首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coniferin, the glucoside of the monolignol coniferyl alcohol, accumulates to high levels in gymnosperms during spring-cambial reactivation. A cinnamyl alcohol glucoside/beta-glucosidase system is thought to play a key role in lignification by releasing the monolignol aglycones. Investigation of such an enzyme system in the xylem of Pinus contorta var latifolia Engelm. revealed two major beta-glucosidases. One efficiently hydrolyzed the native substrate, coniferin, and the other was more active against synthetic glucosides. The coniferin beta-glucosidase was purified to apparent homogeneity using anion exchange, hydrophobic interaction, and size-exclusion chromatography. The apparent native molecular weight was estimated to be 60,000. A dominant 28-kD protein and a minor 24-kD protein were detected in the purified preparation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunological evidence from polyclonal antibodies directed against the synthetic N-terminal peptide of the 24-kD protein suggested that the native protein is a dimer of 28-kD subunit size. The N-terminal sequence showed that coniferin beta-glucosidase has high homology to known plant beta-glucosidases. Coniferin, syringin, and a synthetic coniferin analog were preferred substrates for the coniferin beta-glucosidase. In situ localization using the chromogenic coniferin analog showed the exclusive presence of beta-glucosidase activity in the differentiating xylem, similar to peroxidase activity.  相似文献   

2.
Tsuji Y  Chen F  Yasuda S  Fukushima K 《Planta》2005,222(1):58-69
To gain insight into the behavior of monolignol glucoside in Ginkgo biloba L., we examined glucosides potentially involved in lignin biosynthetic pathway. Coniferin (coniferyl alcohol 4O--D-glucoside) is a strong candidate for the storage form of monolignol. Coniferaldehyde glucoside may also have a role in lignin biosynthesis; this was examined with tracer experiments using labeled glucosides fed to stem segments. A series of tracer experiments showed that coniferin and coniferaldehyde glucoside were modified into coniferyl alcohol and then efficiently incorporated into lignin under the experimental conditions used. Interestingly, more than half of the administered coniferin underwent an oxidation to the aldehyde form before its aglycone; coniferyl alcohol was polymerized into lignin. This suggests that there is an alternative pathway for coniferin to enter the monolignol biosynthetic pathway, in addition to the direct pathway beginning with the deglucosylation of coniferin catalyzed by -glucosidase. Enzymatic assays revealed that coniferaldehyde glucoside was produced enzymatically from coniferin, and that coniferaldehyde glucoside can be deglucosylated to yield coniferaldehyde, which could be fated to become coniferyl alcohol . Albeit the findings cannot be taken as proof for the in-planta functioning, these results present a possibility for the existence of alternative pathway in which some of the stored coniferin is oxidized to coniferaldehyde glucoside, which is deglucosylated to generate coniferaldehyde that joins the monolignol biosynthesis pathway.  相似文献   

3.
A β-glucosidase which rapidly hydrolyses the cinnamyl alcohol glucosides coniferin and syringin has been purified from cell cultures, hypocotyls and roots of Glycine max. Isoelectric focusing in a column separated the enzyme from several other β-glucosidases which were inactive against either substrate. Syringin and coniferin were the best substrates tested. Both exhibited identical Vmax values, whereas the Km of coniferin (0.6 mM) was twice that of syringin (0.3 mM). The widely used synthetic substrates 4-nitrophenyl-β-glucoside and 4-methyl-umbelliferyl-β-glucoside were poorly utilized. Glucono-1,5-lactone was an effective competitive inhibitor with a Ki of 0.01 mM. From the observed-substráte specificity, a role in the lignification process of higher plants may be predicted for this β-glucosidase.  相似文献   

4.
5.
Lignin is a major component of plant cell walls that is essential to their function. However, the strong bonds that bind the various subunits of lignin, and its cross-linking with other plant cell wall polymers, make it one of the most important factors in the recalcitrance of plant cell walls against polysaccharide utilization. Plants make lignin from a variety of monolignols including p-coumaryl, coniferyl, and sinapyl alcohols to produce the three primary lignin units: p-hydroxyphenyl, guaiacyl, and syringyl, respectively, when incorporated into the lignin polymer. In grasses, these monolignols can be enzymatically preacylated by p-coumarates prior to their incorporation into lignin, and these monolignol conjugates can also be "monomer" precursors of lignin. Although monolignol p-coumarate-derived units may comprise up to 40% of the lignin in some grass tissues, the p-coumarate moiety from such conjugates does not enter into the radical coupling (polymerization) reactions of lignification. With a greater understanding of monolignol p-coumarate conjugates, grass lignins could be engineered to contain fewer pendent p-coumarate groups and more monolignol conjugates that improve lignin cleavage. We have cloned and expressed an enzyme from rice that has p-coumarate monolignol transferase activity and determined its kinetic parameters.  相似文献   

6.
The objectives of this study were to define cell structure during pine secondary xylem development and to integrate this information with current knowledge of the biochemistry and physiology of secondary cell wall biosynthesis in gymnosperms. Lodgepole pine (Pinus contorta var. latifolia Englem.) cambium and secondary xylem were cryofixed using high pressure freezing and freeze-substitution which allowed excellent preservation of the cell structure of developing secondary xylem and enabled high-resolution transmission electron microscopic viewing of these cells for the first time. In contrast to their precursors in the adjacent cambial zone, developing tracheids were active in secondary wall deposition, with abundant cortical microtubules and developing bordered pits. These cells were also characterized by unusual Golgi structures: the trans-Golgi network was highly developed and the associated vesicles were large and darkly stained. These unusual Golgi structures persisted throughout the period of xylem maturation until programmed cell death occurred. Immuno-cytochemistry and enzyme-gold probes were used to investigate the distribution of key secretory products (mannans) and a lignification-associated enzyme (coniferin beta-glucosidase) during xylogenesis. Mannans were localized to the secondary cell wall, the trans-Golgi cisternae and trans-Golgi network vesicles of developing xylem. Coniferin beta-glucosidase was found only in the secondary cell wall. The cell wall localization of coniferin beta-glucosidase, the enzyme responsible for cleaving glucose from coniferin to generate free coniferyl alcohol, provides a mechanism to de-glucosylate monolignols in muro. A two-step model of lignification of conifer tracheids is proposed. First, Golgi-mediated secretion deposits monolignols into the cell wall, where they polymerize in cell corners and middle lamella. Secondly, cell lysis releases stored, vacuolar monolignol glucosides into the wall where they are deglucosylated and their polymerization is influenced by the wall environment including the lignin deposited earlier.  相似文献   

7.
Cell-specific expression patterns of the Eucalyptus gunnii cinnamoyl coenzymeA reductase (EgCCR) and cinnamyl alcohol dehydrogenase (EgCAD2) promoters were analyzed by promoter-GUS histochemistry in the primary and secondary xylem tissues from floral stems and roots of Arabidopsis thaliana. Expression patterns indicated that the EgCCR and EgCAD2 genes were expressed in a coordinated manner in primary and secondary xylem tissues of the Arabidopsis floral stem and root. Both genes were expressed in all lignifying cells (vessel elements, xylem fibers and paratracheal parenchyma cells) of xylem tissues. The capacity for long-term monolignol production appeared to be related to the cell-specific developmental processes and biological roles of different cell types. Our results suggested that lignification of short-lived vessel elements was achieved by a two-step process involving (i) monolignol production by vessel elements prior to vessel programmed cell death and (ii) subsequent monolignol production by vessel-associated living paratracheal parenchyma cells following vessel element cell death. EgCCR and EgCAD2 gene expression patterns suggested that the process of xylem cell lignification was similar in both primary and secondary xylem tissues in Arabidopsis floral stems and roots.  相似文献   

8.
Many plants produce cyanogenic glucosides as part of their chemical defense. They are alpha-hydroxynitrile glucosides, which release toxic hydrogen cyanide (HCN) upon cleavage by endogenous plant beta-glucosidases. In addition to cyanogenic glucosides, several plant species produce beta- and gamma-hydroxynitrile glucosides. These do not release HCN upon hydrolysis by beta-glucosidases and little is known about their biosynthesis and biological significance. We have isolated three beta-hydroxynitrile glucosides, namely (2Z)-2-(beta-D-glucopyranosyloxy)but-2-enenitrile and (2R,3R)- and (2R,3S)-2-methyl-3-(beta-D-glucopyranosyloxy)butanenitrile, from leaves of Ribesuva-crispa. These compounds have not been identified previously. We show that in several species of the genera Ribes, Rhodiola and Lotus, these beta-hydroxynitrile glucosides co-occur with the L-isoleucine-derived hydroxynitrile glucosides, lotaustralin (alpha-hydroxynitrile glucoside), rhodiocyanosides A (gamma-hydroxynitrile glucoside) and D (beta-hydroxynitrile glucoside) and in some cases with sarmentosin (a hydroxylated rhodiocyanoside A). Radiolabelling experiments demonstrated that the hydroxynitrile glucosides in R. uva-crispa and Hordeum vulgare are derived from L-isoleucine and L-leucine, respectively. Metabolite profiling of the natural variation in the content of cyanogenic glucosides and beta- and gamma-hydroxynitrile glucosides in wild accessions of Lotus japonicus in combination with genetic crosses and analyses of the metabolite profile of the F2 population provided evidence that a single recessive genetic trait is most likely responsible for the presence or absence of beta- and gamma-hydroxynitrile glucosides in L. japonicus. Our findings strongly support the notion that the beta- and gamma-hydroxynitrile glucosides are produced by diversification of the cyanogenic glucoside biosynthetic pathway at the level of the nitrile intermediate.  相似文献   

9.
Crude cell wall preparations from Cicer arietinum L. cell suspension cultures show high activity for the hydrolysis of coniferyl alcohol beta-D-glucoside (coniferin). Various beta-glucosidase activities could be solubilized from these preparations by 0.5 M NaCl treatment and one of these could be shown to possess a high activity for the hydrolysis of coniferin. The enzyme activities were purified to near homogeneity by Sephadex G-200 and CM-Sephadex chromatography. Isoelectric focussing indicated the occurrence of beta-glucosidase isoenzymes with identical catalytic activity (pI 8.5-10). Molecular weights were determined as 110 000, with two subunits of 63 000 and 43 000. Maximum hydrolytic activity is at pH 5. The beta-glucosidase isoenzymes catalyze the hydrolysis of various beta-glucosides with aromatic aglycone structure and different sugar moieties. However, coniferin has been found to be one of the best substrates (km = 0.8 mM; V = 6 mumol.min-1.mg protein-1) for these beta-glucosidase isoenzymes. The data suggest that beta-glucosidase-catalyzed reaction might be involved in lignification of these plant cell cultures.  相似文献   

10.
A beta-glucosidase (torvosidase) was purified to homogeneity from the young leaves of Solanum torvum. The enzyme was highly specific for cleavage of the glucose unit attached to the C-26 hydroxyl of furostanol glycosides from the same plant, namely torvosides A and H. Purified torvosidase is a monomeric glycoprotein, with a native molecular weight of 87 kDa by gel filtration and a pI of 8.8 by native agarose IEF. Optimum pH of the enzyme for p-nitrophenyl-beta-glucoside and torvoside H was 5.0. Kinetic studies showed that Km values for torvoside A (0.06 3mM) and torvoside H (0.068 mM) were much lower than those for synthetic substrates, pNP-beta-glucoside (1.03 mM) and 4-methylumbelliferyl-beta-glucoside (0.78 mM). The enzyme showed strict specificity for the beta-d-glucosyl bond when tested for glycone specificity. Torvosidase hydrolyses only torvosides and dalcochinin-8'-beta-glucoside, which is the natural substrate of Thai rosewood beta-glucosidase, but does not hydrolyse other natural substrates of the GH1 beta-glucosidases or of the GH3 beta-glucosidase families. Torvosidase also hydrolyses C5-C10 alkyl-beta-glucosides, with a rate of hydrolysis increasing with longer alkyl chain length. The internal peptide sequence of Solanum beta-glucosidase shows high similarity to the sequences of family GH3 glycosyl hydrolases.  相似文献   

11.
Syringin, sinapyl alcohol 4-O-glucoside, is well known as a plant-derived bioactive monolignol glucoside. In Arabidopsis, recombinant chimeric protein UGT72E3/2 has been previously reported to lead to significantly higher syringin production than the parental enzymes UGT72E2 and UGT72E3. To enhance syringin content in Korean soybean (Glycine max L. ‘Kwangan’), we cloned the UGT72E3/2 gene under the control of the β-conglycinin or CaMV-35S promoter to generate β-UGT72E3/2 and 35S-UGT72E3/2 constructs, respectively, and then transformed them into soybean to obtain transgenic plants using the modified half-seed method. Real-time semi-quantitative PCR (RT-PCR) analysis showed that the UGT72E3/2 gene was expressed in the leaves of the β-UGT72E3/2 and 35S-UGT72E3/2 transgenic lines. HPLC analysis of the seeds and mature tissues of the T2 generation plants revealed that the β-UGT72E3/2 transgenic seeds accumulated 0.15 µmol/g DW of total syringin and 0.29 µmol/g DW of total coniferin, whereas coniferin and syringin were not detected in non-transgenic seeds. Moreover, coniferin and syringin also accumulated at high levels in non-seed tissues, particularly the leaves of β-UGT72E3/2 transgenic lines. In contrast, 35S-UGT72E3/2 lines showed no differences in the contents of coniferin and syringin between transgenic and non-transgenic soybean plants. Thus, the seed-specific β-conglycinin promoter might be an effective tool to apply to the nutritional enhancement of soybean crops through increased syringin production.  相似文献   

12.
Furanoflavonoid glycosides from Pongamia pinnata fruits   总被引:2,自引:0,他引:2  
Ahmad G  Yadav PP  Maurya R 《Phytochemistry》2004,65(7):921-924
Pongamia pinnata fruits afforded three new furanoflavonoid glucosides, pongamosides A-C (1-3), and a new flavonol glucoside, pongamoside D (4). The structures of these compounds were established on the basis of spectroscopic studies. This is the first time that furanoflavone glucosides have been found as naturally occurring compounds.  相似文献   

13.
From the fruits of Trichosanthes tricuspidata, 14 cucurbitane glycosides (khekadaengosides A-J, M-N, cucurbitacin J 2-O-beta-glucopyranoside and cucurbitacin K 2-O-beta-glucopyranoside), a hexanorcucurbitane glucoside (khekadaengoside K) and octanorcucurbitane (khekadaengoside L) were isolated along with two known cucurbitane glucosides (cucurbitacin 2-O-beta-glucopyranoside and 25-O-acetyl-cucurbitacin 2-O-beta-glucopyranoside). Structural elucidations were based on chemical and spectroscopic analyses.  相似文献   

14.
15.
16.
Phenylpropanoid glycosides of Gnidia polycephala   总被引:1,自引:0,他引:1  
Two phenylpropanoid glucosides, 2-O-beta-D-glucosyloxy-4-methoxybenzenepropanoic acid and its methyl ester, together with syringin and adicardin were isolated from the stem of Gnidia polycephala and characterized by physical and spectroscopic data.  相似文献   

17.
In plants, Glycoside Hydrolase (GH) Family 1 -glycosidases are believed to play important roles in many diverse processes including chemical defense against herbivory, lignification, hydrolysis of cell wall-derived oligosaccharides during germination, and control of active phytohormone levels. Completion of the Arabidopsis thalianagenome sequencing project has enabled us, for the first time, to determine the total number of Family 1 members in a higher plant. Reiterative database searches revealed a multigene family of 48 members that includes eight probable pseudogenes. Manual reannotation and analysis of the entire family were undertaken to rectify existing misannotations and identify phylogenetic relationships among family members. Forty-seven members (designated BGLU1 through BGLU47) share a common evolutionary origin and were subdivided into approximately 10 subfamilies based on phylogenetic analysis and consideration of intron–exon organizations. The forty-eighth member of this family (At3g06510; sfr2) is a -glucosidase-like gene that belongs to a distinct lineage. Information pertaining to expression patterns and potential functions of Arabidopsis GH Family 1 members is presented. To determine the biological function of all family members, we intend to investigate the substrate specificity of each mature hydrolase after its heterologous expression in the Pichia pastoris expression system. To test the validity of this approach, the BGLU44-encoded hydrolase was expressed in P. pastoris and purified to homogeneity. When tested against a wide range of natural and synthetic substrates, this enzyme showed a preference for -mannosides including 1,4--D-mannooligosaccharides, suggesting that it may be involved in A. thaliana in degradation of mannans, galactomannans, or glucogalactomannans. Supporting this notion, BGLU44 shared high sequence identity and similar gene organization with tomato endosperm -mannosidase and barley seed -glucosidase/-mannosidase BGQ60.  相似文献   

18.
Since volatile allo-ocimene enhances resistance of Arabidopsis thaliana against Botrytis cinerea, we attempted to dissect the factors involved in this induced resistance. The penetration of B. cinerea hyphae into Arabidopsis epidermis and the growth of hyphae after penetration were suppressed on allo-ocimene-treated leaves. allo-Ocimene also induced lignification on cell walls and veins of the leaves. The treatment induced accumulation of antifungal substances including the Arabidopsis phytoalexin, camalexin. Induction of lignification and accumulation of camalexin elicited by B. cinerea infection on Arabidopsis leaves after treating with allo-ocimene was faster and more intense than that observed with the leaves that had not been treated with this volatile. This suggested that allo-ocimene could prime defensive responses in Arabidopsis. allo-Ocimene enhanced resistance against B. cinerea in an ethylene resistant mutant (etr1-1), a jasmonic acid resistant mutant (jar1-1) and a salicylic acid resistant mutant (npr1-1). Thus, it is suggested that a signaling pathway independent for ETR1, JAR1 and NPR1 was operative to induce the resistance. The series of responses observed after allo-ocimene-treatment was mostly similar to that observed after C6-aldehyde-treatment. The effect of C6-aldehyde-treatment has been largely accounted to the chemical reactivities of the compounds; however, from this result it can be suggested that resistance responses of Arabidopsis could be induced by the volatiles mostly independent on their reactivities and that a common signaling pathway unaffected by the reactivities of compound was activated by the volatiles.  相似文献   

19.
Kim MK  Jeon JH  Davin LB  Lewis NG 《Phytochemistry》2002,61(3):311-322
The discovery of a nine-member multigene dirigent family involved in control of monolignol radical-radical coupling in the ancient gymnosperm, western red cedar, suggested that a complex multidimensional network had evolved to regulate such processes in vascular plants. Accordingly, in this study, the corresponding promoter regions for each dirigent multigene member were obtained by genome-walking, with Arabidopsis being subsequently transformed to express each promoter fused to the beta-glucuronidase (GUS) reporter gene. It was found that each component gene of the proposed network is apparently differentially expressed in individual tissues, organs and cells at all stages of plant growth and development. The data so obtained thus further support the hypothesis that a sophisticated monolignol radical-radical coupling network exists in plants which has been highly conserved throughout vascular plant evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号