首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Tian DQ  Wang YM  Zheng T 《遗传》2012,34(8):1003-1008
大约10%~15%的大肠杆菌在染色体复制过程中会形成染色体二聚体。大肠杆菌染色体编码的重组酶XerC和XerD作用于染色体复制终点区的dif序列,以同源重组的方式将染色体二聚体解离为单体,使细菌得以正常复制分裂。编码霍乱毒素的噬菌体CTXΦ以位点特异的方式整合入霍乱弧菌染色体,但其基因组中不含有任何重组酶基因,其整合过程需要细菌染色体编码的XerC和XerD重组酶,且整合位点与大肠杆菌dif序列相似。XerCD重组酶基因和dif位点在细菌染色体广泛存在,表明其可能是染色体二聚体解离,噬菌体及其他外源基因成分整合入染色体过程中一种广泛存在的途径。文章对XerCD/dif位点特异性重组在细菌染色体二聚体解离、外源基因整合的研究进展进行综述。  相似文献   

2.
A major determinant of Vibrio cholerae pathogenicity, the cholera enterotoxin, is encoded in the genome of an integrated phage, CTXvarphi. CTXvarphi integration depends on two host-encoded tyrosine recombinases, XerC and XerD. It occurs at dif1, a 28 bp site on V. cholerae chromosome 1 normally used by XerCD for chromosome dimer resolution. The replicative form of the phage contains two pairs of binding sites for XerC and XerD in inverted orientations. Here we show that in the single-stranded genome of the phage, these sites fold into a hairpin structure, which creates a recombination target for XerCD. In the presence of XerD, XerC can catalyze a single pair of strand exchanges between this target and dif1, resulting in integration of the phage. This integration strategy explains why the rules that normally apply to tyrosine recombinase reactions seemed not to apply to CTXvarphi integration and, in particular, why integration is irreversible.  相似文献   

3.
Successful segregation of circular chromosomes in Escherichia coli requires that dimeric replicons, produced by homologous recombination, are converted to monomers prior to cell division. The Xer site-specific recombination system uses two related tyrosine recombinases, XerC and XerD, to catalyze resolution of circular dimers at the chromosomal site, dif. A 33-base pair DNA fragment containing the 28-base pair minimal dif site is sufficient for the recombinases to mediate both inter- and intramolecular site-specific recombination in vivo. We show that Xer-mediated intermolecular recombination in vitro between nicked linear dif "suicide" substrates and supercoiled plasmid DNA containing dif is initiated by XerC. Furthermore, on the appropriate substrate, the nicked Holliday junction intermediate formed by XerC is converted to a linear product by a subsequent single XerD-mediated strand exchange. We also demonstrate that a XerC homologue from Pseudomonas aeruginosa stimulates strand cleavage by XerD on a nicked linear substrate and promotes initiation of strand exchange by XerD in an intermolecular reaction between linear and supercoiled DNA, thereby reversing the normal order of strand exchanges.  相似文献   

4.
The Xer site-specific recombination system of Escherichia coli is involved in the stable inheritance of circular replicons. Multimeric replicons, produced by homologous recombination, are converted to monomers by the action of two related recombinases XerC and XerD. Site-specific recombination at a locus, dif, within the chromosomal replication terminus region is thought to convert dimeric chromosomes to monomers, which can then be segregated prior to cell division. The recombinases XerC and XerD bind cooperatively to dif, where they catalyse recombination. Chemical modification of specific bases and the phosphate-sugar backbone within dif was used to investigate the requirements for binding of the recombinases. Site-directed mutagenesis was then used to alter bases implicated in recombinase binding. Characterization of these mutants by in vitro recombinase binding and in vivo recombination, has demonstrated that the cooperative interactions between XerC and XerD can partially overcome DNA alterations that should interfere with specific recombinase-dif interactions.  相似文献   

5.
Studies of the site-specific recombinase Cre suggest a key role for interactions between the C-terminus of the protein and a region located about 30 residues from the C-terminus in linking in a cyclical manner the four recombinase monomers present in a recombination complex, and in controlling the catalytic activity of each monomer. By extrapolating the Cre DNA recombinase structure to the related site-specific recombinases XerC and XerD, it is predicted that the extreme C-termini of XerC and XerD interact with alpha-helix M in XerD and the equivalent region of XerC respectively. Consequently, XerC and XerD recombinases deleted for C-terminal residues, and mutated XerD proteins containing single amino acid substitutions in alphaM or in the C-terminal residues were analysed. Deletion of C-terminal residues of XerD has no measurable effect on co-operative interactions with XerC in DNA-binding assays to the recombination site dif, whereas deletion of 5 or 10 residues of XerC reduces co-operativity with XerD some 20-fold. Co-operative interactions between pairs of truncated proteins during dif DNA binding are reduced 20- to 30-fold. All of the XerD mutants, except one, were catalytically proficient in vitro; nevertheless, many failed to mediate a recombination reaction on supercoiled plasmid in vivo or in vitro, implying that the ability to form a productive recombination complex and/or mediate a controlled recombination reaction is impaired.  相似文献   

6.
Chromosome dimers, which frequently form in Escherichia coli, are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific site on the chromosome, dif, together with the cell division protein FtsK. The C-terminal domain of FtsK (FtsK(C)) is a DNA translocase implicated in helping synapsis of the dif sites and in locally promoting XerD strand exchanges after synapse formation. Here we show that FtsK(C) ATPase activity is directly involved in the local activation of Xer recombination at dif, by using an intermolecular recombination assay that prevents significant DNA translocation, and we confirm that FtsK acts before Holliday junction formation. We show that activation only occurs with a DNA segment adjacent to the XerD-binding site of dif. Only one such DNA extension is required. Taken together, our data suggest that FtsK needs to contact the XerD recombinase to switch its activity on using ATP hydrolysis.  相似文献   

7.
The tyrosine family site-specific recombinases XerC and XerD convert dimers of the Escherichia coli chromosome and many natural plasmids to monomers. The heterotetrameric recombination complex contains two molecules of XerC and two of XerD, with each recombinase mediating one pair of DNA strand exchanges. The two pairs of strand exchanges are separated in time and space. This demands that the catalytic activity of the four recombinase molecules be controlled so that only XerC or XerD is active at any given time, there being a switch in the recombinase activity state at the Holliday junction intermediate stage. Here, we analyse chimeras and deletion variants within the recombinase C-terminal domains in order to probe determinants that may be specific to either XerC or XerD, and to further understand how XerC-XerD interactions control catalysis in a recombining heterotetramer. The data confirm that the C-terminal "end" region of each recombinase plays an important role in coordinating catalysis within the XerCD heterotetramer and suggest that the interactions between the end regions of XerC and XerD and their cognate receptors within the partner recombinase are structurally and functionally different. The results support the hypothesis that the "normal" state in the heterotetrameric complex, in which XerC is catalytically active and XerD is inactive, depends on the interactions between the C-terminal end region of XerC and its receptor region within the C-terminal domain of XerD; interference with these interactions leads to a switch in the catalytic state, so that XerD is now preferentially active.  相似文献   

8.
The tyrosine family site-specific recombinases, XerCD, function in the conversion of circular dimer replicons to monomers. In the recombining complex that contains two synapsed recombination sites and two molecules each of XerC and XerD, the DNA strand-exchange reactions are separated in time and space. XerC initiates recombination to form a Holliday junction intermediate, which undergoes a conformational change to provide a substrate for strand exchange by XerD. XerCD are two-domain proteins, whose C-terminal domains contain all of the catalytic residues. We show that XerC or XerD variants lacking their N-terminal domains are active in recombination when combined with their wild-type partner. Nevertheless, the normal pattern of catalysis is dramatically altered; strand exchange by the recombinase variant is stimulated, while that by the wild-type partner recombinase is impaired. The primary determinants for the mutant phenotype reside in the region of alpha-helix B of XerD. We propose that altered interactions within the recombining heterotetramer lead to changes in the relative concentrations of the two alternative Holliday junction substrates that are recombined by XerC or XerD, respectively.  相似文献   

9.
XerC and XerD are two site-specific recombinases, which act on different sites to maintain replicons in a monomeric state. This system, which was first discovered and studied in Escherichia coli, is present in several species including Proteus mirabilis, where the XerD recombinase was previously characterized by our laboratory. In this paper, we report the presence of the xerC gene in P. mirabilis. Using in vitro reactions, we show that the two P. mirabilis recombinases display binding and cleavage activity on the E. coli dif site and the ColE1 cer site, together or in collaboration with E. coli recombinases. In vivo, P. mirabilis XerC and XerD are able to resolve and monomerize a plasmid containing two cer sites, increasing its stability. However, P. mirabilis XerC, in combination with E. coli XerD, is unable to perform these functions.  相似文献   

10.
In Xer site-specific recombination, two related recombinases, XerC and XerD, mediate the formation of recombinant products using Holliday junction-containing DNA molecules as reaction intermediates. Each recombinase catalyses the exchange of one pair of specific strands. By using synthetic Holliday junction-containing recombination substrates in which two of the four arms are tethered in an antiparallel configuration by a nine thymine oligonucleotide, we show that XerD catalyses efficient strand exchange only when its substrate strands are 'crossed'. XerC also catalyses very efficient strand exchange when its substrate strands are 'crossed', though it also appears to be able to mediate strand exchange when its substrate strands are 'continuous'. By using chemical probes of Holliday junction structure in the presence and absence of bound recombinases, we show that recombinase binding induces unstacking of the bases in the centre of the recombination site, indicating that the junction branch point is positioned there and is distorted as a consequence of recombinase binding.  相似文献   

11.
Site-specific recombinases XerC and XerD function in the segregation of circular bacterial replicons. In a recombining nucleoprotein complex containing two molecules each of XerC and XerD, coordinated reciprocal switches in recombinase activity ensure that only XerC or XerD is active at any one time. Mutated recombinases that carry sub?stitutions of a catalytic arginine residue stimulate cleavage and strand exchange mediated by the partner recombinase on DNA substrates that are normally recombined poorly by the partner. This is associated with a reciprocal impairment of the recombinase's own ability to initiate catalysis. The extent of this switch in catalysis is modulated by changes in recombination site sequence and is not a direct consequence of any catalytic defect. We propose that altered interactions between the mutated proteins and their wild-type partners lead to an increased level of an alternative Holliday junction intermediate that has a conformation appropriate for resolution by the partner recombinase. The results indicate how subtle changes in protein-DNA architecture at a Holliday junction can redirect recombination outcome.  相似文献   

12.
Xer site-specific recombination in vitro.   总被引:11,自引:6,他引:5       下载免费PDF全文
Two related recombinases, XerC and XerD, belonging to the lambda integrase family of enzymes, are required for Xer site-specific recombination in vivo. In order to understand the roles of these proteins in the overall reaction mechanism, an in vitro recombination system using a synthetic Holliday junction-containing substrate has been developed. Recombination of this substrate is efficient and requires both XerC and XerD. However, only exchange of one pair of strands, the one corresponding to the conversion of the Holliday junction intermediate back to the substrate, has been observed. Recombination reactions using XerC and XerD derivatives that are mutant in their presumptive catalytic residues, or are maltose-binding fusion recombinase derivatives, have demonstrated that this pair of strand exchanges is catalysed by XerC. The site of XerC-mediated cleavage has been located to between the last nucleotide of the XerC binding site and the first nucleotide of the central region. Cleavage at this site generates a free 5'-OH and a covalent complex between XerC and the 3' end of the DNA.  相似文献   

13.
In bacteria with circular chromosomes, homologous recombination events can lead to the formation of chromosome dimers. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover by two tyrosine recombinases, XerC and XerD, at a specific site on the chromosome, dif. Recombination depends on a direct contact between XerD and a cell division protein, FtsK, which functions as a hexameric double stranded DNA translocase. Here, we have investigated how the structure and composition of DNA interferes with Xer recombination activation by FtsK. XerC and XerD each cleave a specific strand on dif, the top and bottom strand, respectively. We found that the integrity and nature of eight bottom-strand nucleotides and three top-strand nucleotides immediately adjacent to the XerD-binding site of dif are crucial for recombination. These nucleotides are probably not implicated in FtsK translocation since FtsK could translocate on single stranded DNA in both the 5′–3′ and 3′–5′ orientation along a few nucleotides. We propose that they are required to stabilize FtsK in the vicinity of dif for recombination to occur because the FtsK–XerD interaction is too transient or too weak in itself to allow for XerD catalysis.  相似文献   

14.
The dif locus is a site-specific recombination site located within the terminus region of the chromosome of Escherichia coli. Recombination at dif resolves circular dimer chromosomes to monomers, and this recombination requires the XerC, XerD and FtsK proteins, as well as cell division. In order to characterize other enzymes that interact at dif, we tested whether quinolone-induced cleavage occurs at this site. Quinolone drugs, such as norfloxacin, inhibit the type 2 topoisomerases, DNA gyrase and topoisomerase IV, and can cleave DNA at sites where these enzymes interact with the chromosome. Using strains in which either DNA gyrase or topoisomerase IV, or both, were resistant to norfloxacin, we determined that specific interactions between dif and topoisomerase IV caused cleavage at that site. This interaction required XerC and XerD, but did not require the C-terminal region of FtsK or cell division.  相似文献   

15.
Xer site-specific recombination functions in the stable maintenance of circular replicons in Escherichia coli. Each of two related recombinase proteins, XerC and XerD, cleaves a specific pair of DNA strands, exchanges them, and rejoins them to the partner DNA molecule during a complete recombination reaction. The rejoining activity of recombinase XerC has been analyzed using isolated covalent XerC-DNA complexes resulting from DNA cleavage reactions upon Holliday junction substrates. These covalent protein-DNA complexes are competent in the rejoining reaction, demonstrating that covalently bound XerC can catalyze strand rejoining in the absence of other proteins. This contrasts with a recombinase-mediated cleavage reaction, which requires the presence of both recombinases, the recombinase mediating catalysis at any given time requiring activation by the partner recombinase. In a recombining nucleoprotein complex, both cleavage and rejoining can occur prior to dissociation of the complex.  相似文献   

16.
CTXphi is a filamentous bacteriophage that encodes cholera toxin and integrates site-specifically into the larger of the two Vibrio cholerae chromosomes. The CTXphi genome lacks an integrase; instead, its integration depends on the chromosome-encoded tyrosine recombinases XerC and XerD. During integration, recombination occurs between regions of homology in CTXphi and the V. cholerae chromosome. Here, we define the elements on the phage genome (attP) and bacterial chromosome (attB) required for CTXphi integration. attB is a short sequence composed of one binding site for XerC and XerD spanning the site of recombination. Together, XerC and XerD bind to two sites within attP. While one XerC/D binding site in attP spans the core recombination region, the other site is approximately 80 bp away. Although integration occurs at the core XerC/D binding site in attP, the second site is required for CTXphi integration, suggesting it performs an architectural role in the integration reaction. In vitro cleavage reactions showed that XerC and XerD are capable of cleaving attB and attP sequences; however, additional cellular processes such as DNA replication or Holliday junction resolution by a host resolvase may contribute to integration in vivo.  相似文献   

17.
In Xer site-specific recombination, sequential DNA strand exchange reactions are catalyzed by a heterotetrameric complex composed of two recombinases, XerC and XerD. It is demonstrated that XerC and XerD catalytic activity is controlled by an interaction involving the C-terminal end of each protein (the donor region) and an internal region close to the active site (the acceptor region). Mutations in these regions reciprocally alter the relative activity of XerC and XerD, with their combination producing synergistic effects on catalysis. The data support a model in which C-terminal intersubunit interactions contribute to coupled protein-DNA conformational changes that lead to sequential activation and reciprocal inhibition of pairs of active sites in the recombinase tetramer during recombination.  相似文献   

18.
Xer-mediated dimer resolution at the mwr site of the multiresistance plasmid pJHCMW1 is osmoregulated in Escherichia coli containing either the Escherichia coli Xer recombination machinery or Xer recombination elements from K. pneumoniae. In the presence of K. pneumoniae XerC (XerC(Kp)), the efficiency of recombination is lower than that in the presence of the E. coli XerC (XerC(Ec)) and the level of dimer resolution is insufficient to stabilize the plasmid, even at low osmolarity. This lower efficiency of recombination at mwr is observed in the presence of E. coli or K. pneumoniae XerD proteins. Mutagenesis experiments identified a region near the N terminus of XerC(Kp) responsible for the lower level of recombination catalyzed by XerC(Kp) at mwr. This region encompasses the second half of the predicted alpha-helix B and the beginning of the predicted alpha-helix C. The efficiencies of recombination at other sites such as dif or cer in the presence of XerC(Kp) or XerC(Ec) are comparable. Therefore, XerC(Kp) is an active recombinase whose action is impaired on the mwr recombination site. This characteristic may result in restriction of the host range of plasmids carrying this site, a phenomenon that may have important implications in the dissemination of antibiotic resistance genes.  相似文献   

19.
The Bacillus subtilis ripX gene encodes a protein that has 37 and 44% identity with the XerC and XerD site-specific recombinases of Escherichia coli. XerC and XerD are hypothesized to act in concert at the dif site to resolve dimeric chromosomes formed by recombination during replication. Cultures of ripX mutants contained a subpopulation of unequal-size cells held together in long chains. The chains included anucleate cells and cells with aberrantly dense or diffuse nucleoids, indicating a chromosome partitioning failure. This result is consistent with RipX having a role in the resolution of chromosome dimers in B. subtilis. Spores contain a single uninitiated chromosome, and analysis of germinated, outgrowing spores showed that the placement of FtsZ rings and septa is affected in ripX strains by the first division after the initiation of germination. The introduction of a recA mutation into ripX strains resulted in only slight modifications of the ripX phenotype, suggesting that chromosome dimers can form in a RecA-independent manner in B. subtilis. In addition to RipX, the CodV protein of B. subtilis shows extensive similarity to XerC and XerD. The RipX and CodV proteins were shown to bind in vitro to DNA containing the E. coli dif site. Together they functioned efficiently in vitro to catalyze site-specific cleavage of an artificial Holliday junction containing a dif site. Inactivation of codV alone did not cause a discernible change in phenotype, and it is speculated that RipX can substitute for CodV in vivo.  相似文献   

20.
Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving two paralogous tyrosine recombinases, XerC and XerD, and a 28-bp recombination site (dif) located at the junction of the two replication arms. Xer recombination is tightly controlled by the septal protein FtsK. XerCD recombinases and FtsK are found on most sequenced eubacterial genomes, suggesting that the Xer recombination system as described in E. coli is highly conserved among prokaryotes. We show here that Streptococci and Lactococci carry an alternative Xer recombination machinery, organized in a single recombination module. This corresponds to an atypical 31-bp recombination site (difSL) associated with a dedicated tyrosine recombinase (XerS). In contrast to the E. coli Xer system, only a single recombinase is required to recombine difSL, suggesting a different mechanism in the recombination process. Despite this important difference, XerS can only perform efficient recombination when difSL sites are located on chromosome dimers. Moreover, the XerS/difSL recombination requires the streptococcal protein FtsKSL, probably without the need for direct protein-protein interaction, which we demonstrated to be located at the division septum of Lactococcus lactis. Acquisition of the XerS recombination module can be considered as a landmark of the separation of Streptococci/Lactococci from other firmicutes and support the view that Xer recombination is a conserved cellular function in bacteria, but that can be achieved by functional analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号