首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial persistence is the tolerance of a small part of a cell population to bactericidal agents, which is attained by a suppression of important cell functions and subsequent deceleration or cessation of cell division. The growth rate is the decisive factor in the transition of the cells to the persister state. A comparative study of quickly growing Escherichia coli K-12 strain MC 4100 and cyanobacteria Synechocystis sp. PCC 6803 and Anabaena variabilis ATCC 29413 growing slowly was performed. The cyanobacterial cells, like E. coli cells, differed in sensitivity to antimicrobial substances depending on the growth phase. Carbenicillin inhibiting the synthesis of peptidoglycan, a component of the bacterial cell wall, and lincomycin inhibiting the protein synthesis gave rise to nucleoid decay in cells from exponential cultures of Synechocystis 6803 and did not influence the nucleoids in cells from stationary cultures. Carbenicillin suppressed the growth of exponential cultures and had no effect on cyanobacterial stationary cultures. A suppression of Synechocystis 6803 growth in the exponential phase by lincomycin was stronger than in the stationary phase. Similar data were obtained with cyanobacterial cells under the action of H2O2 or menadione, an inducer of reactive oxygen species production. Slowly growing cyanobacteria were similar to quickly growing E. coli in their characteristics. Persistence is a characteristic feature of cyanobacteria.  相似文献   

2.
3.
蓝细菌是一类古老的光合原核微生物。就基因组拷贝数(倍性)而言,蓝细菌是原核生物中基因组低、中、高拷贝共存的典型类群之一,而基因组多拷贝特性是制约蓝细菌高效遗传改造的瓶颈。已有研究表明,蓝细菌的基因组拷贝数表现出生长周期的依赖性并受多种遗传、环境因子的影响。文中综述了蓝细菌基因组拷贝数的国内外最新研究进展、分析方法及影响因素,并讨论了蓝细菌基因组多拷贝研究的环境生态和生物技术意义。最后,对未来蓝细菌基因组拷贝数相关的研究方向作出展望。  相似文献   

4.
Previous studies revealed that one species of methanogenic archaea, Methanocaldococcus jannaschii, is polyploid, while a second species, Methanothermobacter thermoautotrophicus, is diploid. To further investigate the distribution of ploidy in methanogenic archaea, species of two additional genera-Methanosarcina acetivorans and Methanococcus maripaludis-were investigated. M. acetivorans was found to be polyploid during fast growth (t(D) = 6 h; 17 genome copies) and oligoploid during slow growth (doubling time = 49 h; 3 genome copies). M. maripaludis has the highest ploidy level found for any archaeal species, with up to 55 genome copies in exponential phase and ca. 30 in stationary phase. A compilation of archaeal species with quantified ploidy levels reveals a clear dichotomy between Euryarchaeota and Crenarchaeota: none of seven euryarchaeal species of six genera is monoploid (haploid), while, in contrast, all six crenarchaeal species of four genera are monoploid, indicating significant genetic differences between these two kingdoms. Polyploidy in asexual species should lead to accumulation of inactivating mutations until the number of intact chromosomes per cell drops to zero (called "Muller's ratchet"). A mechanism to equalize the genome copies, such as gene conversion, would counteract this phenomenon. Making use of a previously constructed heterozygous mutant strain of the polyploid M. maripaludis we could show that in the absence of selection very fast equalization of genomes in M. maripaludis took place probably via a gene conversion mechanism. In addition, it was shown that the velocity of this phenomenon is inversely correlated to the strength of selection.  相似文献   

5.
One of the responses exhibited by cyanobacteria when they are limited for an essential nutrient is the rapid degradation of their light-harvesting complex, the phycobilisome. Phycobilisome degradation is an ordered proteolytic process, visible by a color change of the cyanobacterial cell from blue-green to yellow-green (chlorosis). The small polypeptide NblA plays a key role in degradation of phycobilisomes in Synechococcus sp. PCC7942. Unlike Synechococcus, Synechocystis sp. PCC6803 has two nblA-homologous genes, nblA1 and nblA2, which are contiguous on the genome. Here we show that nblA1 and nblA2 are simultaneously expressed in Synechocystis 6803 upon nitrogen deprivation, and are both required for phycobilisome degradation.  相似文献   

6.
New cyanobacterial expression vectors, possessing an origin of replication that functions in a broad range of Gram-negative bacteria, were constructed. To inspect the shuttle vectors, the gene gfp was cloned downstream from the expression control element (ECE) originating from the regulatory region of the Microcystis aeruginosa gene psbA2 (for photosystem II D1 protein), and the vectors were introduced into three kinds of cyanobacteria (Synechocystis sp. PCC 6803, Synechococcus elongatus PCC 7942, and Limnothrix/Pseudanabaena sp. ABRG5-3) by conjugation. Multiple copy numbers of the expression vectors (in the range of 14-25 copies per cell) and a high expression of green fluorescent protein (GFP) at the RNA/protein level were observed in the cyanobacterial transconjugants. Importantly, GFP was observed in a supernatant from the autolysed transconjugants of ABRG5-3 and easily collected from the supernatant without centrifugation and/or further cell lysis. These results indicate the vectors together with the recombinant cells to be useful for overproducing and recovering target gene products from cyanobacteria.  相似文献   

7.
ABSTRACT

While the model bacteria Escherichia coli and Bacillus subtilis harbor single chromosomes, which is known as monoploidy, some freshwater cyanobacteria contain multiple chromosome copies per cell throughout their cell cycle, which is known as polyploidy. In the model cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803, chromosome copy number (ploidy) is regulated in response to growth phase and environmental factors. In S. elongatus 7942, chromosome replication is asynchronous both among cells and chromosomes. Comparative analysis of S. elongatus 7942 and S. sp. 6803 revealed a variety of DNA replication mechanisms. In this review, the current knowledge of ploidy and DNA replication mechanisms in cyanobacteria is summarized together with information on the features common with plant chloroplasts. It is worth noting that the occurrence of polyploidy and its regulation are correlated with certain cyanobacterial lifestyles and are shared between some cyanobacteria and chloroplasts.  相似文献   

8.
Certain cyanobacteria thrive in natural habitats in which light intensities can reach 2000 micromol photon m(-2) s(-1) and nutrient levels are extremely low. Recently, a family of genes designated hli was demonstrated to be important for survival of cyanobacteria during exposure to high light. In this study we have identified members of the hli gene family in seven cyanobacterial genomes, including those of a marine cyanobacterium adapted to high-light growth in surface waters of the open ocean (Prochlorococcus sp. strain Med4), three marine cyanobacteria adapted to growth in moderate- or low-light (Prochlorococcus sp. strain MIT9313, Prochlorococcus marinus SS120, and Synechococcus WH8102), and three freshwater strains (the unicellular Synechocystis sp. strain PCC6803 and the filamentous species Nostoc punctiforme strain ATCC29133 and Anabaena sp. [Nostoc] strain PCC7120). The high-light-adapted Prochlorococcus Med4 has the smallest genome (1.7 Mb), yet it has more than twice as many hli genes as any of the other six cyanobacterial species, some of which appear to have arisen from recent duplication events. Based on cluster analysis, some groups of hli genes appear to be specific to either marine or freshwater cyanobacteria. This information is discussed with respect to the role of hli genes in the acclimation of cyanobacteria to high light, and the possible relationships among members of this diverse gene family.  相似文献   

9.
State transitions in cyanobacteria are a physiological adaptation mechanism that changes the interaction of the phycobilisomes with the Photosystem I and Photosystem II core complexes. A random mutagenesis study in the cyanobacterium Synechocystis sp. PCC6803 identified a gene named rpaC which appeared to be specifically required for state transitions. rpaC is a conserved cyanobacterial gene which was tentatively suggested to code for a novel signal transduction factor. The predicted gene product is a 9-kDa integral membrane protein. We have further examined the role of rpaC by overexpressing the gene in Synechocystis 6803 and by inactivating the ortholog in a second cyanobacterium, Synechococcus sp. PCC7942. Unlike the Synechocystis 6803 null mutant, the Synechococcus 7942 null mutant is unable to segregate, indicating that the gene is essential for cell viability in this cyanobacterium. The Synechocystis 6803 overexpressor is also unable to segregate, indicating that the cells can only tolerate a limited gene copy number. The non-segregated Synechococcus 7942 mutant can perform state transitions but shows a perturbed phycobilisome-Photosystem II interaction. Based on these results, we propose that the rpaC gene product controls the stability of the phycobilisome-Photosystem II supercomplex, and is probably a structural component of the complex.  相似文献   

10.
11.
The ntcA gene from Synechococcus sp. strain PCC 7942 encodes a regulatory protein which is required for the expression of all of the genes known to be subject to repression by ammonium in that cyanobacterium. Homologs to ntcA have now been cloned by hybridization from the cyanobacteria Synechocystis sp. strain PCC 6803 and Anabaena sp. strain PCC 7120. Sequence analysis has shown that these ntcA genes would encode polypeptides strongly similar (77 to 79% identity) to the Synechococcus NtcA protein. Sequences hybridizing to ntcA have been detected in the genomes of nine other cyanobacteria that were tested, including strains of the genera Anabaena, Calothrix, Fischerella, Nostoc, Pseudoanabaena, Synechococcus, and Synechocystis.  相似文献   

12.
The physiological function of the type 1 NAD(P)H dehydrogenase (Ndh-1) of Synechocystis sp. PCC6803 has been investigated by inactivating the gene ndhH encoding a subunit of the complex. Molecular analysis of independent transformants revealed that all clones were heteroploid, containing both wild-type and mutant ndhH copies, whatever the metabolic conditions used during genome segregation, including high CO(2) concentration. By replacing the chromosomal copy of the ndhH gene by a plasmidial copy under the control of a temperature-controlled promoter, we induce a conditional phenotype, growth being only possible at high temperature. This clearly shows for the first time that an ndh gene is indispensable to the survival of Synechocystis sp. PCC6803.  相似文献   

13.
Three new Anabaena sp. strain PCC 7120 genes encoding group 2 alternative sigma factors have been cloned and characterized. Insertional inactivation of sigD, sigE, and sigF genes did not affect growth on nitrate under standard laboratory conditions but did transiently impair the abilities of sigD and sigE mutant strains to establish diazotrophic growth. A sigD sigE double mutant, though proficient in growth on nitrate and still able to differentiate into distinct proheterocysts, was unable to grow diazotrophically due to extensive fragmentation of filaments upon nitrogen deprivation. This double mutant could be complemented by wild-type copies of sigD or sigE, indicating some degree of functional redundancy that can partially mask phenotypes of single gene mutants. However, the sigE gene was required for lysogenic development of the temperate cyanophage A-4L. Several other combinations of double mutations, especially sigE sigF, caused a transient defect in establishing diazotrophic growth, manifested as a strong and prolonged bleaching response to nitrogen deprivation. We found no evidence for developmental regulation of the sigma factor genes. luxAB reporter fusions with sigD, sigE, and sigF all showed slightly reduced expression after induction of heterocyst development by nitrogen stepdown. Phylogenetic analysis of cyanobacterial group 2 sigma factor sequences revealed that they fall into several subgroups. Three morphologically and physiologically distant strains, Anabaena sp. strain PCC 7120, Synechococcus sp. strain PCC 7002, and Synechocystis sp. strain PCC 6803 each contain representatives of four subgroups. Unlike unicellular strains, Anabaena sp. strain PCC 7120 has three additional group 2 sigma factors that cluster in subgroup 2.5b, which is perhaps specific for filamentous or heterocystous cyanobacteria.  相似文献   

14.
The genome copy numbers of seven crenarchaeal species of four genera have been reported. All of them are monoploid and thus this seems to be a characteristic feature of Crenarchaeota. In stark contrast, none of six species representing six euryarchaeal genera is monoploid. Therefore Euryarchaea are typically oligoploid or polyploidy and their genome copy numbers are tightly regulated in response to growth phase and/or growth rate. A theoretical consideration called 'Muller's ratchet' predicts that asexually reproducing polyploid species should not be able to exist. An escape from Muller's ratchet would be a mechanism leading to the equalization of genome copies, such as gene conversion. Using two species of methanogenic and halophilic archaea, it was shown that heterozygous cells containing different genomes simultaneously can be selected, exemplifying gene redundancy as one possible evolutionary advantage of polyploidy. In both cases, the genomes were rapidly equalized in the absence of selection, showing that gene conversion operates at least in halophilic and methanogenic Euryarchaea.  相似文献   

15.
The activities of uptake of thirteen 14C-labeled amino acids were determined in nine cyanobacteria, including the unicellular strains Synechococcus sp. strain PCC 7942 and Synechocystis sp. strain PCC 6803; the filamentous strain Pseudanabaena sp. strain PCC 6903, and the filamentous, heterocyst-forming strains Anabaena sp. strains PCC 7120 and PCC 7937; Nostoc sp. strains PCC 7413 and PCC 7107; Calothrix sp. strain PCC 7601 (which is a mutant unable to develop heterocysts); and Fischerella muscicola UTEX 1829. Amino acid transport mutants, selected as mutants resistant to some amino acid analogs, were isolated from the Anabaena, Nostoc, Calothrix, and Pseudanabaena strains. All of the tested cyanobacteria bear at least a neutral amino acid transport system, and some strains also bear transport systems specific for basic or acidic amino acids. Two genes, natA and natB, encoding elements (conserved component, NatA, and periplasmic binding protein, NatB) of an ABC-type permease for neutral amino acids were identified by insertional mutagenesis of strain PCC 6803 open reading frames from the recently published genomic DNA sequence of this cyanobacterium. DNA sequences homologous to natA and natB from strain PCC 6803 were detected by hybridization in eight cyanobacterial strains tested. Mutants unable to transport neutral amino acids, including natA and natB insertional mutants, accumulated in the extracellular medium a set of amino acids that always included Ala, Val, Phe, Ile, and Leu. A general role for a cyanobacterial neutral amino acid permease in recapture of hydrophobic amino acids leaked from the cells is suggested.  相似文献   

16.
为了明确蓝藻中丝氨酸/苏氨酸激酶的功能是否与调控细胞的生长分裂相关,以丝状鱼腥藻7120、单细胞集胞藻6803和聚球藻7002为对象,利用OD750光吸收测定和MTT方法研究了不同浓度丝氨酸苏氨酸激酶抑制剂roscovitine对其生长和脱氢酶活性的影响。结果表明:4 h roscovitine处理后对鱼腥藻7120和集胞藻6803生长量影响不大,对聚球藻7002的生长有促进作用。4 h roscovitine的处理对鱼腥藻7120有浓度依赖的显著抑制活性,对集胞藻6803的活性无影响,但是却促进聚球藻7002的活性。药物作用4 d后,7120的生长和活性均显著降低,并有浓度效应;6803的生长量较对照减少,但活性变化不明显;聚球藻7002的生长和活性均未受影响。显微观察结果显示,roscovitine对3种细胞形态没有影响,但药物作用4 d后的7120藻丝体较短。结果表明丝氨酸/苏氨酸抑制剂roscovitine影响丝状藻7120的生长和活性。  相似文献   

17.
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth.  相似文献   

18.
We describe a novel mechanism of site-specific recombination in the unicellular marine cyanobacterium Synechococcus sp. PCC7002. The specific recombination sites on the smallest plasmid pAQ1 were localized by studying the properties of pAQ1-derived shuttle-vectors. We found that a palindromic element, the core sequence of which is G(G/A)CGATCGCC, functions as a resolution site for site-specific plasmid recombination. Furthermore, site-directed mutagenesis analysis of the element show that the site-specific recombination in the cyanobacterium requires sequence specificity, symmetry in the core sequence and, in part, the spacing between the elements. Interestingly, this element is over-represented not only in pAQ1 and in the genome of the cyanobacterium, but also in the accumulated cyanobacterial sequences from Synechococcus sp. PCC6301, PCC7942, vulcanus and Synechocystis sp. PCC6803 within GenBank and EMBL databases. Thus, these findings strongly suggest that the site-specific recombination mechanism based on the palindromic element should be common in these cyanobacteria.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号