首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the structure (3840 bp) of a novel Euglena gracilis chloroplast ribosomal protein operon that encodes the five genes rpl16-rpl14-rpl5-rps8-rpl36. The gene organization resembles the spc and the 3'-end of the S10 ribosomal protein operons of E. coli. The rpl5 is a new chloroplast gene not previously reported for any chloroplast genome to date and also not described as a nuclear-encoded, chloroplast protein gene. The operon contains at least 7 introns. We present evidence from primer extension analysis of chloroplast RNA for the correct in vivo splicing of five of the introns. Two of the introns within the rps8 gene flank an 8 bp exon, the smallest exon yet characterized in a chloroplast gene. Three introns resemble the classical group II introns of organelle genomes. The remaining 4 introns appear to be unique to the Euglena chloroplast DNA. They are uniform in size (95-109 nt), share common features with each other and are distinct from both group I and group II introns. We designate this new intron category as 'group III'.  相似文献   

2.
3.
4.
5.
Complete sequence of Euglena gracilis chloroplast DNA.   总被引:20,自引:4,他引:16       下载免费PDF全文
We report the complete DNA sequence of the Euglena gracilis, Pringsheim strain Z chloroplast genome. This circular DNA is 143,170 bp, counting only one copy of a 54 bp tandem repeat sequence that is present in variable copy number within a single culture. The overall organization of the genome involves a tandem array of three complete and one partial ribosomal RNA operons, and a large single copy region. There are genes for the 16S, 5S, and 23S rRNAs of the 70S chloroplast ribosomes, 27 different tRNA species, 21 ribosomal proteins plus the gene for elongation factor EF-Tu, three RNA polymerase subunits, and 27 known photosynthesis-related polypeptides. Several putative genes of unknown function have also been identified, including five within large introns, and five with amino acid sequence similarity to genes in other organisms. This genome contains at least 149 introns. There are 72 individual group II introns, 46 individual group III introns, 10 group II introns and 18 group III introns that are components of twintrons (introns-within-introns), and three additional introns suspected to be twintrons composed of multiple group II and/or group III introns, but not yet characterized. At least 54,804 bp, or 38.3% of the total DNA content is represented by introns.  相似文献   

6.
The chloroplast genes of Euglena gracilis contain more than 60 group II and 47 group III introns. Some Euglena chloroplast genes also contain twintrons, introns-within-introns. Two types of twintrons have previously been described, a group II twintron and a mixed group II/group III twintron. We report that four introns, three within the RNA polymerase subunit gene rpoC1 and one within ribosomal protein gene rpl16, with mean lengths twice typical group III introns, are a new type of twintron. The group III twintrons are composed of group III introns within other group III introns. The splicing of the twintrons was analyzed by PCR amplification, cloning and sequencing of cDNAs, and Northern hybridization. Excision of each group III twintron occurs by a two-step, sequential splicing pathway. Removal of the internal introns precedes excision of the external introns. Splicing of internal introns in three of the four group III twintrons involves multiple 5'- and/or 3'-splice sites. With two of the twintrons the proximal 5'-splice site can be spliced to an internal 3'-splice site, yielding alternative 'pseudo' fully spliced mRNAs. Excised group III introns of the rpl16 twintron are not linear RNA molecules but either lariat or circular RNAs, probably a lariat. The origins of alternative splicing and a possible evolutionary relationship between group II, group III and nuclear pre-mRNA introns are discussed.  相似文献   

7.
8.
P W Gray  R B Hallick 《Biochemistry》1979,18(9):1820-1825
Ribosomal RNA (5S) from Euglena gracilis chloroplasts was isolated by preparative electrophoresis, labeled in vitro with 125I, and hybridized to restriction nuclease fragments from chloroplast DNA or cloned chloroplast DNA segments. Euglena chloroplast 5S rRNA is encoded in the chloroplast genome. The coding region of 5S rRNA has been positioned within the 5.6 kilobase pair (kbp) repeat which also codes for 16S and 23S rRNA. There are three 5S rRNA genes on the 130-kbp genome. The order of RNAs within a single repeat is 16S-23S-5S. The organization and size of the Euglena chloroplast ribosomal repeat is very similar to the ribosomal RNA operons of Escherichia coli.  相似文献   

9.
10.
11.
The three tandemly repeated ribosomal RNA operons from the chloroplast genome of Euglena gracilis Klebs, Pringsheim Strain Z each contain a 5 S rRNA gene distal to the 23 S rRNA gene (Gray, P.W., and Hallick, R.B. (1979) Biochemistry 18, 1820-1825). We have cloned two distinct 5 S rRNA genes, and determined the DNA sequence of the genes, their 5'- and 3'-flanking sequences, and the 3'-end of the adjacent 23 S rRNA genes. The two genes exhibit sequence polymorphism at five bases within the "procaryotic loop" coding region, as well as internal restriction endonuclease site heterogeneity. These restriction endonuclease site polymorphisms are evident in chloroplast DNA, and not just the cloned examples of 5 S genes. Chloroplast 5 S rRNA was isolated, end labeled, and sequenced by partial enzymatic degradation. The same polymorphisms found in 5 S rDNA are present in 5 S rRNA. Therefore, both types of 5 S rRNA genes are transcribed and are present in chloroplast ribosomes.  相似文献   

12.
13.
A complex twintron is excised as four individual introns.   总被引:4,自引:3,他引:1       下载免费PDF全文
Twintrons are introns-within-introns excised by sequential splicing reactions. A new type of complex twintron comprised of four individual group III introns has been characterized. The external intron is interrupted by an internal intron containing two additional introns. This 434 nt complex twintron within a Euglena gracilis chloroplast ribosomal protein gene is excised by four sequential splicing reactions. Two of the splicing reactions utilize multiple 5'- and/or 3'-splice sites. These findings are evidence that introns with multiple active splice sites can be formed by the repeated insertion of introns into existing introns.  相似文献   

14.
15.
16.
17.
The splicing of a 409 nucleotide intron from the Euglena gracilis chloroplast ribosomal protein S3 gene (rps3) was examined by cDNA cloning and sequencing, and northern hybridization. Based on the characterization of a partially spliced pre-mRNA, the intron was characterized as a 'mixed' twintron, composed of a 311 nucleotide group II intron internal to a 98 nucleotide group III intron. Twintron excision is via a 2-step sequential splicing pathway, with removal of the internal group II intron preceding excision of the external group III intron. Based on secondary structural analysis of the twintron, we propose that group III introns may represent highly degenerate versions of group II introns. The existence of twintrons is interpreted as evidence that group II introns were inserted during the evolution of Euglena chloroplast genes from a common ancestor with eubacteria, archaebacteria, cyanobacteria, and other chloroplasts.  相似文献   

18.
Intervening sequences in chloroplast genomes   总被引:13,自引:0,他引:13  
B Koller  H Delius 《Cell》1984,36(3):613-622
  相似文献   

19.
20.
Liu Y  Wang B  Cui P  Li L  Xue JY  Yu J  Qiu YL 《PloS one》2012,7(4):e35168
Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号