共查询到20条相似文献,搜索用时 1 毫秒
1.
Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas 总被引:8,自引:0,他引:8 下载免费PDF全文
Peli J Schröter M Rudaz C Hahne M Meyer C Reichmann E Tschopp J 《The EMBO journal》1999,18(7):1824-1831
Tumor growth is the result of deregulated tissue homeostasis which is maintained through the delicate balance of cell growth and apoptosis. One of the most efficient inducers of apoptosis is the death receptor Fas. We report here that oncogenic Ras (H-Ras) downregulates Fas expression and renders cells of fibroblastic and epitheloid origin resistant to Fas ligand-induced apoptosis. In Ras-transformed cells, Fas mRNA is absent. Inhibition of DNA methylation restores Fas expression. H-Ras signals via the PI 3-kinase pathway to downregulate Fas, suggesting that the known anti-apoptotic effect of the downstream PKB/Akt kinase may be mediated, at least in part, by the repression of Fas expression. Thus, the oncogenic potential of H-ras may reside on its capacity not only to promote cellular proliferation, but also to simultaneously inhibit Fas-triggered apoptosis. 相似文献
2.
3.
4.
5.
6.
7.
Ras is a well established modulator of apoptosis. Suppression of protein kinase C (PKC) activity can selectively induce apoptosis in cells expressing a constitutively activated Ras protein. We wished to determine whether reactive oxygen species serve as an effector of Ras-mediated apoptosis. Ras-transformed NIH/3T3 cells contained higher basal levels of intracellular H(2)O(2) compared with normal NIH/3T3 cells, and PKC inhibition up-regulated ROS to 5-fold greater levels in Ras-transformed cells than in normal cells. Treatment with N-acetyl-l-cysteine reduced both the basal and inducible levels of intracellular H(2)O(2) in NIH/3T3-Ras cells and antagonized the induction of apoptosis by PKC inhibition. Culturing NIH/3T3-Ras cells in low oxygen conditions, which prevents ROS generation, also inhibited the apoptotic response to PKC inhibition. These results suggest that reactive oxygen species are necessary as downstream effectors of the Ras-mediated apoptotic response to PKC inhibition. However, the generation of ROS alone is not sufficient to induce apoptosis in Ras-transformed cells because inhibition of cell cycle progression prevented the induction of apoptosis in NIH/3T3-Ras cells without inhibiting the generation of intracellular H(2)O(2) observed after PKC inhibition. These findings suggest that continued cell cycle progression of Ras-transformed cells during PKC inhibition is also necessary for the induction of apoptosis. 相似文献
8.
Recent studies have revealed that B-Raf mutations are very common in malignant melanoma and are required for tumor growth and maintenance. The majority of melanoma-associated B-Raf mutations involve a single point mutation, V600E, which results in greatly elevated B-Raf kinase activity and constitutive activation of MAPK/ERK downstream. Here we show that B-Raf(V600E) increases resistance to apoptosis induced by chemotherapeutic drugs and promotes ERK-dependent phosphorylation of the BH3-only proteins Bim and Bad that are involved in setting thresholds for apoptosis. ERK-dependent phosphorylation of Bim resulted in degradation of this BH3-only protein, whereas phosphorylation of Bad has previously been shown to result in its sequestration by 14-3-3 proteins. Consistent with this, inhibition of ERK activity in a panel of melanoma cell lines resulted in stabilization of Bim and dephosphorylation of Bad. Furthermore, apoptosis induced through overexpression of Bad or Bim was efficiently blocked by coexpression of mutant B-Raf(V600E). However, small interfering RNA-mediated silencing of Bim and Bad expression conferred only modest protection against cytotoxic drugs, whereas oncogenic B-Raf strongly protected against the same stimuli. These observations suggest that B-Raf-initiated inactivation of Bad and Bim only partly contributes to the anti-apoptotic activities of this oncogene and that other points within the cell death machinery are also targeted by deregulated ERK signaling. 相似文献
9.
Anna Gortat Mó nica Sancho Laura Mondragó n À gel Messeguer Enrique Pé rez-Payá Mar Orzá ez 《蛋白质与细胞》2015,6(11):833
The protein apoptotic protease activating factor 1 (Apaf1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. We have developed a vital method that allows fluorescence-activated cell sorting of cells at different stages of the apoptotic pathway and demonstrated that upon pharmacological inhibition of Apaf1, cells recover from doxorubicin- or hypoxia-induced early apoptosis to normal healthy cell. Inhibiting Apaf1 not only prevents procaspase-9 activation but delays massive mitochondrial damage allowing cell recovery. 相似文献
10.
Jinqiu Tao Guangli Sun Qing Li Xiaofei Zhi Zheng Li Zhongyuan He Huihui Chen Aiping Zhou Jiahui Ye Guifang Xu Wenxian Guan Weijie Zhang 《Journal of cellular physiology》2020,235(12):9388-9398
Kinesin family member 15 (KIF15) is a member of the kinesin superfamily of proteins, which promotes cell mitosis, participates in the transport of intracellular materials, and helps structural assembly and cell signaling pathways transduction. However, its biological role and molecular mechanisms of action in the development of gastric cancer (GC) remain unclear. In the present study, an integrated analysis of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus database, and Kaplan–Meier plotter database was performed to predict the expression and prognostic value of KIF15 in GC patients. Detection of KIF15 expression in GC cells and tissues was performed by a quantitative polymerase chain reaction. In vitro cell proliferation, viability, colony formation ability and flow cytometry assays, and in vivo tumorigenicity assay, were performed to evaluate the effects of KIF15 knockdown on GC cell phenotype. It was demonstrated that the expression of KIF15 messenger RNA in GC tissues was significantly higher compared with that in adjacent tissues, and was closely associated with larger tumor size and poor patient prognosis. In addition, functional studies demonstrated that, due to the increase in reactive oxygen species (ROS) generation, the interference with the expression of KIF15 not only decreased cell proliferation but also increased cell apoptosis and induced cell cycle arrest. ROS-mediated activation of c-Jun N-terminal kinase/c-Jun signaling reduced cell proliferation by regulating the GC cell cycle and increasing apoptosis. Taken together, the results of the present study indicate that KIF15 is an oncoprotein contributing to GC progression, and is expected to help identify novel biomarkers and treatment targets in GC. 相似文献
11.
12.
13.
14.
15.
Croci DO Cogno IS Vittar NB Salvatierra E Trajtenberg F Podhajcer OL Osinaga E Rabinovich GA Rivarola VA 《Journal of cellular biochemistry》2008,105(2):381-390
Survivin is recognized as an attractive target in cancer therapy because of its selective overexpression in the majority of tumors. Upregulated expression of this protein correlates with increased tumor grade, recurrence risk and decreased cancer patients survival. In this study, we assessed the efficacy of two survivin-specific small interfering RNA (siRNA) constructs to inhibit T47D human breast cancer cell growth. After siRNA transfection, T47D cells showed a significant reduction in proliferation and survival exhibiting clear signs of apoptosis. pSil_1 that targeted exon 1 exhibited a stronger inhibitory effect on cell growth, and increased cell apoptosis compared to pSil_30 that targeted exon 4. Cell apoptosis was found to be mediated by translocation of the mitochondrial apoptosis inducing factor (AIF), while no changes were observed in caspase-3 activation and Bid cleavage. Thus, silencing survivin expression using siRNA strategies represents a suitable therapeutic approach to selectively modulate the survival and growth of human breast cancer cells. 相似文献
16.
17.
18.
Li FQ Singh AM Mofunanya A Love D Terada N Moon RT Takemaru K 《Molecular and cellular biology》2007,27(12):4347-4354
The canonical Wnt/beta-catenin signaling pathway plays diverse roles in embryonic development and disease. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and in mice. Here, we report that the beta-catenin antagonist Chibby (Cby) is required for adipocyte differentiation. Cby is expressed in adipose tissue in mice, and Cby protein levels increase during adipogenic differentiation of 3T3-L1 cells. Ectopic expression of Cby induces spontaneous differentiation of these cells into mature adipocytes to an extent similar to that of dominant-negative Tcf-4. In contrast, depletion of Cby by RNA interference potently blocks adipogenesis of 3T3-L1 and mouse embryonic stem cells. In support of this, embryonic fibroblasts obtained from Cby-deficient embryos display attenuated differentiation to the adipogenic lineage. Mechanistically, Cby promotes adipocyte differentiation, in part by inhibiting beta-catenin, since gain or loss of function of Cby influences beta-catenin signaling in 3T3-L1 cells. Our results therefore establish Cby as a novel proadipogenic factor required for adipocyte differentiation. 相似文献
19.
Aging-associated increase of gelsolin for apoptosis resistance 总被引:2,自引:0,他引:2
Ahn JS Jang IS Kim DI Cho KA Park YH Kim K Kwak CS Chul Park S 《Biochemical and biophysical research communications》2003,312(4):1335-1341
Gelsolin, a Ca(2+)-dependent actin regulatory protein, was recently suggested to participate in apoptosis regulation. In this study, we found that the level of gelsolin is elevated in senescent human diploid fibroblasts (HDFs) and also in the tissues of old rats, i.e., in the liver, kidney, heart, spleen, stomach, and brain, etc. The ubiquitous increase of gelsolin in the aged organs and cells led us to assume that it might be related with one of the cardinal senescent phenotypes, aging-associated apoptosis resistency. Thus, we tested the sensitivity of senescent cells to apoptosis by menadione, an apoptosis-inducing agent, before and after the down-regulation of gelsolin. The down-regulation of gelsolin in senescent HDFs, independently of Bcl-2 family expression, resulted in an increased sensitivity to menadione-induced apoptotic cell death. The observed ubiquitous increase of gelsolin in the senescent states of cells and tissues, and the increased sensitivity to apoptosis-induction by gelsolin down-regulation, suggests that gelsolin would be partly responsible for age-related apoptosis resistance. 相似文献
20.
Previous studies have shown that certain tumor cell lines which naturally express high levels of the epidermal growth factor receptor (EGFR) undergo apoptosis when exposed to epidermal growth factor. Whether this phenomenon is a direct result of receptor overexpression or some other genetic alteration renders these cells sensitive to apoptosis is yet to be established. We show that experimentally increasing the level of EGFR expression predictably leads to apoptosis in a variety of cell types which requires an active tyrosine kinase but not EGFR autophosphorylation sites. Expression of a dominant negative Ras mutant in EGFR overexpressing cells results in a significant potentiation of EGFR induced apoptosis suggesting that Ras activation is a key survival signal generated by the EGFR. We propose that potentiation of EGFR induced apoptosis by dominant negative Ras results, at least in part, by a block of Akt activation. 相似文献