首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A weighted averaging (WA) regression and calibration model for diatoms and total phosphorus (TP) was developed from a dataset of 45 surface‐sediment samples from Swedish lakes. Jack‐knifed error statistics were comparable with those for similar diatom–TP datasets: r2jack=0.47, root mean squared error of prediction (RMSEP)=0.24 log10μg TP L–1 and mean bias=–0.002 log10 μg TP L–1 for the simple WA model; r2jack=0.36, RMSEP=0.27 log10 μg TP L–1 and mean bias=0.017 log10 μg TP L–1 for WA with tolerance downweighting. 2. The model was used to estimate TP concentrations for the Ekoln basin of Lake Mälaren using a 210Pb‐dated sediment core record. Highly eutrophic conditions developed in the basin in the 1960s as a result of nutrient inputs from cultivated land and the city of Uppsala. A reduction in the supply of phosphorus from sewage outlets in the late 1960s resulted in less eutrophic conditions. 3. The model results indicated levels of 50–60 μg TP L–1 prior to 1900. The rapid eutrophication of the lake basin after the 1950s and the subsequent recovery were evident from the diatom data. 4. Diatom‐inferred TP (DI–TP) values were validated by comparison with monitored data for the period 1966–95. The diatom model tended to underestimate TP at high levels (> 80 μg L–1) but overestimate at lower concentrations. 5. A good agreement was observed between the trends in TP concentration and the DI–TP concentration and the timing of the maximum was well reflected by the diatom‐based reconstruction. A significant correlation (r2=0.69, P < 0.01) was found between DI–TP and measured TP at this site.  相似文献   

2.
1. The release of total phosphorus (TP) and nitrogen (N in ammonium) was measured for the five most abundant fish species (>85% of biomass) in Mouse and Ranger Lakes, two biomanipulated, oligotrophic lakes in Ontario. 2. The specific release rate of both nutrients was significantly related to fish mass; log10 TP release rate (μg h?1) = 0.793 (±0.109) [log10 wet mass (g)] + 0.7817 (±0.145), and log10 N release rate (μg h?1) = 0.6946 (±0.079) [log10wet mass (g)] + 1.7481 (±0.108). 3. When fish nutrient release was standardized for abundance (all populations, 1993–95) and epilimnetic volume, fish were estimated to contribute 0.083 (±0.061) μg TP L?1 day?1, and 0.41 (±0.17) μg N L?1 day?1 in Mouse L., and 0.062 (±0.020) μg TP L?1 day?1 and 0.31 (±0.08) μg N L?1 day?1 in Ranger L. 4. In comparison, concurrent rates of total planktonic P regeneration were 1.02 (±0.45) μg L?1 day?1 (Mouse L.) and 0.85 (±0.19) μg L?1 day?1 (Ranger L.). Fish represented 8% of planktonic P release in Mouse L. and 7% in Ranger L. 5. Fish dry mass had mean elemental body compositions of 39.3% carbon, 10.9% nitrogen, and 4.0% phosphorus (all fish combined), with a mean molar C : N : P ratio of 27 : 6 : 1. This comprised about 55% and 23% of the total epilimnetic particulate P and N respectively. 6. Turnover times of P and N in fish were approximately 103 and 48 days respectively. In comparison, planktonic turnover times of particulate P in Mouse and Ranger Lakes were 4.3 and 4.4 days respectively. Given their high P content and low turnover rates, fish appear to be important P sinks in lakes.  相似文献   

3.
1. Limnologists have long acknowledged the importance of phosphorus (P) in determining the organism biomass and productivity of lake ecosystems. Despite a relatively large number of studies that have examined P cycling in lake ecosystems, there remain several substantial methodological issues that have impeded our understanding of P cycling in limnetic plankton communities. Two critical issues confronting ecologists are (1) a lack of precise measurements of the dissolved inorganic phosphorus (PO) and (2) accurate or complete measurements of dissolved P regeneration rates by plankton communities. 2. Here, we examine patterns of epilimnetic planktonic P pool sizes and turnover rates in eight lakes in British Columbia, Canada over a 2‐year period. We determine the concentrations and turnover times of P in various planktonic compartments (dissolved and various planktonic size fractions), using recently developed methods for estimating phosphate concentration and planktonic regeneration rates. 3. The pico‐ and nanoplankton size fraction (0.2–20 μm) played a central role in planktonic P cycling in lakes examined by this study. On average across lakes, pico‐ and nanoplankton contained >60% of the planktonic P, accounted for >90% PO uptake, and contributed 50% of the plankton community dissolved P regeneration rate. 4. PO concentrations determined by steady state bioassays (ssPO) were extremely low (87–611 pmol L−1) and were 2–3 orders of magnitude less than simultaneously measured colorimetric soluble reactive phosphorus estimates. Lake ssPO concentrations increased linearly with total phosphorus (TP), and the slope of this relationship was approximately 1, indicating that PO remained a consistent proportion of the TP pool across a range of TP concentrations. 5. Turnover rates of the total planktonic P pool and the <20 μm pool became more rapid with increasing lake TP, indicating that, according to this metric, planktonic P cycling efficiency increased with TP concentrations. We also detected a significant relationship between particulate phosphorus (PP) <20 μm turnover time and seston N : P ratios, with PP <20 μm turnover times becoming slower with increasing seston N : P. These findings suggest that long‐standing conceptual models of nutrient cycling that predict slower cycling rates and decreasing cycling efficiency with increasing TP concentrations require further empirical examination. We postulate that patterns in lake P turnover and cycling efficiency are a result of complex interactions between plankton biomass and composition, and the ratios of multiple nutrients (C, N, P), rather than solely a function of the TP pool.  相似文献   

4.
1. To assess the biological status and response of aquatic resources to management actions, managers and decision‐makers require accurate and precise metrics. This is especially true for some parts of the Florida Everglades where multiple stressors (e.g. hydrologic alterations and eutrophication) have resulted in a highly degraded and fragmented ecosystem. Biological assessments are required that directly allow for the evaluation of historical and current status and responses to implantation of large‐scale restoration projects. 2. Utilising periphyton composition and water‐quality data obtained from long‐term (15 years) monitoring programmes, we developed calibrated and verified periphyton‐based numerical models (transfer functions) that could be used to simultaneously assess multiple stressors affecting the Everglades peatland (e.g. salinity, nitrogen and phosphorus). Periphyton is an ideal indicator because responses to stressors are rapid and predictable and possess valued ecological attributes. 3. Weighted averaging partial least squares regression was used to develop models to infer water‐quality concentrations from 456 samples comprising 319 periphyton taxa. Measured versus periphyton‐inferred concentrations were strongly related for log‐transformed salinity ( = 0.81; RMSEP 0.15 mg L?1) and log‐transformed total phosphorus (TP; = 0.70; RMSEP 0.18 mg L?1), but weakly related for total Kjeldahl nitrogen (TKN) ( = 0.46; RMSEP 0.12 mg L?1). Validation results using an independent 455 sample data set were similar (log(salinity) r2 = 0.78, log(TP) r2 = 0.65 and log(TKN) r2 = 0.38). 4. Water Conservation Area 1 (WCA‐1), a large ombrotrophic subtropical peatland impacted by multiple water‐quality stressors that has undergone major changes in water management, was used as a case study. The models were applied to a long‐term periphyton data set to reconstruct water‐quality trends in relation to restoration efforts to reduce nutrient loading to the Everglades. The combination of biologically inferred TP and salinity was used to identify the ecological status of periphyton assemblages. Periphyton assemblages were ecologically imbalanced with respect to salinity and TP. Salinity imbalance varied spatially and temporally, whereas TP was spatially restricted. Imbalances caused by water management were owing to salinity more so than to TP. 5. The transfer functions developed for the Everglades are trait‐based quantitative numerical methods and are ideal because the abundances of species are modelled numerically in relation to a stressor. The resulting inferred value is a numerical representation of the stressor’s effect on biological condition that can be compared against the management of the stressor independent of other factors. The benefits are that biological lags or hysteresis events can easily be identified and environmental conditions can be estimated when measurements are lacking. Reporting biological assessments in terms of well‐defined water‐quality metrics (e.g. numeric criterion) increased the communicative ability of the assessment. The use of multiple metrics to assess ecological imbalance increased the ability to identify probable causes.  相似文献   

5.
1. We compared the baseline phosphorus (P) concentrations inferred by diatom‐P transfer functions and export coefficient models at 62 lakes in Great Britain to assess whether the techniques produce similar estimates of historical nutrient status. 2. There was a strong linear relationship between the two sets of values over the whole total P (TP) gradient (2–200 μg TP L?1). However, a systematic bias was observed with the diatom model producing the higher values in 46 lakes (of which values differed by more than 10 μg TP L?1 in 21). The export coefficient model gave the higher values in 10 lakes (of which the values differed by more than 10 μg TP L?1 in only 4). 3. The difference between baseline and present‐day TP concentrations was calculated to compare the extent of eutrophication inferred by the two sets of model output. There was generally poor agreement between the amounts of change estimated by the two approaches. The discrepancy in both the baseline values and the degree of change inferred by the models was greatest in the shallow and more productive sites. 4. Both approaches were applied to two lakes in the English Lake District where long‐term P data exist, to assess how well the models track measured P concentrations since approximately 1850. There was good agreement between the pre‐enrichment TP concentrations generated by the models. The diatom model paralleled the steeper rise in maximum soluble reactive P (SRP) more closely than the gradual increase in annual mean TP in both lakes. The export coefficient model produced a closer fit to observed annual mean TP concentrations for both sites, tracking the changes in total external nutrient loading. 5. A combined approach is recommended, with the diatom model employed to reflect the nature and timing of the in‐lake response to changes in nutrient loading, and the export coefficient model used to establish the origins and extent of changes in the external load and to assess potential reduction in loading under different management scenarios. 6. However, caution must be exercised when applying these models to shallow lakes where the export coefficient model TP estimate will not include internal P loading from lake sediments and where the diatom TP inferences may over‐estimate TP concentrations because of the high abundance of benthic taxa, many of which are poor indicators of trophic state.  相似文献   

6.
1. A survey of 30 subtropical shallow lakes in the middle and lower reaches of the Yangtze River area in China was conducted during July–September in 2003–2004 to study how environmental and biological variables were associated with the concentration of the cyanobacterial toxin microcystin (MC). 2. Mean MC concentration in seasonally river‐connected lakes (SL) was nearly 33 times that in permanently river‐connected lakes (RL), and more than six times that in city lakes (NC) and non‐urban lakes (NE) which were not connected to the Yangtze River. The highest MC (8.574 μg L?1) was detected in Dianshan Lake. 3. MC‐RR and MC‐LR were the primary toxin variants in our data. MC‐RR, MC‐YR and MC‐LR were significantly correlated with Chl a, biomass of cyanobacteria, Microcystis and Anabaena, indicating that microcystins were mainly produced by Microcystis and Anabaena sp. in these lakes. 4. Nonlinear interval maxima regression indicated that the relationships of Secchi depth, total nitrogen (TN) : total phosphorus (TP) and NH with MC were characterised by negative exponential curves. The relationships between MC and TN, TP, NO + NO were fitted well with a unimodal curve. 5. Multivariate analyses by principal component and classifying analysis indicated that MC was mainly affected by Microcystis among the biological factors, and was closely related with temperature among physicochemical factors.  相似文献   

7.
1. Dissolved organic carbon (DOC) concentration was determined for a range of lakes of varying conductivity (30–4000 μS cm−1) in the low Arctic of SW Greenland. DOC concentration range from <1 to >100 mg C L−1, occasionally approaching 200 mg C L−1 in meromictic, oligosaline lakes. DOC concentration was strongly related to [log10] conductivity and total nitrogen. 2. Peak DOC concentrations (>80 mg L−1) occur in lakes located approximately 50 km from the present ice sheet margin, a zone of low effective precipitation; evaporative concentration is the first‐order control on DOC concentration. Lakes at the coast and closer to the ice margin had lower DOC concentrations (<20 mg C L−1). Local factors, notably the presence or absence of an outflow and catchment morphometry, resulted in considerable variability in concentration (20–100 mg C L−1) within the area of maximum concentration around 51°W. 3. Despite their high DOC concentration, these lakes are essentially colourless. Dissolved organic matter (DOM) absorption (a375) was low in most lakes (<10 m−1) with maximum values (approximately 20 m−1) occurring in one humic‐stained lake in the area. Absorption values corrected for DOC concentration () were very low (<0.6 m2 g−1 C) for all lakes apart from those at the coast, perhaps reflecting greater allochthonous inputs at these sites. 4. S, the spectral slope coefficient, ranged from 16 to 27 μm−1 and was weakly correlated with DOC concentration. Both a375 and S showed similar distribution patterns along the sampling gradient as did DOC, with maximum values at approximately 51°W. High and low S may indicate fresher, more rapidly flushed, systems with less degraded DOM or greater inputs from their catchments. 5. The lakes closer to the head of the fjord with higher conductivity, had low (<0.2 m2 g−1 C) and high S (>21 μm−1) and this may reflect increasingly longer lake water residence times, greater DOM age and photochemical degradation.  相似文献   

8.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

9.
Diatom assemblages were analysed in the surface sediments of 44 alkaline lakes in south-western Ontario, Canada, and combined with a pre-existing 58 south-eastern Ontario lake set: (1) to determine if shallow, polymictic Ontario lakes contain different diatom assemblages from deeper, dimictic lakes, and if so, which environmental variables most influence assemblages; (2) to improve the existing transfer functions; (3) to construct and compare transfer functions separately for dimictic, deep lakes and for polymictic, shallow lakes. Polymictic and dimictic lakes covered a similar nutrient range (spring total phosphorus (TP)=4–54 g/l, spring total nitrogen (TN)=200–927 g/l; n=101) and spring pH levels (7.6–9; n=101). However, polymictic lakes were shallower (median mean depth = 2.9 m vs. 7.3 m in dimictic lakes). Benthic diatoms (average 60% relative abundance) dominated the polymictic lakes, whereas planktonic diatoms (average 60%) dominated dimictic lakes. A Canonical Correspondence Analyses with forward selection (p < 0.05, 999 Monte Carlo permutations) identified TP, alkalinity, watershed to volume ratios and lake depth as the most important measured environmental variables influencing diatom distribution in both polymictic and dimictic lakes. Additionally, pH was identified as an important variable in polymictic lakes, whereas TN was also forward selected in the dimictic lakes. Adding more lakes to the original southern Ontario calibration set improved the TN transfer function (r2 jack=0.42, root mean squared error of prediction (RMSEP)jack=0.11 [log g TN/l]), although there was a high systematic error in the revised model (r2 residual = 0.48). However, the strongest TP model was derived from the polymictic lakes (r2 boot =0.44, RMSEPboot=0.20 [log g TP/l]), which was the smallest lake set (n=30) with the lowest number of diatom species. The stronger TP model from the polymictic lakes may be partly due to the relatively low macrophyte cover in our polymictic lakes, which may lead to stronger benthic–pelagic coupling than in lakes with large macrophyte populations. Additionally, our study suggests that the Chrysophyceae cyst:diatom frustule ratio may be useful for indicating trends in TP levels of 35 g/l in alkaline lakes that are dimictic, but is not necessarily indicative of trophic state changes in shallow, polymictic lakes. Our study demonstrates that it may be important to construct separate diatom-based nutrient transfer functions for polymictic and dimictic lakes.  相似文献   

10.
Distribution and regulation of urea in lakes of central North America   总被引:1,自引:0,他引:1  
1. Urea accounts for ~50% of global nitrogen (N)‐based fertiliser; however, little is known of the factors regulating its distribution and abundance in freshwaters. Improved understanding of urea biogeochemistry is essential because its use as fertiliser is expected to double by 2050 and because pollution with urea can promote outbreaks of toxic cyanobacteria in phosphorus (P)‐rich lakes in regions with intensive agricultural or urban development. 2. Biweekly measurements of urea concentration and diverse limnological variables (water chemistry, hydrology, algae, zooplankton) were taken during two summers (2008, 2009) in a chain of seven productive lakes within a 52 000‐km2 catchment in central Canada to quantify environmental and anthropogenic correlates of temporal and spatial patterns of urea occurrence. 3. Mean (±SD) urea concentrations varied between 29 ± 14 and 132 ± 65 μg N L?1, generally increased from headwater to downstream sites and represented 10–50% of bioavailable N (as sum of , and urea). Principal components analysis demonstrated that urea concentrations were elevated in agriculturally impacted lakes with abundant dissolved organic and inorganic nutrients (N, P, C) and low O2 concentrations, but were not correlated consistently with plankton abundance or community composition. Urea concentrations were more than twofold greater in lakes receiving N from cities than in agriculturally affected basins, despite low summer concentrations of urea in tertiary‐treated urban effluent (c. 50% of lake values). Multiple regression models evaluated using Akaike Information Criterion showed that mean water‐column O2 concentration was the single best predictor of in situ urea concentrations (r2 = 0.91, P = 0.002), but that urea concentrations were also correlated significantly with changes in longitudinal position and Secchi depth and with concentrations of , non‐urea dissolved organic N (DON) and dissolved inorganic carbon. 4. Additional seasonal surveys of up to 69 closed‐basin lakes within a 100 000‐km2 region during 2004 and 2008 revealed that urea was abundant in 100% of measured sites and exhibited concentrations (81 ± 48 μg N L?1) similar to those observed in lakes with surface drainage (58 ± 38 μg N L?1). Further, non‐urea DON accounted for 50–99% of the total dissolved N pool in both open‐ and closed‐basin lakes. 5. When combined with an extensive literature review and previous mass‐budget analyses of the study lakes, these findings allowed the development of a first‐generation model of the mechanisms regulating urea content of P‐rich lakes of central North America. In this model, water‐column concentrations of urea are predicted to be regulated mainly by algal decomposition in anoxic environments (sediments, hypolimnion), followed by redistribution into surface waters. Consequently, anthropogenic activities can increase the urea content of lakes by stimulating primary production, sedimentation and deepwater anoxia and by increasing influx of undegraded urea from agricultural and urban sources.  相似文献   

11.
  • 1 We quantified the relationships between diatom relative abundance and water conductivity and ionic composition, using a dataset of 3239 benthic diatom samples collected from 1109 river sites throughout the U.S.A. [U.S. Geological Survey National Water‐Quality Assessment (NAWQA) Program dataset]. This dataset provided a unique opportunity to explore the autecology of freshwater diatoms over a broad range of environmental conditions.
  • 2 Conductivity ranged from 10 to 14 500 μS cm?1, but most of the rivers had moderate conductivity (interquartile range 180–618 μS cm?1). Calcium and bicarbonate were the dominant ions. Ionic composition, however, varied greatly because of the influence of natural and anthropogenic factors.
  • 3 Canonical correspondence analysis (CCA) and Monte Carlo permutation tests showed that conductivity and abundances of major ions (HCO + CO, Cl?, SO, Ca2+, Mg2+, Na+, K+) all explained a statistically significant amount of the variation in assemblage composition of benthic diatoms. Concentrations of HCO + CO and Ca2+ were the most significant sources of environmental variance.
  • 4 The CCA showed that the gradient of ionic composition explaining most variation in diatom assemblage structure ranged from waters dominated by Ca2+ and HCO + CO to waters with higher proportions of Na+, K+, and Cl?. The CCA also revealed that the distributions of some diatoms correlated strongly with proportions of individual cations and anions, and with the ratio of monovalent to divalent cations.
  • 5 We present species indicator values (optima) for conductivity, major ions and proportions of those ions. We also identify diatom taxa characteristic of specific major‐ion chemistries. These species optima may be useful in future interpretations of diatom ecology and as indicator values in water‐quality assessment.
  相似文献   

12.
1. Measurements of total phosphorus (TP) concentrations since 1975 and a 50‐year time series of phytoplankton biovolume and species composition from Lake Mondsee (Austria) were combined with palaeolimnological information on diatom composition and reconstructed TP‐levels to describe the response of phytoplankton communities to changing nutrient conditions. 2. Four phases were identified in the long‐term record. Phase I was the pre‐eutrophication period characterised by TP‐levels of about 6 μg L?1 and diatom dominance. Phase II began in 1966 with an increase in TP concentration followed by the invasion of Planktothrix rubescens in 1968, characterising mesotrophic conditions. Phase III, from 1976 to 1979, had the highest annual mean TP concentrations (up to 36 μg L?1) and phytoplankton biovolumes (3.57 mm3 L?1), although reductions in external nutrient loading started in 1974. Phases II and III saw an expansion of species characteristic of higher nutrient levels as reflected in the diatom stratigraphy. Oligotrophication (phase IV) began in 1980 when annual average TP concentration, Secchi depth and algal biovolume began to decline, accompanied by increasing concentrations of soluble reactive silica. 3. The period from 1981 to 1986 was characterised by asynchronous trends. Annual mean and maximum total phytoplankton biovolume initially continued to increase after TP concentration began to decline. Reductions in phytoplankton biovolume were delayed by about 5 years. Several phytoplankton species differed in the timing of their responses to changing nutrient conditions. For example, while P. rubescens declined concomitantly with the decline in TP concentration, other species indicative of higher phosphorus concentrations, such as Tabellaria flocculosa var. asterionelloides, tended to increase further. 4. These data therefore do not support the hypotheses that a reduction in TP concentration is accompanied by (i) an immediate decline in total phytoplankton biovolume and (ii) persistence of the species composition characterising the phytoplankton community before nutrient reduction.  相似文献   

13.
1. The Yangtze floodplain (SE China) is characterized by a number of large shallow lakes, many of which have undergone eutrophication due to the intensification of agriculture and urban growth over recent decades. As monitoring data are limited and in order to determine lake baseline nutrient concentrations, 49 lakes were sampled, covering a total phosphorus (TP) gradient (c. 30–550 μg L−1) to develop a diatom-based inference model. 2. There are three dominant diatom assemblages in these shallow lakes with a marked change in assemblage structure near the boundary between eutrophic and hypereutrophic nutrient levels (as indicated by their TP value). Canonical correspondence analysis indicated that TP was the most important and significant variable in explaining the diatom distributions, independently accounting for 9.5% variance of diatoms. 3. Forty-three lakes were used to generate a transfer function using weighted averaging (WA) with inverse deshrinking. This model had low predictive error (root mean squared error of prediction; RMSEPjack = 0.12) and a high coefficient of prediction (R2jack = 0.82), comparable with regional TP models elsewhere. The good performance of this TP model may reflect the low abundance of benthic diatom species which are commonly regarded as the main error source in European shallow lake WA models. 4. The WA model was used to reconstruct the past-TP concentrations for Taibai Lake, a shallow hypereutrophic lake in Hubei province. The results showed that TP concentration varied slightly (43–62 μg L−1) prior to the 1920s, indicating an eutrophic state since the 1800s. A period of sustained eutrophication occurred after 1950, because of the development of agriculture, reflecting by maximum values of Aulacoseira alpigena and increased abundance of Cyclotella meneghiniana, C. atomus and Cyclostephanos dubius. The steep increase in nutrient concentration after 1970 was related to the overuse of chemical fertilizer and fish farming in the catchment. 5. The shift in fossil diatoms from epiphytic to planktonic forms in the lake sediment core during 1950–70 provides useful information on the transformation from macrophyte-dominated to alga-dominated states. It is plausible that the TP concentration of 80–110 μg L−1 observed in this study is the critical range for switching between the two stable states in the lake. 6. The regional diatom-TP model developed in this study allows, therefore, the possibility of reconstructing historical background nutrient concentrations in lakes. It will provide an indication of the onset and development of eutrophication at any site. This is particularly important for the many lakes in the Yangtze floodplain where information about historical changes in water quality is lacking.  相似文献   

14.
We explored statistical relationships between the composition of littoral diatom assemblages and 21 chemical and physical environmental variables in 69 lakes and 15 river sites in the lowland of northeastern Germany. Canonical correspondence analysis with single treatment and with forward selection of environmental variables was used to detect 11 important ecological variables (dissolved inorganic carbon [DIC], Na + , total phosphorus [TP], dissolved organic carbon [DOC], total nitrogen [TN], pH, oxygen saturation, dissolved iron, SO42 ? , NH4 + , soluble reactive silicium) and maximum water depth or Ca2 + or soluble reactive phosphorus that most independently explain major proportions of the total diatom variance among the habitats. Monte Carlo permutation tests showed that each contributed a significant additional proportion (P < 0.05) of the variance in species composition. Together, these 11 most important environmental variables explained 34% of the total variance in species composition among the sites and captured 73% of the explained variance from the full 21 parameters model. Weighted‐averaging regression and calibration of 304 indicator taxa with tolerance down‐weighting and classic deshrinking was used to develop transfer functions between littoral diatoms and DIC, pH, TP, TN, and Cl ? . The DOC:TP ratio was introduced and a weighted‐averaging model was developed to infer allochthonous DOC effects in freshwater ecosystems. This diatom‐DOC/TP model was significant (P < 0.001) and explained 7.6% of the total diatom variance among the sites, surpassing the inferential power of the diatom‐TP‐transfer function (7.3% explained variance). The root‐mean‐square errors of prediction of the models were estimated by jack‐knifing and were comparable with published data sets from surface sediment diatom samples. The data set of littoral diatoms and environmental variables allows use of the diatom‐environmental transfer functions in biomonitoring and paleolimnological approaches across a broad array of natural water resources (such as floodplains, flushed lakes, estuaries, shallow lakes) in the central European lowland ecoregion.  相似文献   

15.
16.
We studied extracellular acid phosphatase activity (AcPA) of planktonic microorganisms, aluminium (Al) speciation, and phosphorus (P) cycling in three atmospherically acidified (pH of 4.5–5.1) mountain forest lakes: ?ertovo jezero (CT), Prá?ilské jezero (PR), and Ple?né jezero (PL) in the Bohemian Forest (?umava, Böhmerwald). Microorganisms dominated pelagic food webs of the lakes and crustacean zooplankton were important only in PR, with the lowest Al concentrations (193 µg L?1) due to 3–4 times lower terrestrial input. The lakes differed substantially in Al speciation, i.e., in the proportion of ionic and particulate forms, with the highest proportion of ionic Al in the most acid CT (pH = 4.5). The P concentration in the inlet of PL (mean: 22.9 µg L?1) was about five times higher than in CT and PR (3.9 and 5.1 µg L?1, respectively). Average total biomass of planktonic microorganisms in PL (593 µg C L?1) was, however, only ~2-times higher than in CT and PR (235 and 272 µg C L?1, respectively). Enormous AcPA (means: 2.17–6.82 µmol L?1 h?1) and high planktonic C : P ratios suggested severe P limitation of the plankton in all lakes. Comparing 1998 and 2003 seasons, we observed changes in water composition (pH and Al speciation) leading to a significant increase in phytoplankton biomass in the lakes. The increase in the seston C : P ratio during the same time, however, indicates a progressive P deficiency of the lakes. The terrestrial Al inputs, together with in-lake processes controlling the formation of particulate Al, reduced P availability for planktonic microorganisms and were responsible for the differences in AcPA. At pH < 5, moreover, ionic Al forms caused inhibition of extracellular phosphatases. We postulate that both particulate and ionic Al forms affect P availability (i.e., inhibition of extracellular phosphatases and inactivation of P), specifically shape the plankton composition in the lakes and affect plankton recovery from the acid stress.  相似文献   

17.
1. To examine how the vertical distribution of periphytic biomass and primary production in the upper 0–1 m of the water column changes along an inter‐lake eutrophication gradient, artificial substrata (plastic strips) were introduced into the littoral zones of 13 lakes covering a total phosphorus (TP) summer mean range from 11 to 536 μg L?1. Periphyton was measured in July (after 8 weeks) and September (after 15 weeks) at three water depths (0.1, 0.5 and 0.9 m). 2. Periphyton chlorophyll a concentration and dry weight generally increased with time and the communities became more heterotrophic. Mean periphytic biomass was unimodally related to TP, reaching a peak between 60 and 200 μg L?1. 3. The proportion of diatoms in the periphyton decreased from July to September. A taxonomic shift occurred from dominance (by biovolume) of diatoms and cyanobacteria at low TP to dominance of chlorophytes at intermediate TP and of diatoms (Epithemia sp.) in the two most TP‐rich lakes. 4. The grazer community in most lakes was dominated by chironomid larvae and the total biomass of grazers increased with periphyton biomass. 5. Community respiration (R), maximum light‐saturated photosynthetic rate (Pmax), primary production and the biomass of macrograzers associated with periphyton were more closely related to periphyton biomass than to TP. Biomass‐specific rates of R, Pmax and production declined with increasing biomass. 6. Mean net periphyton production (24 h) was positive in most lakes in July and negative in all lakes in September. Net production was not related to the TP gradient in July, but decreased in September with increasing TP. 7. The results indicate that nutrient concentrations alone are poor predictors of the standing biomass and production of periphyton in shallow lakes. However, because periphyton biomass reaches a peak in the range of phosphorus concentration in which alternative states occur in shallow lakes, recolonisation by submerged macrophytes after nutrient reduction may potentially be suppressed by periphyton growth.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号