumulation patterns of sucrose and raffinose in stems paralleled fluctuations in cold hardiness in both species, but H. macrophylla additionally accumulated glucose and fructose during winter, indicating species-specific differences in carbohydrate metabolism. Protein profiles differed between H. macrophylla and H. paniculata, but distinct seasonal patterns associated with winter acclimation were observed in both species. In H. paniculata concurrent increases in xylem sap abscisic acid (ABA) concentrations ([ABA](xylem)) and freezing tolerance suggests an involvement of ABA in cold acclimation. In contrast, ABA from the root system was seemingly not involved in cold acclimation in H. macrophylla, suggesting that species-specific differences in cold hardiness may be related to differences in [ABA](xylem). In both species a significant increase in stem freezing tolerance appeared long after growth ceased, suggesting that cold acclimation is more regulated by temperature than by photoperiod.  相似文献   

6.
7.
8.
Summary Seed of four inbred sweet corns and one dent hybrid corn were presoaked in tap water prior to receiving 60°F and 40°F treatment. Pre-soaking did not alter their behaviour to cold treatment, although on transference to the warmth, germination was slightly more rapid after pre-soaking.  相似文献   

9.
Summary Growth responses of Frankia isolates to decreasing water potential were monitored in systems where potentials were controlled by KCl, NaCl and Polyethylene glycol. The highest potential tested was −2 bar (basal medium). The general pattern emerging was that isolates fromAlnus glutinosa, A. viridis andComptonia peregrina showed declining growth at potentials below −2 to −5 bar. AMyrica gale isolate showed declining growth with decreasing potential. All isolates were more sensitive to decreases in potential in a matric controlled than an osmotic controlled system. They all showed approximately 50 percent growth reduction at −5 to −8 bar, and meagre growth at −16 bar after 35 days. The Comptonia isolate was the most vigorous at low potentials. Nitrogen fixation ability was monitored for two isolates. Highest specific activities were observed between −3 and −5 bar for the Myrica isolate and between −5 and −7.5 bar for theA. glutinosa isolate.  相似文献   

10.
Soluble proteins in alfalfa roots as related to cold hardiness   总被引:7,自引:6,他引:1       下载免费PDF全文
Soluble proteins extracted from alfalfa roots of hardy and nonhardy varieties were studied in relation to cold hardiness with polyacrylamide gel electrophoresis and quantitative enzyme analysis. Soluble protein content of alfalfa roots increased during hardening in all varieties. Two new isoenzymes with peroxidase activities were found in the fully hardened samples but no large shifts in the electrophoretic pattern were detected with polyacrylamide gel electrophoresis. Peroxidase and catalase activities increased during hardening in all varieties, but only small differences among hardy and nonhardy varieties were detectable. The studies indicated that protein metabolism was altered during the hardening process.  相似文献   

11.
Craft CC 《Plant physiology》1966,41(10):1662-1666
Oxygen uptake and tetrazolium reduction occurred at higher rates in discs from potato tubers (Solanum tuberosum L.) stored at 0° than in discs from tubers stored at 12.8°. Tetrazolium reduction was at a higher rate in mitochondrial fractions from tubers stored at 0° than in mitochondrial fractions from tubers stored at 12.8°. These physiological activities were more resistant to hypertonic KCl treatments in tissue and mitochondrial fractions from tubers stored at 0° than in tissue and mitochondrial fractions from tubers stored at 12.8°. Inhibition of O2 uptake and tetrazolium reduction progressively increased with increasing concentrations of KCl for tissue and mitochondrial fractions from tubers stored at 0 and 12.8°, but inhibition was more severe and occurred at lower concentrations of KCl for the material from tubers stored at 12.8°. Tissue from tubers stored at 0° was at the same time more sensitive to hypotonic solutions and more resistant to hypertonic solutions than corresponding tissue from tubers stored at 12.8°. Adaptive changes brought on in the tubers by the stress of cold storage were demonstrated in the discs and mitochondrial fractions prepared from cold-stored tubers.  相似文献   

12.
Studies of stem water in red-osier dogwood (Cornus stolonifera Michx.) using nuclear magnetic resonance spectroscopy indicated that most freezing occurs at temperatures above −30 C in cold-hardy and tender stems. Hardy and tender stems had about the same amount of unfrozen water at −40 C (0.28 gram of water per gram dry weight). When hardy stems were slowly cooled below −20 C, the temperature below which little additional freezing occurs, they survived direct immersion in liquid N2 (−196 C). Fully hardy samples not slowly precooled to at least −15 C did not survive direct immersion in liquid N2. The results support the hypothesis that cooling rate is an unimportant factor in tissue survival at and below temperatures where there is little freezable water.  相似文献   

13.
The rate of ice formation was measured for Hedera helix L. cv. Thorndale (English ivy) bark exposed to -10 C. The cooling rate of bark exposed to -10 C was 31 C per minute. The water efflux rate required for ice formation to occur extracellularly was calculated from the rate of ice formation and the average cell diameter. The water potential difference driving the efflux of water to sites of extracellular ice was calculated from the sample temperature, osmotic water potential, and fraction of water frozen at a given freezing temperature. From the water efflux rate and water potential difference, the resistance of the barrier controlling movement of intracellular water to sites of extracellular ice was calculated. Comparison of the resistance of this barrier to water movement with the resistance of the cell membrane revealed that the membrane represented only 0.5% of the barrier resistance. Thus, membrane resistance can have little influence on the rate of water efflux and ice formation when bark is cooled at a rate of 31 C per minute. If ice formation occurred at the same rate in ivy bark as it occurred in a 10 mm MnCl(2) solution, the membrane resistance would still have represented only 1% of the resistance of the barrier to ice formation. Therefore, at a cooling rate of 31 C/minute, heat removal plays a large part in determining the rate of ice formation. At slower cooling rates experienced under natural freezing conditions the ability to remove heat would play an even larger role. It is concluded that under natural freezing conditions membrane resistance does not limit water efflux.  相似文献   

14.
Temperature sensing and cold acclimation   总被引:12,自引:0,他引:12  
The fundamental question in cold acclimation is how do plants perceive the low but nonfreezing temperatures that activate cold acclimation responses. New findings in the past year suggest that changes in membrane fluidity, cytoskeleton rearrangement, and calcium influxes are among the earliest events taking place in plants upon exposure to low nonfreezing temperatures. In the cyanobacterium Synechocystis PCC6803, temperature change is detected by at least two separate sensors. One of these measures membrane fluidity using a classical two-component system involving histidine kinases and a response regulator in a His-to-Asp phosphorelay. Although these Synechocystis results may not be directly relevant to cold acclimation, they can guide our thinking as we search for biological thermometers in higher plants.  相似文献   

15.
The long day leaf as a source of cold hardiness inhibitors   总被引:6,自引:6,他引:0       下载免费PDF全文
Short photoperiods followed by low temperatures induced cold hardiness in Acer negundo, Viburnum plicatum tomentosum, and Weigela florida. Hardiness was also obtained under long days and natural fall temperatures if the leaves were removed, either manually or by low temperature. Similarly, removal of leaves from plants exposed to long days at 5° brought about an accelerated rate of hardening. These observations suggested the presence of a hardiness inhibitor in the leaves which was counteracted by short days or removal of the leaves.  相似文献   

16.
Effects of low‐temperature stress, cold acclimation and growth at high irradiance in a spring (Triticum aestivum L. cv. Katepwa) and a winter wheat (Triticum aestivum L. cv. Monopol) were examined in leaves and crowns with respect to the sucrose utilisation and carbon allocation. Light‐saturated and carbon dioxide (CO2)‐saturated rates of CO2 assimilation were decreased by 50% in cold‐stressed spring and winter wheat cultivars. Cold‐ or high light‐acclimated Katepwa spring wheat maintained light‐saturated rates of CO2 assimilation comparable to those of control spring wheat. In contrast, cold‐ or high light‐acclimated winter wheat maintained higher light and CO2‐saturated rates of CO2 assimilation than non‐acclimated controls. In leaves, during either cold stress, cold acclimation or acclimation to high irradiance, the sucrose/starch ratio increased by 5‐ to 10‐fold and neutral invertase activity increased by 2‐ to 2.5‐fold in both the spring and the winter wheat. In contrast, Monopol winter wheat, but not Katepwa spring wheat, exhibited a 3‐fold increase in leaf sucrose phosphate synthase (SPS) activity, a 4‐fold increase in sucrose:sucrose fructosyl transferase activity and a 6.6‐fold increase in acid invertase upon cold acclimation. Although leaves of cold‐stressed and high light‐grown spring and winter wheat showed 2.3‐ to 7‐fold higher sucrose levels than controls, these plants exhibited a limited capacity to adjust either sucrose phosphate synthase or sucrose synthase activity (SS[s]). In addition, the acclimation to high light resulted in a 23–31% lower starch abundance and no changes at the level of fructan accumulation in leaves of either winter or spring wheat when compared with controls. However, high light‐acclimated winter wheat exhibited a 1.8‐fold higher neutral invertase activity and high light‐acclimated spring wheat exhibited an induction of SS(d) activity when compared with controls. Crowns of Monopol showed higher fructan accumulation than Katepwa upon cold and high light acclimation. We suggest that the differential adjustment of CO2‐saturated rates of CO2 assimilation upon cold acclimation in Monopol winter wheat, as compared with Katepwa spring wheat, is associated with the increased capacity of Monopol for sucrose utilisation through the biosynthesis of fructans in the leaves and subsequent export to the crowns. In contrast, the differential adjustment of CO2‐saturated rates of CO2 assimilation upon high light acclimation of Monopol appears to be associated with both increased fructan and starch accumulation in the crowns.  相似文献   

17.
The influence of heat acclimation on skeletal muscle metabolism during submaximal exercise was studied in 13 healthy men. The subjects performed 30 min of cycle exercise (70% of individual maximal O2 uptake) in a cool [21 degrees C, 30% relative humidity (rh)] and a hot (49 degrees C, 20% rh) environment before and again after they were heat acclimated. Aerobic metabolic rate was lower (0.1 l X min-1; P less than 0.01) during exercise in the heat compared with the cool both before and after heat acclimation. Muscle and plasma lactate accumulation with exercise was greater (P less than 0.01) in the hot relative to the cool environment both before and after acclimation. Acclimation lowered (P less than 0.01) aerobic metabolic rate as well as muscle and plasma lactate accumulation in both environments. The amount of muscle glycogen utilized during exercise in the hot environment did not differ from that in the cool either before or after acclimation. These findings indicate that accumulation of muscle lactate is increased and aerobic metabolic rate is decreased during exercise in the heat before and after heat acclimation; increased muscle glycogen utilization does not account for the increased muscle lactate accumulation during exercise under extreme heat stress; and heat acclimation lowers the aerobic metabolic rate and muscle and blood lactate accumulation during exercise in a cool as well as a hot environment.  相似文献   

18.
Environmental stress generally disturbs cellular homeostasis. Researchers have hypothesized that chilling injury is linked to a shortage of ATP. However, previous studies conducted on insects exposed to nonfreezing low temperatures presented conflicting results. In this study, we investigated the mitochondrial bioenergetics of Drosophila melanogaster flies exposed to chronic cold stress (4 °C). We assessed mitochondrial oxygen consumption while monitoring the rate of ATP synthesis at various times (0, 1, 2, and 3 days) during prolonged cold stress and at two assay temperatures (25 and 4 °C). We compared organelle responses between cold-susceptible and cold-acclimated phenotypes. Continuous exposure to low temperature provoked temporal declines in the rates of mitochondrial respiration and ATP synthesis. Respiratory control ratios (RCRs) suggested that mitochondria were not critically uncoupled. Nevertheless, after 3 days of continuous cold stress, a sharp decline in the mitochondrial ATP synthesis rate was observed in control flies when they were assayed at low temperature. This change was associated with reduced survival capacity in control flies. In contrast, cold-acclimated flies exhibited high survival and maintained higher rates of mitochondrial ATP synthesis and coupling (i.e., higher RCRs). Adaptive changes due to cold acclimation observed in the whole organism were thus manifested in isolated mitochondria. Our observations suggest that cold tolerance is linked to the ability to maintain bioenergetics capacity under cold stress.  相似文献   

19.
Three screening methods—visual scoring (V), relative conductivity (C) and fluorometry (F)—were used to study the genetic variation in cold hardiness among six populations of maritime pine (Pinus pinaster Ait.) comprising both Atlantic and Mediterranean origins. Freezing damage assessments were carried out in three organs—needles, stems and buds—in two seasons, spring and autumn. We found high levels of genetic differentiation among populations for cold hardiness in autumn, but not in spring. Within populations, differences were always significant (p?<?0.05) no matter which organ or screening method was used. Measuring F was the fastest and most easily replicated method to estimate cold hardiness and was as reliable as V and C for predicting the species performance. In autumn, there was a positive correlation between the damage measured in all three types of organs assessed, whereas in spring, correlation among organs was weak. We conclude that sampling date in spring has a crucial impact to detect genetic differences in maritime pine populations, whereas autumn sampling allows more stable comparisons. We also conclude that the fluorometry method provides a more efficient and stable comparison of cold hardiness in maritime pine.  相似文献   

20.
Diurnal patterns of whole-plant and leaf gas exchange and 14C-export of winter wheat acclimated at 20 and 5°C were determined. The 5°C-acclimated plants had lower relative growth rates, smaller biomass and leaf area, but larger specific leaf weight than 20°C plants. Photosynthetic rates in 20°C and 5°C-acclimated leaves were similar; however, daytime export from 5°C-acclimated leaves was 45% lower. Photosynthesis and export remained steady in 20°C and 5°C-acclimated leaves during the daytime. By comparison, photosynthesis in 5°C-stressed leaves (20°C-acclimated plants exposed to 5°C 12 h before and during measurements) declined from 70 to 50% of the 20°C-acclimated leaves during the daytime, while export remained constant at 35% of the 20°C-acclimated and 60% of the 5°C-acclimated leaves. At high light and CO2, photosynthesis and export increased in both 20°C and 5°C-acclimated leaves, but rates in 5°C-stressed leaves remained unchanged. At all conditions daytime export was greater than nighttime export. Taken together, during cold acclimation photosynthesis was upregulated, whereas export was only partially increased. We suggest that this reflects a requirement of cold-acclimated plants to both sustain an increased leaf metabolic demand while concomitantly supporting translocation of photoassimilates to overwintering sinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号