首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies suggest, that the snail Lymnaea stagnalis contains glycoproteins whose oligosaccharide side chains have structural features not commonly found in mammalian glycoproteins. In this study, prostate glands of L. stagnalis were incubated in media containing either [(3)H]-mannose, [(3)H]-glucosamine, or [(3)H]-galactose, and the metabolically radiolabeled protein-bound oligosaccharides were analyzed. The newly synthesized diantennary-like complex-type asparagine-linked chains contained a considerable amount of glucose, next to mannose, GlcNAc, fucose, galactose, and traces of GalNAc. Since glucose has not been found before as a constituent of diantennary N-linked glycans as far as we know, we assayed the prostate gland of L. stagnalis for a potential glucosyltransferase activity involved in the biosynthesis of such structures. We report here, that the prostate gland of L. stagnalis contains a beta1-->4-glucosyltransferase activity that transfers glucose from UDP-glucose to acceptor substrates carrying a terminal N-acetylglucosamine. The enzyme prefers substrates carrying a terminal GlcNAc that is beta6 linked to a Gal or a GalNAc, structures occurring in O-linked glycans, or a GlcNAc that is beta2 linked to mannose, as is present in N-linked glycans. Based on combined structural and enzymatic data, we propose that the novel beta1-->4-gluco-syltransferase present in the prostate gland may be involved in the biosynthesis of Glcbeta1-->4GlcNAc units in complex-type glycans, in particular in N-linked diantennary glycans.  相似文献   

2.
The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of beta 1-->2 xylose and alpha 1-->3 fucose residues, are derived from typical mannose9(N-acetylglucosamine)2 (Man9GlcNAc2) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arabidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man5GlcNAc1 glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man9GlcNAc2 and Man8GlcNAc2 glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, we obtained a unique strain that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan.  相似文献   

3.
The Galbeta1-->4(SO(3)(-)-->6)GlcNAc moiety is present in various N-linked and O-linked glycans including keratan sulfate and 6-sulfosialyl-Lewis X, an L-selectin ligand. We previously found beta1,4-galactosyltransferase (beta4GalT) activity in human colonic mucosa, which prefers GlcNAc 6-O-sulfate (6SGN) as an acceptor to non-substituted GlcNAc (Seko, A., Hara-Kuge, S., Nagata, K., Yonezawa, S., and Yamashita, K. (1998) FEBS Lett. 440, 307-310). To identify the gene for this enzyme, we purified the enzyme from porcine colonic mucosa. The purified enzyme had the characteristic requirement of basic lipids for catalytic activity. Analysis of the partial amino acid sequence of the enzyme revealed that the purified beta4GalT has a similar sequence to human beta4GalT-IV. To confirm this result, we prepared cDNA for each of the seven beta4GalTs cloned to date and examined substrate specificities using the membrane fractions derived from beta4GalT-transfected COS-7 cells. When using several N-linked and O-linked glycans with or without 6SGN residues as acceptor substrates, only beta4GalT-IV efficiently recognized 6SGN, keratan sulfate-related oligosaccharides, and Galbeta1-->3(SO(3)(-)-->6GlcNAcbeta1-->6) GalNAcalpha1-O-pNP, a precursor for 6-sulfosialyl-Lewis X. These results suggested that beta4GalT-IV is a 6SGN-specific beta4GalT and may be involved in the biosynthesis of various glycoproteins carrying a 6-O-sulfated N-acetyllactosamine moiety.  相似文献   

4.
Hamster sarcoma virus (HSV) transformation of Nil-8 fibroblasts is associated with an increase in the average size of N-acetyllactosamine (complex) type N-linked glycans due to an increase in both the average number of branches/chain and in the fraction of N-linked glycans containing poly(GlcNAc(beta 1,3) Gal-(beta 1,4)) (polylactosaminylglycan) chains. Analysis of glycopeptides from the envelope glycoproteins of Sindbis virus and vesicular stomatitis virus (VSV) grown in Nil-8 and Nil/HSV cells indicated that the transformation-associated shift to larger N-linked oligosaccharides selectively affects some glycosylation sites far more than others. Glycosylation of the Sindbis virus glycoproteins and of Asn-179 of VSV G was similar in Nil-8 and Nil/HSV cells; oligosaccharide processing generally did not proceed beyond the biantennary complex stage. In contrast, Asn-336 of VSV G carried primarily biantennary complex glycans in Nil-8-grown virus (ratio, triantennary, and larger to biantennary complex glycans (tri+/bi) = 0.5) but more highly branched structures in Nil/HSV-grown virus (tri+/bi = 8.1). All of the triantennary or larger oligosaccharides from Asn-336 of Nil/HSV-grown VSV G bound to leukoagglutinating phytohemagglutinin-agarose, indicating the presence of a branch attached to the Man3GlcNAc2 core via a beta 1,6-linked GlcNAc residue and suggesting that increased UDP-GlcNAc:alpha-D-mannoside beta 1,6-N-acetylglucosaminyl transferase V (GlcNAc transferase V) activity accompanied transformation. At least 20% of these leukoagglutinating phytohemagglutinin-binding oligosaccharides were sensitive to an enzyme specific for polylactosaminylglycan chains, Escherichia freundii endo-beta-galactosidase.  相似文献   

5.
Hui JP  White TC  Thibault P 《Glycobiology》2002,12(12):837-849
Mass spectrometric techniques combined with enzymatic digestions were applied to determine the glycosylation profiles of cellobiohydrolase (CBH II) and endoglucanases (EG I, II) purified from filamentous fungus Trichoderma reesei. Electrospray mass spectrometry (ESMS) analyses of the intact cellulases revealed the microheterogeneity in glycosylation where glycoforms were spaced by hexose units. These analyses indicated that glycosylation accounted for 12-24% of the molecular mass and that microheterogeneity in both N- and O-linked glycans was observed for each glycoprotein. The identification of N-linked attachment sites was carried out by MALDI-TOF and capillary liquid chromatography-ESMS analyses of tryptic digests from each purified cellulase component with and without PNGase F incubation. Potential tryptic glycopeptide candidates were first detected by stepped orifice-voltage scanning and the glycan structure and attachment site were confirmed by tandem mass spectrometry. For purified CBH II, 74% of glycans found on Asn310 were high mannose, predominantly Hex(7-9)GlcNAc(2), whereas the remaining amount was single GlcNAc; Asn289 had 18% single GlcNAc occupancy, and Asn14 remained unoccupied. EG I presented N-linked glycans at two out of the six potential sites. The Asn56 contained a single GlcNAc residue, and Asn182 showed primarily a high-mannose glycan Hex(8)GlcNAc(2) with only 8% being occupied with a single GlcNAc. Finally, EG II presented a single GlcNAc residue at Asn103. It is noteworthy that the presence of a single GlcNAc in all cellulase enzymes investigated and the variability in site occupancy suggest the secretion of an endogenous endo H enzyme in cultures of T. reesei.  相似文献   

6.
Peptide:N-glycanase (PNGase) is the deglycosylating enzyme, which releases N-linked glycan chains from N-linked glycopeptides and glycoproteins. Recent studies have revealed that the cytoplasmic PNGase is involved in the degradation of misfolded/unassembled glycoproteins. This enzyme has a Cys, His, and Asp catalytic triad, which is required for its enzymatic activity and can be inhibited by "free" N-linked glycans. These observations prompted us to investigate the possible use of haloacetamidyl derivatives of N-glycans as potent inhibitors and labeling reagents of this enzyme. Using a cytoplasmic PNGase from budding yeast (Png1), Man9GlcNAc2-iodoacetoamide was shown to be a strong inhibitor of this enzyme. The inhibition was found to be through covalent binding of the carbohydrate to a single Cys residue on Png1, and the binding was highly selective. The mutant enzyme in which Cys191 of the catalytic triad was changed to Ala did not bind to the carbohydrate probe, suggesting that the catalytic Cys is the binding site for this compound. Precise determination of the carbohydrate attachment site by mass spectrometry clearly identified Cys191 as the site of covalent attachment. Molecular modeling of N,N'-diacetylchitobiose (chitobiose) binding to the protein suggests that the carbohydrate binding site is distinct from but adjacent to that of Z-VAD-fmk, a peptide-based inhibitor of this enzyme. These results suggest that cytoplasmic PNGase has a separate binding site for chitobiose and other carbohydrates, and haloacetamide derivatives can irreversibly inhibit that catalytic Cys in a highly specific manner.  相似文献   

7.
GM3 ganglioside interacts specifically with complex-type N-linked glycans having multivalent GlcNAc termini, as shown for (1) and (2) below. (1) Oligosaccharides (OS) isolated from ConA-non-binding N-linked glycans of ovalbumin, whose structures were identified as penta-antennary complex-type with bisecting GlcNAc, having five or six GlcNAc termini (OS B1, B2), or bi-antennary complex-type having two GlcNAc termini (OS I). OS I is a structure not previously described. (2) Multi-antennary complex-type N-linked OS isolated from fetuin, treated by sialidase followed by β-galactosidase, having three or four GlcNAc termini exposed. These OS, conjugated to phosphatidylethanolamine (PE), showed clear interaction with 3H-labeled liposomes containing GM3, when various doses of OS-PE conjugate were adhered by drying to multi-well polystyrene plates. Interaction was clearly observed only with liposomes containing GM3, but not LacCer, Gb4, or GalNAcα1-3Gb4 (Forssman antigen). GM3 interaction with PE conjugate of OS B1 or B2 was stronger than that with PE conjugate of OS I. GM3 interacted clearly with PE conjugate of N-linked OS from desialylated and degalactosylated fetuin, but not native fetuin. No binding was observed to cellobiose-PE conjugate, or to OS-PE conjugate lacking GlcNAc terminus. Thus, GM3, but not other GSL liposomes, interacts with various N-linked OS having multiple GlcNAc termini, in general. These findings suggest that the concept of carbohydrate-to-carbohydrate interaction can be extended to interaction of specific types of N-linked glycans with specific GSLs. Natural occurrence of such interaction to define cell biological phenomena is under investigation. All solvent ratios are by volume. An erratum to this article can be found at  相似文献   

8.
N-Acetylglucosaminyltransferase I (GlcNAcT-I, EC 2.4.1.101) is the enzyme which initiates the formation of complex N-linked glycans in eukaryotes by transforming GlcNAc to the oligo-mannosyl acceptor Man(5)GlcNAc(2)-Asn. The enzymatic activity and the structure that is synthesised by this enzyme are found in animals and plants but not in yeast. cDNAs encoding the enzyme have already been cloned from several mammals and the nematode Caenorhabditis elegans. In this article the cloning of an Arabidopsis thaliana GlcNAcT-I cDNA with homology to animal cDNAs is described. By expression of the plant cDNA in CHO Lec1 cells, a mammalian cell line deficient in GlcNAcT-I, it was shown that it encodes an active enzyme with the same enzymatic activity as the animal homologue. It has already been shown that a human GlcNAcT-I can complement an A. thaliana mutant (cgl-1). Here it is shown that the reverse is also true, the plant glycosyltransferase is able to complement a mammalian mutant (Lec1) deficient in GlcNAcT-I.  相似文献   

9.
A cDNA of putative chitinase from Euglena gracilis, designated EgChiA, encoded 960 amino acid residues, which is arranged from N-terminus in the order of signal peptide, glycoside hydrolase family 18 (GH18) domain, carbohydrate binding module family 18 (CBM18) domain, GH18 domain, CBM18 domain, and transmembrane helix. It is likely that EgChiA is anchored on the cell surface. The recombinant second GH18 domain of EgChiA, designated as CatD2, displayed optimal catalytic activity at pH 3.0 and 50 °C. The lower the polymerization degree of the chitin oligosaccharides [(GlcNAc)4–6] used as the substrates, the higher was the rate of degradation by CatD2. CatD2 degraded chitin nanofibers as an insoluble substrate, and it produced only (GlcNAc)2 and GlcNAc. Therefore, we speculated that EgChiA localizes to the cell surface of E. gracilis and is involved in degradation of chitin polymers into (GlcNAc)2 or GlcNAc, which are easily taken up by the cells.  相似文献   

10.
Glucosidase I is an endoplasmic reticulum (ER) type II membrane enzyme that cleaves the distal alpha1,2-glucose of the asparagine-linked GlcNAc2-Man9-Glc3 precursor. To identify sequence motifs responsible for ER localization, we prepared a protein chimera by transferring the cytosolic and transmembrane domain of glucosidase I to the luminal domain of Golgi-Man9-mannosidase. The GIM9 hybrid was overexpressed in COS 1 cells as an ER-resident protein that displayed alpha1,2-mannosidase activity, excluding the possibility that the glucosidase I-specific domains interfere with folding of the Man9-mannosidase catalytic domain. After substitution of the Args in position 7, 8, or 9 relative to the N-terminus by leucine, the GIM9 mutants were transported to the cell surface indicating that the (Arg)3 sequence functions as an ER-targeting motif. Cell surface expression was also observed after substitution of Arg-7 or Arg-8 but not Arg-9 in GIM9 by either lysine or histidine. Thus the side chain structure, including its positive charge, appears to be essential for signal function. Analysis of the N-linked glycans suggests that the (Arg)3 sequence mediates ER localization through Golgi-to-ER retrograde transport. Glucosidase I remained localized in the ER after truncation or mutation of the N-terminal (Arg)3 signal, in contrast to comparable GIM9 mutants. ER localization was also observed with an M9GI chimera consisting of the cytosolic and transmembrane domain of Man9-mannosidase and the glucosidase I catalytic domain. ER-specific targeting information must therefore be provided by sequence motifs contained within the glucosidase I luminal domain. This structural information appears to direct ER localization by retention rather than by retrieval, as concluded from N-linked Man9-GlcNAc2 being the major glycan released from the wild-type enzyme.  相似文献   

11.
The addition of N-linked glycans to a protein is catalyzed by oligosaccharyltransferase, an enzyme closely associated with the translocon. N-glycans are believed to be transferred as the protein is being synthesized and cotranslationally translocated in the lumen of the endoplasmic reticulum. We used a mannosylphosphoryldolichol-deficient Chinese hamster ovary mutant cell line (B3F7 cells) to study the temporal regulation of N-linked core glycosylation of hepatitis C virus envelope protein E1. In this cell line, truncated Glc(3)Man(5)GlcNAc(2) oligosaccharides are transferred onto nascent proteins. Pulse-chase analyses of E1 expressed in B3F7 cells show that the N-glycosylation sites of E1 are slowly occupied until up to 1 h after protein translation is completed. This posttranslational glycosylation of E1 indicates that the oligosaccharyltransferase has access to this protein in the lumen of the endoplasmic reticulum for at least 1 h after translation is completed. Comparisons with the N-glycosylation of other proteins expressed in B3F7 cells indicate that the posttranslational glycosylation of E1 is likely due to specific folding features of this acceptor protein.  相似文献   

12.
A mammalian N-acetylglucosamine (GlcNAc) transferase I (GnT I)-independent fucosylation pathway is revealed by the use of matrix-assisted laser desorption/ionization (MALDI) and negative-ion nano-electrospray ionization (ESI) mass spectrometry of N-linked glycans from natively folded recombinant glycoproteins, expressed in both human embryonic kidney (HEK) 293S and Chinese hamster ovary (CHO) Lec3.2.8.1 cells deficient in GnT I activity. The biosynthesis of core fucosylated Man5GlcNAc2 glycans was enhanced in CHO Lec3.2.8.1 cells by the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin (NB-DNJ), leading to the increase in core fucosylated Man5GlcNAc2 glycans and the biosynthesis of a novel core fucosylated monoglucosylated oligomannose glycan, Glc1Man7GlcNAc2Fuc. Furthermore, no fucosylated Man9GlcNAc2 glycans were detected following inhibition of alpha-mannosidase I with kifunensine. Thus, core fucosylation is prevented by the presence of terminal alpha1-2 mannoses on the 6-antennae but not the 3-antennae of the trimannosyl core. Fucosylated Man5GlcNAc2 glycans were also detected on recombinant glycoprotein from HEK 293T cells following inhibition of Golgi alpha-mannosidase II with swainsonine. The paucity of fucosylated oligomannose glycans in wild-type mammalian cells is suggested to be due to kinetic properties of the pathway rather than the absence of the appropriate catalytic activity. The presence of the GnT I-independent fucosylation pathway is an important consideration when engineering mammalian glycosylation.  相似文献   

13.
Sulfation of endothelial glycoproteins by the sulfotransferase GlcNAc6ST-2 is a regulatory modification that promotes binding of the leukocyte adhesion molecule L-selectin. GlcNAc6ST-2 is a member of a family of related enzymes that act on similar carbohydrate substrates in vitro but discrete glycoproteins in vivo. We demonstrate that GlcNAc6ST-1, -2, and -3 have distinct Golgi distributions, with GlcNAc6ST-1 confined to the trans-Golgi network, GlcNAc6ST-3 confined to the early secretory pathway, and GlcNAc6ST-2 distributed throughout the Golgi. Their localization was correlated with preferred activity on either N-linked or O-linked glycoproteins. A chimera comprising the localization domain of GlcNAc6ST-1 fused to the catalytic domain of GlcNAc6ST-2 was confined to the trans-Golgi network and adopted the substrate preference of GlcNAc6ST-1. We propose a model in which Golgi enzyme localization and competition orchestrate the biosynthesis of L-selectin ligands.  相似文献   

14.
The addition and endoplasmic reticulum (ER) glucosidase processing of N-linked glycans is essential for the secretion of rat hepatic lipase (HL). Human HL is distinct from rat HL by the presence of four as opposed to two N-linked carbohydrate side chains. We examined the role of N-linked glycosylation and calnexin interaction in human HL secretion from Chinese hamster ovary (CHO) cells stably expressing a human HL cDNA. Steady-state and pulse-chase labeling experiments established that human HL was synthesized as an ER-associated precursor containing high mannose N-linked glycans. Secreted HL had a molecular mass of approximately 65 kDa and contained mature N-linked sugars. Inhibition of N-linked glycosylation with tunicamycin (TM) prevented secretion of HL enzyme activity and protein mass. In contrast, incubation of cells with the ER glucosidase inhibitor, castanospermine (CST), decreased human HL protein secretion by 60%, but allowed 40% of fully active HL to be secreted. HL protein mass and enzyme activity were also recovered from the media of a CHO-derivative cell line genetically deficient in ER glucosidase I activity (Lec23) that was transiently transfected with a human HL cDNA. Co-immunoprecipitation experiments demonstrated that newly synthesized human HL bound to the lectin-like ER chaperone, calnexin, and that this interaction was inhibited by TM and CST. These results suggest that under normal conditions calnexin may increase the efficiency of HL export from the ER. Whereas a significant proportion of human HL can attain activity and become secreted in the absence of glucose trimming and calnexin association, these interrelated processes are nevertheless essential for the expression of full HL activity.  相似文献   

15.
Phaseolin, the major storage protein of the common bean (Phaseolus vulgaris), is a glycoprotein which is synthesized during seed development and accumulates in protein storage vacuoles or protein bodies. The protein has three different N-linked oligosaccharide side chains: Man9(GlcNAc)2, Man7(GlcNAc)2, and Xyl-Man3(GlcNAc)2 (where Xyl represents xylose). The structures of these glycans were determined by 1H NMR spectroscopy. The Man9(GlcNAc)2 glycan has the typical structure found in plant and animal glycoproteins. The structures of the two other glycans are shown below. (Formula; see text) Phaseolin was separated by electrophoresis on denaturing gels into four size classes of polypeptides. The two abundant ones have two oligosaccharides each, whereas the less abundant ones have only one oligosaccharide each. Polypeptides with two glycans have Man7(GlcNAc)2 attached to Asn252 and Man9(GlcNAc)2 attached to Asn341. Polypeptides with only one glycan have Xyl-Man3(GlcNAc)2 attached to Asn252. Both these asparagine residues are in canonical glycosylation sites; the numbering starts with the N-terminal methionine of the signal peptide of phaseolin. The presence of the Man7(GlcNAc)2 and of Xyl-Man3(GlcNAc)2 at the same asparagine residue (position 252) of different polypeptides seems to be controlled by the glycosylation status of Asn341. When Asp341 is unoccupied, the glycan at Asn252 is complex. When Asn341 is occupied, the glycan at Asn252 is only modified to the extent that 2 mannosyl residues are removed. The processing of the glycans, after the removal of the glucose residues, involves enzymes in the Golgi apparatus as well as in the protein bodies. Formation of the Xyl-Man3(GlcNAc)2 glycan is a multistep process that involves the Golgi apparatus-mediated removal of 6 mannose residues and the addition of 2 N-acetylglucosamine residues and 1 xylose. The terminal N-acetylglucosamine residues are later removed in the protein bodies. The conversion of Man9(GlcNAc)2 to Man7(GlcNAc)2 is a late processing event which occurs in the protein bodies. Experiments in which [3H]glucosamine-labeled phaseolin obtained from the endoplasmic reticulum (i.e. precursor phaseolin) is incubated with jack bean alpha-mannosidase show that the high mannose glycan on Asn252, but not the one on Asn341, is susceptible to enzyme degradation. Incubation of [3H] glucosamine-labeled phaseolin obtained from the Golgi apparatus with jack bean beta-N-acetylglucosaminidase results in the removal of the terminal N-acetylglucosamine residues from the complex chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Analysis of the glycosylation of human serum IgD and IgE indicated that oligomannose structures are present on both Igs. The relative proportion of the oligomannose glycans is consistent with the occupation of one N-linked site on each heavy chain. We evaluated the accessibility of the oligomannose glycans on serum IgD and IgE to mannan-binding lectin (MBL). MBL is a member of the collectin family of proteins, which binds to oligomannose sugars. It has already been established that MBL binds to other members of the Ig family, such as agalactosylated glycoforms of IgG and polymeric IgA. Despite the presence of potential ligands, MBL does not bind to immobilized IgD and IgE. Molecular modeling of glycosylated human IgD Fc suggests that the oligomannose glycans located at Asn(354) are inaccessible because the complex glycans at Asn(445) block access to the site. On IgE, the additional C(H)2 hinge domain blocks access to the oligomannose glycans at Asn(394) on one H chain by adopting an asymmetrically bent conformation. IgE contains 8.3% Man(5)GlcNAc(2) glycans, which are the trimmed products of the Glc(3)Man(9)GlcNAc(2) oligomannose precursor. The presence of these structures suggests that the C(H)2 domain flips between two bent quaternary conformations so that the oligomannose glycans on each chain become accessible for limited trimming to Man(5)GlcNAc(2) during glycan biosynthesis. This is the first study of the glycosylation of human serum IgD and IgE from nonmyeloma proteins.  相似文献   

17.
Although Gal beta 1-4GlcNAc (LacNAc) moieties are the most common constituents of N-linked glycans on vertebrate proteins, GalNAc beta 1-4GlcNAc (LacdiNAc, LDN)-containing glycans are widespread in invertebrates, such as helminths. We postulated that LDN might be a molecular pattern for recognition of helminth parasites by the immune system. Using LDN-based affinity chromatography and mass spectrometry, we have identified galectin-3 as the major LDN-binding protein in macrophages. By contrast, LDN binding was not observed with galectin-1. Surface plasmon resonance (SPR) analysis and a solid phase binding assay demonstrated that galectin-3 binds directly to neoglycoconjugates carrying LDN glycans. In addition, galectin-3 bound to Schistosoma mansoni soluble egg Ags and a mAb against the LDN glycan inhibited this binding, suggesting that LDN glycans within S. mansoni soluble egg Ags contribute to galectin-3 binding. Immunocytochemistry demonstrated high levels of galectin-3 in liver granulomas of S. mansoni-infected hamsters, and a colocalization of galectin-3 and LDN glycans was observed on the parasite eggshells. Finally, we demonstrate that galectin-3 can mediate recognition and phagocytosis of LDN-coated particles by macrophages. These findings provide evidence that LDN-glycans constitute a parasite pattern for galectin-3-mediated immune recognition.  相似文献   

18.
Recent studies have shown that O-mannosyl glycans are present in several mammalian glycoproteins. Although knowledge on the functional roles of these glycans is accumulating, their biosynthetic pathways are poorly understood. Here we report the identification and initial characterization of a novel enzyme capable of forming GlcNAc beta 1-2Man linkage, namely UDP-N-acetylglucosamine: O-linked mannose beta-1,2-N-acetylglucosaminyltransferase in the microsome fraction of newborn rat brains. The enzyme transfers GlcNAc to beta-linked mannose residues, and the formed linkage was confirmed to be beta 1-2 on the basis of diplococcal beta-N-acetylhexosaminidase susceptibility and by high-pH anion-exchange chromatography. Its activity is linearly dependent on time, protein concentration, and substrate concentration and is enhanced in the presence of manganese ion. Its activity is not due to UDP-N-acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT-I) or UDP-N-acetylglucosamine: alpha-6-D-mannoside beta-1,2-D-acetylglucosaminyltransferase II (GnT-II), which acts on the early steps of N-glycan biosynthesis, because GnT-I or GnT-II expressed in yeast cells did not show any GlcNAc transfer activity against a synthetic mannosyl peptide. Taken together, the results suggest that the GlcNAc transferase activity described here is relevant to the O-mannosyl glycan pathway in mammals.  相似文献   

19.
The N-linked type of glycans were prepared as their glycopeptides after pronase digestion of the epithelial cells from the small and large intestine of two inbred strains of rat. These glycopeptides were analysed for sugar composition, for blood-group activity, by 1H-NMR spectroscopy, and after permethylation by electron-impact mass spectrometry. The glycopeptides were of the triantennary and tetraantennary types with intersected GlcNAc. The terminal parts were, in contrast to most N-linked glycans, devoid of neuraminic acid residues. Instead they contained blood-group determinants. Blood-group-H types 1 (Fuc alpha 1-2Gal beta 1-3GlcNAc) and 2(Fuc alpha 1-2Gal beta 1-4GlcNAc) were found in the small and large intestines of both strains, although type-1 predominated. One rat strain (GOT-W) did not express blood-group-A glycopeptides in the small intestine, but the large intestine from the same strain did. The other strain (GOT-BW) expressed blood-group-A determinants in the small intestine. The lack of neuraminic acid residues in the small and large intestine and of blood-group-B activity in the large intestine differed from that found in glycosphingolipids obtained from the same organs.  相似文献   

20.
As an initial step to develop plants as systems to produce enzymes for the treatment of lysosomal storage disorders, Arabidopsis thaliana wild-type (Col-0) plants were transformed with a construct to express human alpha-l-iduronidase (IDUA; EC 3.2.1.76) in seeds using the promoter and other regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene. IDUA protein was easily detected on Western blots of extracts from the T(2) seeds, and extracts contained IDUA activity as high as 2.9 nmol 4-methylumbelliferone (4 MU)/min/mg total soluble protein (TSP), corresponding to approximately 0.06 microg IDUA/mg TSP. The purified protein reacted with an antibody specific for xylose-containing plant complex glycans, indicating its transit through the Golgi complex. In an attempt to avoid maturation of the N-linked glycans of IDUA, the same IDUA transgene was introduced into the Arabidopsis cgl background, which is deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of complex glycan biosynthesis. IDUA activity and protein levels were significantly higher in transgenic cgl vs. wild-type seeds (e.g. maximum levels were 820 nmol 4 MU/min/mg TSP, or 18 microg IDUA/mg TSP). Affinity-purified IDUA derived from cgl mutant seeds showed a markedly reduced reaction with the antibody specific for plant complex glycans, despite transit of the protein to the apoplast. Furthermore, gel mobility changes indicated that a greater proportion of its N-linked glycans were susceptible to digestion by Streptomyces endoglycosidase H, as compared to IDUA derived from seeds of wild-type Arabidopsis plants. The combined results indicate that IDUA produced in cgl mutant seeds contains glycans primarily in the high-mannose form. This work clearly supports the viability of using plants for the production of human therapeutics with high-mannose glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号