首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary relationships in the genus Bordetella   总被引:3,自引:0,他引:3  
The nucleotide sequence of the pertussis toxin operon of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica, has shown that the last two species contain many common mutations and are likely to derive from a common ancestor (Aricò and Rappuoli, 1987). To elucidate further the evolutionary relationships between the Bordetella species, we have cloned and sequenced the promoter region and the gene coding for the S1 subunit of pertussis toxin from additional B. pertussis strains, such as the type strain BP 18323 and two recent clinical isolates, namely strain BP 13456 from Sweden and strain BP SA1 from Italy. While the strains BP SA1 and BP 13456 are shown to differ from the published B. pertussis sequences by only one base pair, the type strain BP 18323 contains a total of 11 base-pair substitutions. Remarkably, 9 of the 11 substitutions found in BP 18323 are also common to B. parapertussis and B. bronchiseptica, strongly suggesting that this strain derives from the same ancestor as B. parapertussis and B. bronchiseptica. Computer analysis of the sequence data allows the construction of an evolutionary 'tree' showing that the B. pertussis strains are very homogeneous and significantly distant from B. parapertussis and B. bronchiseptica. Therefore the proposed conversion from B. parapertussis to B. pertussis appears highly improbable.  相似文献   

2.
Abstract Three laboratory strains and 3 clinical isolates of Bordetella pertussis were found to have no IgA protease activity when incubated with radio-labelled IgA. In addition, no IgA protease activity was detected in the Second British Reference Preparation for Pertussis Vaccine, an acellular vaccine produced in Japan, or one strain each of Bordetella parapertussis and Bordetella bronchiseptica .  相似文献   

3.
Genetic diversity and relationships in populations of Bordetella spp   总被引:39,自引:10,他引:29       下载免费PDF全文
Genetic diversity in 60 strains of three nominal Bordetella species recovered from humans and other mammalian hosts was assessed by analyzing electrophoretically demonstrable allelic variation at structural genes encoding 15 enzymes. Eleven of the loci were polymorphic, and 14 distinctive electrophoretic types, representing multilocus genotypes, were identified. The population structure of Bordetella spp. is clonal, and genetic diversity is relatively limited compared with most other pathogenic bacteria and is insufficient to justify recognition of three species. All isolates of Bordetella parapertussis were of one electrophoretic type, which was closely similar to 9 of the 10 electrophoretic types represented by isolates of Bordetella bronchiseptica. Bordetella pertussis 18-323, which is used in mouse potency tests of vaccines, is more similar genetically to isolates of B. bronchiseptica and B. parapertussis than to other isolates currently assigned to the species B. pertussis. Apart from strain 18-323, the isolates of B. pertussis represented only two closely related clones, and all isolates of B. pertussis from North America (except strain 18-323) were genotypically identical. Strain Dejong, which has been classified as B. bronchiseptica, was strongly differentiated from all of the other Bordetella isolates examined.  相似文献   

4.
Bordetella pertussis, B. bronchiseptica, B. parapertussis(hu), and B. parapertussis(ov) are closely related respiratory pathogens that infect mammalian species. B. pertussis and B. parapertussis(hu) are exclusively human pathogens and cause whooping cough, or pertussis, a disease that has resurged despite vaccination. Although it most often infects animals, infrequently B. bronchiseptica is isolated from humans, and these infections are thought to be zoonotic. B. pertussis and B. parapertussis(hu) are assumed to have evolved from a B. bronchiseptica-like ancestor independently. To determine the phylogenetic relationships among these species, housekeeping and virulence genes were sequenced, comparative genomic hybridizations were performed using DNA microarrays, and the distribution of insertion sequence elements was determined, using a collection of 132 strains. This multifaceted approach distinguished four complexes, representing B. pertussis, B. parapertussis(hu), and two distinct B. bronchiseptica subpopulations, designated complexes I and IV. Of the two B. bronchiseptica complexes, complex IV was more closely related to B. pertussis. Of interest, while only 32% of the complex I strains were isolated from humans, 80% of the complex IV strains were human isolates. Comparative genomic hybridization analysis identified the absence of the pertussis toxin locus and dermonecrotic toxin gene, as well as a polymorphic lipopolysaccharide biosynthesis locus, as associated with adaptation of complex IV strains to the human host. Lipopolysaccharide structural diversity among these strains was confirmed by gel electrophoresis. Thus, complex IV strains may comprise a human-associated lineage of B. bronchiseptica from which B. pertussis evolved. These findings will facilitate the study of pathogen host-adaptation. Our results shed light on the origins of the disease pertussis and suggest that the association of B. pertussis with humans may be more ancient than previously assumed.  相似文献   

5.
The fatty acid composition of 3 B. pertussis strains and 2 B. parapertussis strains grown on casein-carbon agar (CCA) with 8% of sheep blood added and without blood, as well as B. parapertussis strain grown on beef-extract agar (BEA) has been studied by gas chromatography. The fatty acid profiles characteristic of B. pertussis and B. parapertussis were greatly different, as B. parapertussis has a considerable amount of methylene-hexadenocanoic acid, while containing less hexadecenoic and octadecanoic acids and more tetradecanoic acid. The fatty acid composition of 2- to 5-day Bordetella cultures grown on CCA with and without blood has no essential differences. Differences in the content of various fatty acids in B. parapertussis grown on CCA and BEA had no essential influence on the fatty acid profile. The specificity of the fatty acid composition of B. pertussis and B. parapertussis allows to use this characteristics for their differentiation.  相似文献   

6.
T M Finn  Z Li    E Kocsis 《Journal of bacteriology》1995,177(3):805-809
Bordetella pertussis 18323 produces a bvg-regulated 39.1-kDa porin-like protein, OmpQ. OmpQ had 61% similarity to the major porin of B. pertussis and contains conserved regions common to both the neisserial and enteric porin families. The results of Southern blot analysis indicate that strains of Bordetella parapertussis and Bordetella bronchiseptica but not Bordetella avium contain this gene.  相似文献   

7.
OBJECTIVE--To establish whether Bordetella pertussis is essentially clonal. DESIGN--Analysis of restriction fragments of XbaI digests of DNA from clinical and control isolates of B pertussis by pulse field gel electrophoresis. MATERIALS--105 isolates of B pertussis: 67 clinical isolates from throughout the United Kingdom and 23 from Germany (collected during the previous 18 months); vaccine strains 2991 and 3700; and 13 control isolates from Manchester University''s culture collection. MAIN OUTCOME MEASURES--Frequency of DNA types according to country of origin and classical serotyping. RESULTS--17 DNA types were identified on the basis of the variation in 11 fragments, banding at 200-412 kilobases; 15 types were found in the clinical and control isolates from the United Kingdom and seven in those from Germany. There was no correlation with serotype. DNA type 1 was the commonest overall (22/105 strains, 22%), predominating in serotypes 1,2 and 1,2,3 and including the vaccine strains but not the isolates from Germany. CONCLUSIONS--Current infections due to B pertussis are not caused by a clonal pathogen as multiple strains are circulating in a given population at one time. There is also considerable epidemiological variation in the pathogen population between countries. These findings may have implications for the design of acellular vaccines.  相似文献   

8.
In this study, Amplified Fragment Length Polymorphism (AFLP) method was used to track differences among human and animal isolates of B. pertussis, B. parapertussis and B. bronchiseptica species. One hundred and sixty representative strains of these species orginated from international and Polish bacterial collections were genotyped according to AFLP involving EcoRI/Msel and SpeI/ApaI restriction/ligation/amplification procedures. This study has confirmed high potential AFLP SpeI/ApaI procedure for intra-species differentiation of B. pertussis and B. bronchiseptica strains. Both AFLP EcoRI/MseI and SpeI/ApaI procedures have been found to be useful for species-specific classification in case of B. pertussis strains. In case of B. bronchiseptica or B. parapertussis species-specific classification, SpeI/ApaI procedure has been found more precise than EcoRI/MseI one.  相似文献   

9.
The virulence factor pertactin is expressed by the closely related pathogens Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Pertactin is an autotransporter involved in adherence of Bordetella species to the lung epithelium of mammalian hosts, and it is an important component of most current acellular pertussis vaccines. These three species produce immunologically distinct pertactin molecules, resulting in a lack of cross-protection against B. parapertussis and probably also against B. bronchiseptica. Variation in pertactin is not only inter-specific, but also occurs between isolates from the same species. Knowledge about codons that are under positive selection could facilitate the development of more broadly protective vaccines. Using different nucleotide substitution models, pertactin genes from B. bronchiseptica, B. parapertussis and B. pertussis were compared, and positively selected codons were identified using an empirical Bayesian approach. This approach yielded 15 codons predicted to be under diversifying selection pressure. These results were interpreted in an immunological context and may help in improving future pertussis vaccines.  相似文献   

10.
Phase I cells of Bordetella pertussis but not those of B. parapertussis, B. bronchiseptica or B. avium were agglutinated by Limulus polyphemus lectin. Most strains of B. pertussis but not those of the other species were also agglutinated by Helix pomatia lectin. In precipitation reactions between lectins and purified Bordetella lipopolysaccharide (LPS) preparations a similar pattern occurred. Lectin agglutination provides a rapid presumptive method for the differentiation of B. pertussis from B. parapertussis and other Bordetella species.  相似文献   

11.
Pertussis toxin, the major virulence factor of Bordetella pertussis, is not produced by the closely related species Bordetella parapertussis and Bordetella bronchiseptica. It is shown here that these two species possess but do not express the complete toxin operon. Nucleotide sequencing of an EcoRI fragment of 5 kilobases comprising the regions homologous to the pertussis toxin genes shows that in this region, B. parapertussis and B. bronchiseptica are 98.5% and 96% homologous, respectively, to B. pertussis. The changes (mostly base pair substitutions) in many cases are identical in B. parapertussis and B. bronchiseptica, suggesting that these two species derive from a common ancestor. Many of the mutations common to B. parapertussis and B. bronchiseptica involve the promoter region, which becomes very inefficient. The S1 subunits of both species, when expressed in Escherichia coli, have the same ADP-ribosylating activity as the S1 subunit from B. pertussis, indicating that the mutations in the S1 gene described here do not affect its function.  相似文献   

12.
In a recent experiment, we found that mice previously infected with Bordetella pertussis were not protected against a later infection with Bordetella parapertussis, while primary infection with B. parapertussis conferred cross-protection. This challenges the common assumption made in most mathematical models for pathogenic strain dynamics that cross-immunity between strains is symmetric. Here we investigate the potential consequences of this pattern on the circulation of the two pathogens in human populations. To match the empirical dominance of B. pertussis, we made the additional assumption that B. parapertussis pays a cost in terms of reduced fitness. We begin by exploring the range of parameter values that allow the coexistence of the two pathogens, with or without vaccination. We then track the dynamics of the system following the introduction of anti-pertussis vaccination. Our results suggest that (1) in order for B. pertussis to be more prevalent than B. parapertussis, the former must have a strong competitive advantage, possibly in the form of higher infectivity, and (2) because of asymmetric cross-immunity, the introduction of anti-pertussis vaccination should have little effect on the absolute prevalence of B. parapertussis. We discuss the evidence supporting these predictions, and the potential relevance of this model for other pathogens.  相似文献   

13.
A total of 188 Bordetella strains were characterized by the electrophoretic mobilities of 15 metabolic enzymes and the distribution and variation in positions and copy numbers of three insertion sequences (IS). The presence or absence of IS elements within certain lineages was congruent with estimates of overall genetic relationships as revealed by multilocus enzyme electrophoresis. Bordetella pertussis and ovine B. parapertussis each formed separate clusters, while human B. parapertussis was most closely related to IS1001-containing B. bronchiseptica isolates. The results of the analysis provide support for the hypothesis that the population structure of Bordetella is predominantly clonal, with relatively little effective horizontal gene flow. Only a few examples of putative recombinational exchange of an IS element were detected. Based on the results of this study, we tried to reconstruct the evolutionary history of different host-adapted lineages.  相似文献   

14.
A new bacteriophage phiK of microorganisms belonging to the genus Bordetella was isolated from cells of the earlier characterized strains 66(2-2) (1 and 2) obtained upon phage conversion of B. parapertussis 17903 cells by B. pertussis bacteriophage phi134. Bacteriophage phiK is identical to previously described Bordetella bacteriophages phiT, phi134, and phi214 in morphology and some biological properties but has a permuted genome different from all other phages. DNA of bacteriophage phiK is not integrated in the chromosome of B. parapertussis 17903, similar to DNA of bacteriophages phiT, phi134, and phi214 that are not integrated into B. pertussis and B. bronchiseptica chromosomes, but may be present in a small part of the bacterial population as linear plasmids. Sequences homologous to DNA of bacteriophage phiK were detected in the chromosome of strain 66(2-2) (1 and 2) and in chromosomes of all tested strains B. pertussis and B. bronchiseptica. Prophage integration in chromosomes of microorganisms of the genus Bordetella may vary in different bacterial strains and species. An assumption about abortive lysogeny of B. parapertussis bacteria for phiK phage and of B. bronchiseptica for closely related phages phiT, phi134, and phi214 has been advanced. The possibility of involvement of B. pertussis insertion sequences in the formation of the chromosomal structure in 66(2-2) convertants and in phage genomes is considered.  相似文献   

15.
Review of the biology of Bordetella pertussis.   总被引:5,自引:0,他引:5  
R Parton 《Biologicals》1999,27(2):71-76
Bordetella pertussis produces a complex array of adhesins, aggressins and toxins that are presumed to be important in the colonisation of its human host and in ensuring its survival and propagation. The organism also has highly sophisticated mechanisms for regulating virulence factor expression, in response to environmental signals or by reversible mutations. Despite the rapidly increasing knowledge of these aspects of the biology of B. pertussis, our understanding of the pathogenesis of whooping cough is still far from clear. In defining the role of individual factors, reliance has to be placed on in vitro assays or animal models of the human infection, particularly in the mouse, where different conditions may prevail. Some clues to pathogenic mechanisms may be provided by considering other bordetellae, especially B. parapertussis, B. bronchiseptica and B. avium, their similar, but not identical, range of virulence factors and the common features of the diseases caused by these species in their respective hosts. The bordetellae are usually defined as obligate, non-invasive parasites of the respiratory tracts of warm-blooded animals, including birds, with a predilection for the respiratory ciliated epithelium. This definition has been challenged by a number of recent observations. For example, the ability of Bordetella spp. to regulate virulence factor expression in response to external signals strongly suggests that they have alternative habitats where such regulation would be an advantage. These habitats may be intracellular, since it has been shown that B. pertussis, B. parapertussis and B. bronchiseptica can invade and survive within host cells, or they may be in other sites within the same or different hosts. Recent DNA fingerprinting studies of B. pertussis have revealed hitherto unsuspected heterogeneity amongst isolates which could be reflected in antigenic differences between strains. Some of these new perspectives on Bordetella pathogenicity may have implications for pertussis vaccine development.  相似文献   

16.
The activity of erythromycin, azithromycin, clarithromycin, dirithromycin, oleandomycin, roxithromycin, spiramycin and josamycin against 21 and 34 B. pertussis strains and against 6 and 8 B. parapertussis strains isolated respectively in the years 1968 and 1997-99 was examined. The antibiotic agar dilution method was used. The minimum concentration of macrolides which inhibited growth of B. pertussis and B. parapertussis was calculated for 50% (MIC50) and 90% (MIC90) of isolates. The susceptibility to macrolides of B. pertussis and B. parapertussis strains isolated in the years 1968 and 1997-99 did not differ significantly. The MIC90 values of erythromycin were the same for B. pertussis (MIC90 = 0.125 mg/l) and B. parapertussis strains (MIC90 = 0.25 mg/l) recovered in 1968 as for those recovered in the years 1997-99. The most active antibiotic against all strains was azithromycin (MIC90 = 0.06 mg/l). The least active antibiotics were oleandomycin (MIC90 = 2-4 mg/l) and spiramycin (MIC90 = 8 mg/l). The study showed that erythromycin remains the antibiotic of choice for treatment of whooping cough and in case of emergence of B. pertussis and/or B. parapertussis strains erythromycin resistant, can be replaced by azithromycin.  相似文献   

17.
The epidemiological and pathogenic relationship between Bordetella pertussis and Bordetella parapertussis, the two causes of whooping cough (pertussis), is unclear. We hypothesized that B. pertussis, due to its immunosuppressive activities, might enhance B. parapertussis infection when the two species were present in a coinfection of the respiratory tract. The dynamics of this relationship were examined using the mouse intranasal inoculation model. Infection of the mouse respiratory tract by B. parapertussis was not only enhanced by the presence of B. pertussis, but B. parapertussis significantly outcompeted B. pertussis in this model. Staggered inoculation of the two organisms revealed that the advantage for B. parapertussis is established at an early stage of infection. Coadministration of PT enhanced B. parapertussis single infection, but had no effect on mixed infections. Mixed infection with a PT-deficient B. pertussis strain did not enhance B. parapertussis infection. Interestingly, the depletion of airway macrophages reversed the competitive relationship between these two organisms, but the depletion of neutrophils had no effect on mixed infection or B. parapertussis infection. We conclude that B. pertussis, through the action of PT, can enhance a B. parapertussis infection, possibly by an inhibitory effect on innate immunity.  相似文献   

18.
Evolutionary trees for the genus Bordetella   总被引:2,自引:2,他引:0       下载免费PDF全文
Recent data on enzyme electrophoretic mobility and DNA sequences for pertussis toxin allow the construction of evolutionary trees for various strains belonging to the genus Bordetella. In contrast to previous analyses, these data can be seen to support the separate clustering of Bordetella pertussis strains, in agreement with the traditional classification based on other phenotypic characteristics. An earlier argument placing the divergence of B. pertussis and B. parapertussis before 1912 does not follow from the evolutionary trees proposed here, which also have different implications for several other claims concerning the evolution of these strains.  相似文献   

19.
Lipopolysaccharides (LPS) isolated from Bordetella pertussis, B. parapertussis and B. bronchiseptica were analysed for their chemical composition, molecular heterogeneity and immunological properties. All the LPS preparations contained heptose, 3-deoxy-D-manno-2-octulosonic acid, glucosamine, uronic acid, phosphate and fatty acids. The fatty acids C14:0, C16:0 and beta OHC14:0 were common to all the LPS preparations. LPS from B. pertussis strains additionally contained isoC16:0, those from B. parapertussis contained isoC14:0 and isoC16:0, and those from B. bronchiseptica contained C16:1. By SDS-PAGE, LPS from B. pertussis had two bands of low molecular mass, and the LPS from B. parapertussis and B. bronchiseptica showed low molecular mass bands together with a ladder arrangement of high molecular mass bands. Immunodiffusion, quantitative agglutination and ELISA demonstrated that the LPS from B. pertussis strains reacted with antisera prepared against whole cells of B. pertussis and B. bronchiseptica; LPS from B. parapertussis reacted with antisera to B. parapertussis and B. bronchiseptica, and LPS from B. bronchiseptica reacted with anti-whole cell serum raised against any of the three species. From these results, it is concluded that LPS from B. bronchiseptica has structures in common with LPS from B. pertussis and B. parapertussis, while the LPS from B. pertussis and B. parapertussis are serologically entirely different from each other.  相似文献   

20.
The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号