首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial infections following rhinovirus (RV), a common cold virus, are well documented, but pathogenic mechanisms are poorly understood. We developed animal and cell culture models to examine the effects of RV on subsequent infection with non-typeable Hemophilus influenzae (NTHi). We focused on NTHI-induced neutrophil chemoattractants expression that is essential for bacterial clearance. Mice infected with RV1B were superinfected with NTHi and lung bacterial density, chemokines and neutrophil counts determined. Human bronchial epithelial cells (BEAS-2B) or mouse alveolar macrophages (MH-S) were infected with RV and challenged with NHTi, TLR2 or TLR5 agonists. Chemokine levels were measured by ELISA and expression of IRAK-1, a component of MyD88-dependent TLR signaling, assessed by immunoblotting. While sham-infected mice cleared all NTHi from the lungs, RV-infected mice showed bacteria up to 72 h post-infection. However, animals in RV/NTHi cleared bacteria by day 7. Delayed bacterial clearance in RV/NTHi animals was associated with suppressed chemokine levels and neutrophil recruitment. RV-infected BEAS-2B and MH-S cells showed attenuated chemokine production after challenge with either NTHi or TLR agonists. Attenuated chemokine responses were associated with IRAK-1 protein degradation. Inhibition of RV-induced IRAK-1 degradation restored NTHi-stimulated IL-8 expression. Knockdown of TLR2, but not other MyD88-dependent TLRs, also restored IRAK-1, suggesting that TLR2 is required for RV-induced IRAK-1 degradation.In conclusion, we demonstrate for the first time that RV infection delays bacterial clearance in vivo and suppresses NTHi-stimulated chemokine responses via degradation of IRAK-1. Based on these observations, we speculate that modulation of TLR-dependent innate immune responses by RV may predispose the host to secondary bacterial infection, particularly in patients with underlying chronic respiratory disorders.  相似文献   

2.
TLRs are important for the recognition of conserved motifs expressed by invading bacteria. TLR4 is the signaling receptor for LPS, the major proinflammatory component of the Gram-negative cell wall, whereas CD14 serves as the ligand-binding part of the LPS receptor complex. Triggering of TLR4 results in the activation of two distinct intracellular pathways, one that relies on the common TLR adaptor MyD88 and one that is mediated by Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF). Nontypeable Haemophilus influenzae (NTHi) is a common Gram-negative respiratory pathogen that expresses both TLR4 (LPS and lipooligosaccharide) and TLR2 (lipoproteins) ligands. To determine the roles of CD14, TLR4, and TLR2 during NTHi pneumonia, the following studies were performed: 1) Alveolar macrophages from CD14 and TLR4 knockout (KO) mice were virtually unresponsive to NTHi in vitro, whereas TLR2 KO macrophages displayed a reduced NTHi responsiveness. 2) After intranasal infection with NTHi, CD14 and TLR4 KO mice showed an attenuated early inflammatory response in their lungs, which was associated with a strongly reduced clearance of NTHi from the respiratory tract; in contrast, in TLR2 KO mice, lung inflammation was unchanged, and the number of NTHi CFU was only modestly increased at the end of the 10-day observation period. 3) MyD88 KO, but not TRIF mutant mice showed an increased bacterial load in their lungs upon infection with NTHi. These data suggest that the MyD88-dependent pathway of TLR4 is important for an effective innate immune response to respiratory tract infection caused by NTHi.  相似文献   

3.
Hassan F  Ren D  Zhang W  Merkel TJ  Gu XX 《PloS one》2012,7(5):e37610
Moraxella catarrhalis is a gram negative bacterium and a leading causative agent of otitis media (OM) in children. Several recent reports have provided strong evidence for an association between toll like receptors and OM. It has been found that both Streptococcus pneumoniae and nontypeable Haemophilus influenzae activate host protective immune responses through toll like receptors (TLRs), however, the precise mechanism by which Moraxella catarrhalis initiates the host immune response is currently unknown. In this report, using murine macrophages generated from a series of knock-out mice, we have demonstrated that M. catarrhalis lipooligosaccharide (LOS) and either heat killed or live bacteria are recognized by one or more TLRs. LOS activates the host immune response through a membrane bound CD14-TLR4 complex, while both heat killed and live M.cat require recognition by multiple toll like receptors such as TLR2, TLR4 and TLR9 without the requirement of CD14. We have also shown that M.cat stimuli are capable of triggering the host innate immune response by both MyD88- and TRIF- dependent signaling pathways. We further showed that M.cat induced activation of mitogen activated protein kinase (MAPK) is essential in order to achieve optimal secretion of pro-inflammatory cytokine TNF-α. We finally showed that TLR4 mutant C3H/HeJ mice produce significantly lower levels of pro-inflammatory cytokines TNF-α and IL-6 in vivo, An increased bacterial loads at 12 and 24 hours (P<0.001) in their lungs upon challenge with live M.cat in an aerosol chamber compared to wild-type (WT) control mice. These data suggest that TLRs are crucial for an effective innate immune response induced by M.cat. The results of these studies contribute to an increased understanding of molecular mechanism and possible novel treatment strategies for diseases caused by M.cat by specifically targeting TLRs and their signaling pathways.  相似文献   

4.
Despite the lack of a proinflammatory response to LPS, CD14-deficient mice clear Gram-negative bacteria (Escherichia coli 0111) at least 10 times more efficiently than normal mice. In this study, we show that this is due to an early and intense recruitment of neutrophils following the injection of Gram-negative bacteria or LPS in CD14-deficient mice; in contrast, neutrophil infiltration is delayed by 24 h in normal mice. Similar results of early LPS-induced PMN infiltration and enhanced clearance of E. coli were seen in Toll-like receptor (TLR) 4-deficient mice. Furthermore, the lipid A moiety of LPS induced early neutrophil infiltration not only in CD14-deficient and TLR-4-deficient mice, but also in normal mice. In conclusion, the lipid A component of LPS stimulates a unique and critical pathway of innate immune responses that is independent of CD14 and TLR4 and results in early neutrophil infiltration and enhanced bacterial clearance.  相似文献   

5.
Otitis media (OM), a common infectious disease in children, is associated with bacterial middle ear (ME) infection. Toll-like receptors (TLRs) are important mediators of innate immune responses, and TLR9 specifically recognizes the unmethylated cytidine-phosphate-guanosine (CpG) motifs in bacterial DNA. Additional sensors of foreign DNA have recently been identified. The role of DNA sensing and TLR9 was investigated in a murine model of OM induced by non-typeable Haemophilus influenzae (NTHi). Expression of genes related to DNA-sensing pathways involved in innate immunity was assessed via DNA microarray, qPCR and immunohistochemistry. Middle ear responses to NTHi were examined in wild-type and TLR9(-/-) mice by histopathology and bacterial culture. Expression of TLR9 signaling genes was modestly up-regulated during OM, as was TLR9 protein in both ME mucosal cells and infiltrating leukocytes. However, genes known to be regulated by CpG DNA were dramatically up-regulated, as were genes involved in DNA sensing by DIA, Pol-III and AIM2. Toll-like receptor 9 deletion significantly prolonged the inflammatory response induced by NTHi in the ME and delayed bacterial clearance. The results suggest that DNA sensing via TLR9 plays a role in OM pathogenesis and recovery. Alternative forms of DNA sensing may also contribute to OM.  相似文献   

6.
Periodontitis is a chronic inflammatory disease that leads to destruction of the attachment apparatus of the teeth. The presence of particular oral bacteria and the host inflammatory response contribute to disease progression. Porphyromonas gingivalis is a Gram-negative anaerobe considered to be a major periodontal pathogen. Isolated Ags from P. gingivalis activate innate immune cells through TLR2 or TLR4. We challenged TLR2- and TLR4-deficient mice with live P. gingivalis and studied the inflammatory response and bacterial survival. Wild-type and TLR4-deficient mice produced high levels of cytokines in response to P. gingivalis challenge, whereas cytokine levels were nearly absent or delayed in TLR2-deficient mice. Surprisingly, P. gingivalis was cleared far more rapidly in TLR2-deficient mice. In addition, TLR2-deficient mice resisted bone loss following oral infection with P. gingivalis.  相似文献   

7.
Mammalian cells recognize LPS from Gram-negative bacteria via the Toll-like receptor 4 (TLR4) complex. During experimental Salmonella infection, C3H/HeJ mice carrying a dominant-negative mutation in TLR4 exhibited delayed chemokine production, impaired NO generation, and attenuated cellular immune responses. However, dramatically enhanced bacterial growth within the Kupffer cell network before the recruitment of inflammatory cells appeared to be primarily responsible for the early demise of Salmonella-infected TLR4-deficient mice. LPS-TLR4 signaling plays an essential role in the generation of both innate and adaptive immune responses throughout the course of infection with Gram-negative bacteria. Alternative pattern-recognition receptors cannot completely compensate for the loss of TLR4, and compensation occurs at the expense of an increased microbial burden.  相似文献   

8.
Respiratory systems are constantly being challenged by pathogens. Lung epithelial cells serve as a first line of defense against microbial pathogens by detecting pathogen-associated molecular patterns (PAMPs) and activating downstream signaling pathways, leading to a plethora of biological responses required for shaping both the innate and adaptive arms of the immune response. Acute-phase proteins (APPs), such as type 1 plasminogen activator inhibitor (PAI-1), play important roles in immune/inflammatory responses. PAI-1, a key regulator for fibrinolysis and coagulation, acts as an APP during acute phase response (APR) such as acute lung injury (ALI), inflammation, and sepsis. However, the role of PAI-1 in the pathogenesis of these diseases still remains unclear, especially in bacterial pneumonia. In this study, we showed that PAI-1 expression is upregulated following nontypeable Haemophilus influenzae (NTHi) infection. PAI-1 knockout (KO) mice failed to generate early immune responses against NTHi. Failure of generating early immune responses in PAI-1 KO mice resulted in reduced bacterial clearance and prolonged disease process, which in turn led to enhanced inflammation at late stage of infection. Moreover, we also found that NTHi induces PAI-1 via activation of TLR2–MyD88–MKK3–p38 MAPK signaling pathway. These data suggest that PAI-1 plays critical role in earl host defense response against NTHi infection. Our study thus reveals a novel role of PAI-1 in infection caused by NTHi, one of the most common gram-negative bacterial pathogens in respiratory systems.  相似文献   

9.
TLRs are implicated in defense against microorganisms. Animal models have demonstrated that the susceptibility to a number of Gram-negative pathogens is linked to TLR4, and thus LPS of many Gram-negative bacteria have been implicated as virulence factors. To assess the role of this pathogen-associated molecular pattern as it is exposed on intact Pseudomonas aeruginosa, the susceptibility of mice lacking TLR4 or both TLR2 and TLR4 was examined in a model of acute Pseudomonas pneumonia. These mutant mice were not hypersusceptible to the Pseudomonas challenge and mounted an effective innate response that cleared the organism despite low levels of TNF-alpha and KC in the airways. Bacterial and neutrophil counts in the lung were similar in control and TLR-deficient mice at 6 and 24 h after infection. MyD88(-/-) mice were, however, hypersusceptible, with 100% of mice dying within 48 h with a lower dose of P. aeruginosa. Of note there were normal levels of IL-6 and G-CSF in the airways of TLR mutant mice that were absent from the MyD88(-/-) mice. Thus, the susceptibility of mice to P. aeruginosa acute lung infection does not go through TLR2 or TLR4, implying that Pseudomonas LPS is not the most important virulence factor in acute pneumonia caused by this organism. Furthermore, G-CSF treatment of infected MyD88(-/-) mice results in improved clearance and survival. Thus, the resistance to infection in TLR2/TLR4(-/-) mice may be linked to G-CSF and possibly IL-6 production.  相似文献   

10.
11.
The objective of this study was to determine if inflammatory tolerance and enhancement of innate immune function could be induced by the Gram-positive cell wall component peptidoglycan (PGN). Male mice (C57BL6/J or C3H/HeJ, 8-12 weeks of age) were given intraperitoneal injections of 1mg PGN on 2 consecutive days. The mice were then challenged with lipopolysaccharide (LPS) or live Pseudomonas aeruginosa (1 x 10(8) colony-forming units) 2 days after the second pretreatment. Mice pretreated with PGN had diminished plasma concentrations of TNFalpha and IFNgamma and elevated concentrations of IL-10 in response to a subsequent LPS or Pseudomonas challenge when compared to untreated controls. Bacterial clearance was improved in mice pretreated with PGN, and mortality in response to a subsequent Pseudomonas challenge was significantly attenuated. PGN pretreatment of LPS-unresponsive mice (C3H/HeJ) verified that the effect of PGN pretreatment was not due to any LPS contamination. We have previously demonstrated that PGN pretreatment induced resistance to a Gram-positive bacterial challenge. The present study extends those results by showing that exposure to the Gram-positive bacterial cell wall component peptidoglycan also induces cross-tolerance to LPS and non-specifically enhances innate immune function in that PGN-pretreated mice had increased resistance to Gram-negative bacterial challenge.  相似文献   

12.
Toll like receptors play an important role in lung host defense against bacterial pathogens. In this study, we investigated independent and cooperative functions of TLR4 and TLR9 in microbial clearance and systemic dissemination during Gram-negative bacterial pneumonia. To access these responses, wildtype Balb/c mice, mice with defective TLR4 signaling (TLR4lps-d), mice deficient in TLR9 (TLR9−/−) and TLR4/9 double mutant mice (TLR4lps-d/TLR9−/−) were challenged with K. pneumoniae, then time-dependent lung bacterial clearance and systemic dissemination determined. We found impaired lung bacterial clearance in TLR4 and TLR9 single mutant mice, whereas the greatest impairment in clearance was observed in TLR4lps-d/TLR9−/− double mutant mice. Early lung expression of TNF-α, IL-12, and chemokines was TLR4 dependent, while IFN-γ production and the later expression of TNF-α and IL-12 was dependent on TLR9. Classical activation of lung macrophages and maximal induction of IL-23 and IL-17 required both TLR4 and TLR9. Finally, the i.t. instillation of IL-17 partially restored anti-bacterial immunity in TLR4lps-d/TLR9−/− double mutant mice. In conclusion, our studies indicate that TLR4 and TLR9 have both non-redundant and cooperative roles in lung innate responses during Gram-negative bacterial pneumonia and are both critical for IL-17 driven antibacterial host response.  相似文献   

13.

Background

Bacterial sepsis is a major threat in neonates born prematurely, and is associated with elevated morbidity and mortality. Little is known on the innate immune response to bacteria among extremely premature infants.

Methodology/Principal Findings

We compared innate immune functions to bacteria commonly causing sepsis in 21 infants of less than 28 wks of gestational age, 24 infants born between 28 and 32 wks of gestational age, 25 term newborns and 20 healthy adults. Levels of surface expression of innate immune receptors (CD14, TLR2, TLR4, and MD-2) for Gram-positive and Gram-negative bacteria were measured in cord blood leukocytes at the time of birth. The cytokine response to bacteria of those leukocytes as well as plasma-dependent opsonophagocytosis of bacteria by target leukocytes was also measured in the presence or absence of interferon-γ. Leukocytes from extremely premature infants expressed very low levels of receptors important for bacterial recognition. Leukocyte inflammatory responses to bacteria and opsonophagocytic activity of plasma from premature infants were also severely impaired compared to term newborns or adults. These innate immune defects could be corrected when blood from premature infants was incubated ex vivo 12 hrs with interferon-γ.

Conclusion/Significance

Premature infants display markedly impaired innate immune functions, which likely account for their propensity to develop bacterial sepsis during the neonatal period. The fetal innate immune response progressively matures in the last three months in utero. Ex vivo treatment of leukocytes from premature neonates with interferon-γ reversed their innate immune responses deficiency to bacteria. These data represent a promising proof-of-concept to treat premature newborns at the time of delivery with pharmacological agents aimed at maturing innate immune responses in order to prevent neonatal sepsis.  相似文献   

14.
Inflammatory bowel disease (IBD) arises from a dysregulated mucosal immune response to luminal bacteria. Toll-like receptor (TLR)4 recognizes LPS and transduces a proinflammatory signal through the adapter molecule myeloid differentiation marker 88 (MyD88). We hypothesized that TLR4 participates in the innate immune response to luminal bacteria and the development of colitis. TLR4-/- and MyD88-/- mice and littermate controls were given 2.5% dextran sodium sulfate (DSS) for 5 or 7 days followed by a 7-day recovery. Colitis was assessed by weight loss, rectal bleeding, and histopathology. Immunostaining was performed for macrophage markers, chemokine expression, and cell proliferation markers. DSS treatment of TLR4-/- mice was associated with striking reduction in acute inflammatory cells compared with wild-type mice despite similar degrees of epithelial injury. TLR4-/- mice experienced earlier and more severe bleeding than control mice. Similar results were seen with MyD88-/- mice, suggesting that this is the dominant downstream pathway. Mesenteric lymph nodes from TLR4-/- and MyD88-/- mice more frequently grew gram-negative bacteria. Altered neutrophil recruitment was due to diminished macrophage inflammatory protein-2 expression by lamina propria macrophages in TLR4-/- and MyD88-/- mice. The similarity in crypt epithelial damage between TLR4-/- or MyD88-/- and wild-type mice was seen despite decreased epithelial proliferation in knockout mice. TLR4 through the adapter molecule MyD88 is important in intestinal response to injury and in limiting bacterial translocation. Despite the diversity of luminal bacteria, other TLRs do not substitute for the role of TLR4 in this acute colitis model. A defective innate immune response may result in diminished bacterial clearance and ultimately dysregulated response to normal flora.  相似文献   

15.
Bacterial DNA exerts immunostimulatory effects on mammalian cells via the intracellular TLR9. Although broad analysis of TLR9-mediated immunostimulatory potential of synthetic oligonucleotides has been developed, which kinds of natural bacterial DNA sequences are responsible for immunostimulation are not known. This work provides evidence that the natural DNA sequences named repetitive extragenic palindromic (REPs) sequences present in Gram-negative bacteria are able to produce innate immune system stimulation via TLR9. A strong induction of IFN-alpha production by REPs from Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, and Neisseria meningitidis was detected in splenocytes from 129 mice. In addition, the involvement of TLR9 in immune stimulation by REPs was confirmed using B6.129P2-Tlr9(tm1Aki) knockout mice. Considering the involvement of TLRs in Gram-negative septic shock, it is conceivable that REPs play a role in its pathogenesis. This study highlights REPs as a potential novel target in septic shock treatment.  相似文献   

16.
The mammalian Toll-like receptor 4, TLR4, is an important component in the innate immune response to gram-negative bacterial infection. The role of TLR4 in antiviral immunity has been largely unexplored. In this study, the in vivo immune responses to respiratory syncytial virus (RSV) and influenza virus infection were examined in TLR4-deficient (C57BL/10ScNCr) and TLR4-expressing (C57BL/10Sn) mice. TLR4-deficient mice challenged with RSV, but not influenza virus, exhibited impaired natural killer (NK) cell and CD14(+) cell pulmonary trafficking, deficient NK cell function, impaired interleukin-12 expression, and impaired virus clearance compared to mice expressing TLR4. These findings suggest that Toll signaling pathways have an important role in innate immunity to RSV.  相似文献   

17.
In this study, experiments were performed to determine the contribution of TLR9 to the generation of protective innate immunity against virulent bacterial pathogens of the lung. In initial studies, we found that the intratracheal administration of Klebsiella pneumoniae in wild-type (WT) BALB/c mice resulted in the rapid accumulation of dendritic cells (DC) expressing TLR9. As compared with WT mice, animals deficient in TLR9 (TLR9-/-) displayed significantly increased mortality that was associated with a >50-fold increase in lung CFU and a >400-fold increase in K. pneumoniae CFU in blood and spleen, respectively. Intrapulmonary bacterial challenge in TLR9-/- mice resulted in reduced lung DC accumulation and maturation as well as impaired activation of lung macrophages, NK cells, and alphabeta and gammadelta T cells. Mice deficient in TLR9 failed to generate an effective Th1 cytokine response following bacterial administration. The adoptive transfer of bone marrow-derived DC from syngeneic WT but not TLR9-/- mice administered intratracheally reconstituted antibacterial immunity in TLR9-/- mice. Collectively, our findings indicate that TLR9 is required for effective innate immune responses against Gram-negative bacterial pathogens and that approaches to maximize TLR9-mediated DC responses may serve as a means to augment antibacterial immunity in pneumonia.  相似文献   

18.
Otitis media (OM) is a polymicrobial disease wherein prior or concurrent infection with an upper respiratory tract virus plays an essential role, predisposing the middle ear to bacterial invasion. In episodes of acute bacterial OM, respiratory syncytial virus (RSV) is the most commonly isolated virus and thus serves as an important co-pathogen. Of the predominant bacterial agents of OM, the pathogenesis of disease due to Moraxella catarrhalis is the least well understood. Rigorous study of M. catarrhalis in the context of OM has been significantly hindered by lack of an animal model. To bridge this gap, we assessed whether co-infection of chinchillas with M. catarrhalis and RSV would facilitate ascension of M. catarrhalis from the nasopharynx into the middle ear. Chinchillas were challenged intranasally with M. catarrhalis followed 48 hours later by intranasal challenge with RSV. Within 7 days, 100% of nasopharynges were colonized with M. catarrhalis and homogenates of middle ear mucosa were also culture-positive. Moreover, within the middle ear space, the mucosa exhibited hemorrhagic foci, and a small volume of serosanguinous effusion was present in one of six ears. To improve upon this model, and based on epidemiologic data, nontypeable Haemophilus influenzae (NTHI) was included as an additional bacterial co-pathogen via intranasal administration four days before M. catarrhalis challenge. With this latter protocol, M. catarrhalis was cultured from the nasopharynx and middle ear homogenates of a maximum of 88% and 79% animals, respectively, for up to 17 days after intranasal challenge with M. catarrhalis. Additionally, hemorrhagic foci were observed in 79% of middle ears upon sacrifice. Thus, these data demonstrated that co-infection with RSV and NTHI predisposed to M. catarrhalis-induced ascending experimental OM. This model can be used both in studies of pathogenesis as well as to investigate strategies to prevent or treat OM due to M. catarrhalis.  相似文献   

19.
Invasive infection with Gram-positive and Gram-negative bacteria often results in septic shock and death. The basis for the earliest steps in innate immune response to Gram-positive bacterial infection is poorly understood. The LPS component of the Gram-negative bacterial cell wall appears to activate cells via CD14 and Toll-like receptor (TLR) 2 and TLR4. We hypothesized that Gram-positive bacteria might also be recognized by TLRs. Heterologous expression of human TLR2, but not TLR4, in fibroblasts conferred responsiveness to Staphylococcus aureus and Streptococcus pneumoniae as evidenced by inducible translocation of NF-kappaB. CD14 coexpression synergistically enhanced TLR2-mediated activation. To determine which components of Gram-positive cell walls activate Toll proteins, we tested a soluble preparation of peptidoglycan prepared from S. aureus. Soluble peptidoglycan substituted for whole organisms. These data suggest that the similarity of clinical response to invasive infection by Gram-positive and Gram-negative bacteria is due to bacterial recognition via similar TLRs.  相似文献   

20.
Moraxella catarrhalis is an emerging human respiratory pathogen in patients with chronic obstructive pulmonary disease (COPD) and in children with acute otitis media. The specific secretion machinery known as outer membrane vesicles (OMVs) is a mechanism by which Gram-negative pathogens interact with host cells during infection. We identified 57 proteins in M. catarrhalis OMVs using a proteomics approach combining two-dimensional SDS-PAGE and MALDI-TOF mass spectrometry analysis. The OMVs contained known surface proteins such as ubiquitous surface proteins (Usp) A1/A2, and Moraxella IgD-binding protein (MID). Most of the proteins are adhesins/virulence factors triggering the immune response, but also aid bacteria to evade the host defence. FITC-stained OMVs bound to lipid raft domains in alveolar epithelial cells and were internalized after interaction with Toll-like receptor 2 (TLR2), suggesting a delivery to the host tissue of a large and complex group of OMV-attributed proteins. Interestingly, OMVs modulated the pro-inflammatory response in epithelial cells, and UspA1-bearing OMVs were found to specifically downregulate the reaction. When mice were exposed to OMVs, a pulmonary inflammation was clearly seen. Our findings indicate that Moraxella OMVs are highly biologically active, transport main bacterial virulence factors and may modulate the epithelial pro-inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号