首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A new mapping method involving protoplast fusion in Bacillus subtilis is described. Protoplasts from an isogenic standard marker strain containing purA and from a strain containing both purB and the marker, x, to be mapped were fused with polyethylene glycol, and purA + purB + fusants were selected. After isolation of single colonies and determination of unselected markers, marker x was mapped between two standard markers. This method was fully applicable to PBS1-resistant strains (e.g., lyt strains). The results obtained by protoplast fusion, conventional transformation and/or lysed protoplast transformation indicated that a lyt strain, Ni15, contained two new autolysin-minus mutations (lyt-151 and lyt-152). The properties of lyt-15 are also discussed.Abbreviations NTG N-methyl-N-nitro-N-nitrosoguanidine - SMM 0.5 M sucrose, 0.02 M MgCl2, 0.02 M maleate buffer, pH 6.5  相似文献   

2.
Bacillus subtilis succinate dehydrogenase (SDH) is composed of two unequal subunits designated Fp (Mr, 65,000) and Ip (Mr. 28,000). The enzyme is structurally and functionally complexed to cytochrome b 558 (Mr, 19,000) in the membrane. A total of 21 B. subtilis SDH-negative mutants were isolated. The mutants fall into five phenotypic classes with respect to the presence and localization of the subunits of the SDH-cytochrome b558 complex. One class contains mutants with an inactive membrane-bound complex. Membrane-bound enzymatically active SDH could be reconstituted in fused protoplasts of selected pairs of SDH-negative mutants. Most likely reconstitution is due to the assembly of preformed subunits in the fused cells. On the basis of the reconstitution data, the mutants tested could be divided into three complementation groups. The combined data of the present and previous work indicate that the complementation groups correspond to the structural genes for the three subunits of the membrane-bound SDH-cytochrome b558 complex. A total of 31 SDH-negative mutants of B. subtilis have now been characterized. The respective mutations all map in the citF locus at 255 degrees on the B. subtilis chromosomal map. In the present paper, we have revised the nomenclature for the genetics of SDH in B. subtilis. All mutations which give an SDH-negative phenotype will be called sdh followed by an isolation number. The designation citF will be omitted, and the citF locus will be divided into three genes: sdhA, sdhB, and sdhC. Mutations in sdhA affect cytochrome b558, mutations in sdhB affect Fp, and mutations in sdhC affect Ip.  相似文献   

3.
When protoplasts derived from sporulating cells of Bacillus subtilis were fused by exposure to polyethylene glycol (PEG) and fixed immediately thereafter, protoplasts with two enclosed prespores could be seen by electron microscope. The number of fusion events was greatly increased, and multiply fused protoplasts appeared, when the PEG-treated suspension was diluted in hypertonic broth and reincubated before fixation. This post-PEG incubation effect is taken to indicate a fusion mechanism of two steps: a short, PEG-dependent step of membrane activation, followed by a slow, metabolism-requiring step completing fusion. When prespore-bearing protoplasts from two genetically different strains were mixed and fused, the extent of fusion could also be followed by counting clones of recombinant bacteria. Maximal from the start, their number (1% of each parent type protoplast present) was unaffected by post-PEG incubation. Fusion in this case is apparently completed after plating on the wall-regeneration medium. After optimal post-PEG incubation, the majority of the protoplasts were seen to participate in fusion, and the cytological fusion observed, corrected for wall-regeneration frequency, accounted quantitatively for the prototrophic bacteria eventually recovered. These results are in good agreement with those obtained independently by Sanchez-Rivas and Garro (J. Bacteriol. 137:1340--1345, 1979).  相似文献   

4.
Abstract An efficient protoplast transformation system and a procedure of plasmid transfer by means of protoplast fusion is described for Streptococcus lactis . Protoplasts of S. lactis IL1403 and S. lactis MG1363 were transformed by pGK12 [2.9 MDa erythromycin resistance (Emr)] with an efficiency of 3 × 105 transformants per μg plasmid DNA. This high efficiency was obtained by the inclusion in the transformation mixture of liposomes composed of cardiolipin and phosphatidyl choline in a molar ratio of 1 to 6 in the presence of 22.5% polyethylene glycol (PEG). This paper also reports an efficient plasmid transfer method between lactic and streptococci and Bacillus subtilis by means of protoplast fusion. When S. lactis and B. lactis protoplasts undergo fusion mediated by exposure to 37.5% polyethylene glycol, plasmid pGKV21 (3.2 MDa; Emr) was transfered from one host to the other with a frequency of 10−3−10−5 transformants per regenerating recipient protoplast.  相似文献   

5.
The Staphylococcus aureus plasmid pC194 which codes for resistance to chloramphenicol was introduced into six Bacillus thuringiensis strains representing five varieties by protoplast transformation. Six other varieties could not be transformed. pC194 could be identified in transformed strains as autonomous plasmid. The transformed clones contained in addition a new extrachromosomal element of somewhat lower electrophoretic mobility hybridizing with pC194, and pC194 in multimeric forms. pC194 was also transferred from one B. thuringiensis variety to another and from Bacillus thuringiensis to Bacillus subtilis and vice versa by a conjugation-like process, requiring close cell-to-cell contact.Non-standard abbreviations BSA bovine serum albumin - CAT chloramphenicol acetyltransferase - CmR chloramphenicol resistant - PAB Penassay broth - SDS sodiumdodecylsulfate - TcR tetracycline resistant  相似文献   

6.
Summary Diploid prototrophs were obtained from protoplast fusion of Bacillus subtilis strains. They are unstable but upon further cultivation they stabilize retaining diploidy but are genetically inactive. It has been suggested that recombination between the parental chomosomes is involved in the production of stable prototrophs and recombinants. In this work the occurrence of this recombination was searched for by determining genetic linkages in transformation experiments. In prototrophs two alleles: hisH2 and trpE8 carried originally on each parental chromosome, were shown to be 48% co-transformable in a stable clone whereas they were only cotransformed in 10% of the unstable colonies. For Trp- recombinants (the most frequent type of a Leu- Met- Thr- x Ade- Ura- Trp- fusion pair) lysed protoplasts were used as donor DNA for the transformations. High values of co-transfer for Ura+ Met+ were obtained. These results confirm the occurrence of recombination in stable diploid clones, prototrophs or recombinants.  相似文献   

7.
Bacillus subtilis Marburg has only one intrinsic restriction and modification system BsuM that recognizes the CTCGAG (XhoI site) sequence. It consists of two operons, BsuMM operon for two cytosine DNA methyltransferases, and BsuMR operon for a restriction nuclease and two associated proteins of unknown function. In this communication, we analyzed the BsuM system by utilizing phage SP10 that possesses more than twenty BsuM target sequences on the phage genome. SP10 phages grown in the restriction and modification-deficient strain could not make plaques on the restriction-proficient BsuMR(+) indicator strain. An enforced expression of the wild type BsuMM operon in the BsuMR(+) indicator strain, however, allowed more than thousand times more plaques. DNA extracted from SP10 phages, thus, propagated became more but not completely refractory to XhoI digestion in vitro. Thus, the SP10 phage genome DNA is able to be nearly full-methylated but some BsuM sites are considered to be unmethylated.  相似文献   

8.
9.
Summary Cellulose utilising hybrids between Cellulomonas spp. and Bacillus subtilis were isolated after PEG mediated protoplast fusion. These stable hybrids selected using genomic markers harboured DNA from both the parents. Higher CMCase and -glucosidase activities were detected extracellularly in case of one of the hybrids unlike only CMCase in case of Cellulomonas.NCL Communication No. 3542  相似文献   

10.
Conjugal transfer of the small plasmid pUB110 between Bacillus subtilis strains was studied under conditions of microcosms with sterile and nonsterile soil. Plasmid transfer proved to be possible after soil inoculation with vegetative partner cells or with their spores. Plasmid transfer occurred at temperatures of 30 degrees C and 22-23 degrees C.  相似文献   

11.
Summary The streptococcal plasmids pMV158 and pLS1, grown in Streptococcus pneumoniae, were transferred to Bacillus subtilis by DNA-mediated transformation. The plasmids were unchanged in the new host; no deletions were observed in 80 instances of transfer. Their copy number was similar to that in S. pneumoniae. Two B. subtilis plasmids, pUB110 and pBD6, could not be transferred to S. pneumoniae. Hybrid plasmids were produced by recombining the EcoRI fragment of pBD6 that confers Kmr with EcoRI-cut pLS1, which confers Tcr. The simple hybrid, pMP2, was transferable to both species and expressed Tcr and Kmr in both. A derivative, pMP5, which contained an insertion in the pBD6 component, expressed a higher level of kanomycin resistance and was more easily selected in S. pneumoniae. Another derivative, pMP3, which contained an additional EcoRI fragment, presumably of pneumococcal chromosomal DNA, could not be transferred to B. subtilis. Previous findings that monomeric plasmid forms could transform S. pneumoniae but not B. subtilis were confirmed using single plasmid preparations. Although plasmids extracted from either species were readily transferred to S. pneumoniae, successive passage in B. subtilis increased the ability of plasmid extracts to transfer the plasmid to a B. subtilis recipient. This adaptation was tentatively ascribed to an enrichment of multimeric forms in extracts of B. subtilis as compared to S. pneumoniae. A review of host ranges exhibited by plasmids of Gram-positive bacteria suggested differences in their ability to use particular host replication functions. The pMP5 plasmid, with readily selectable Kmr and Tcr markers in both hosts, and with the potential for inactivation of Kmr by insertion in the Bg/II site, could be a useful shuttle vector for cloning in S. pneumoniae and B. subtilis.  相似文献   

12.
13.
14.
The 55-kilobase plasmid, pLS20, of Bacillus subtilis (natto) 3335 promotes transfer of the tetracycline resistance plasmid pBC16 from B. subtilis (natto) to the Bacillus species B. anthracis, B. cereus, B. licheniformis, B. megaterium, B. pumilus, B. subtilis, and B. thuringiensis. Frequency of pBC16 transfer ranged from 2.3 x 10(-6) to 2.8 x 10(-3). Evidence for a plasmid-encoded conjugationlike mechanism of genetic exchange includes (i) pLS20+ strains, but not pLS20- strains, functioned as donors of pBC16; (ii) plasmid transfer was insensitive to the presence of DNase; and (iii) cell-free filtrates of donor cultures did not convert recipient cells to Tcr. Cotransfer of pLS20 and pBC16 in intraspecies matings and in matings with a restriction-deficient B. subtilis strain indicated that pLS20 was self-transmissible. In addition to mobilizing pBC16, pLS20 mediated transfer of the B. subtilis (natto) plasmid pLS19 and the Staphylococcus aureus plasmid pUB110. The fertility plasmid did not carry a selectable marker. To facilitate direct selection for pLS20 transfer, plasmid derivatives which carried the erythromycin resistance transposon Tn917 were generated. Development of this method of genetic exchange will facilitate the introduction of plasmid DNA into nontransformable species by use of transformable fertile B. subtilis or B. subtilis (natto) strains as intermediates.  相似文献   

15.
A rapid method combining the use of protoplasts and electroporation was developed to transform recalcitrant wild strains of Bacillus subtilis. The method described here allows transformation with both replicative and integrative plasmids, as well as with chromosomal DNA, and provides a valuable tool for molecular genetic analysis of interesting Bacillus strains, which are hard to transform by conventional methods.  相似文献   

16.
Efficient and reliable protoplasting, regeneration, and fusion techniques were established for the prototrophic strain Bacillus stearothermophilus NUB36. Auxotrophic mutants were isolated, and protoplast fusion was used to construct isogenic mutant strains and for chromosomal mapping. Markers were mapped using two-, three-, and four-factor crosses. The order of the markers was hom-1-thr-1-his-1-(gly-1 or gly-2)-pur-1-pur-2. These markers may be analogous to hom, thrA, hisA, glyC, and purA markers on the Bacillus subtilis chromosome. No analogous pur-1 marker has been reported in B. subtilis. The relative order of three of the markers (hom-1-thr-1-gly-1) was independently confirmed by transduction.  相似文献   

17.
18.
Plasmid pPL1010 is a 7.0-kilobase derivative of plasmid pUB110 that harbors the cohesive end site of the bacteriophage SP02 genome. Plasmid pPL1017 is a 6.8-kilobase derivative of plasmid pC194 that contains the immunity region of bacteriophage phi 105 and the cohesive end site of bacteriophage SP02. These plasmids are transducible by bacteriophage SP02 at a frequency of 10(-2) transductants per PFU among mutant derivatives of Bacillus subtilis 168 and have been transferred to other strains of B. subtilis and B. amyloliquefaciens by means of bacteriophage SP02-mediated transduction, with frequencies ranging from 10(-5) to 10(-7) transductants per PFU. The introduced plasmids were stably maintained in nearly all new hosts in the absence of selective pressure. An exception was found in B. subtilis DSM704, which also harbored three cryptic plasmids. Plasmids pPL1010 and pPL1017 were incompatible with a 7.9-kilobase replicon native to strain DSM704. Furthermore, plasmid pPL1017 was processed by strain DSM704 into a approximately 5.3-kilobase replicon that was compatible with the resident plasmid content of strain DSM704. The use of bacteriophage SP02-mediated plasmid transduction has allowed the identification of Bacillus strains that are susceptible to bacteriophage SP02-mediated genetic transfer but cannot support bacteriophage SP02 lytic infection.  相似文献   

19.
Chinese hamster ovary (CHO) cells deficient in hypoxanthine-guanine phosphoribosyl transferase (HGPRT) have been fused by means of polyethylene glycol (PEG) with erythrocyte ghosts loaded with crude extracts of human HGPRT. When a ratio of 100 loaded ghosts per deficient CHO cell was used about 80% of the cells showed grains above the background. Mononucleated cells which comprised about 81% of the injected cells contained an average number of grains of 36 ± 1 compared with 96 ± 2 found in mononucleated wild-type cells fused and labelled under the same conditions. Cell viability was not greatly affected after injection as nearly 85% of the total cell population excluded trypan blue 22 h after fusion and at least 90% of the mononucleated cells divided within 30 h after fusion.  相似文献   

20.
Menczel L  Galiba G  Nagy F  Maliga P 《Genetics》1982,100(3):487-495
Chloroplasts of Nicotiana tabacum SR1 were transferred into Nicotiana plumbaginifolia by protoplast fusion. The protoplasts of the organelle donor were irradiated with different lethal doses using a 60Co source, to facilitate the elimination of their nuclei from the fusion products. After fusion induction, clones derived from fusion products and containing streptomycin-resistant N. tabacum SR1 chloroplasts were selected by their ability to green on a selective medium. When N. tabacum protoplasts were inactivated by iodoacetate instead of irradiation, the proportion of N. plumbaginifolia nuclear segregant clones was low (1–2%). Irradiation markedly increased this value: Using 50, 120, 210 and 300 J kg-1 doses, the frequency of segregant clones was 44, 57, 84 and 70 percent, respectively. Regeneration of resistant N. plumbaginifolia plants with SR1 chloroplasts indicated that plastids can be rescued from the irradiated cells by fusion with untreated protoplasts. Resistant N. plumbaginifolia plants that were regenerated (43 clones studied) had diploid (2n = 2X = 20) or tetraploid chromosome numbers and were identical morphologically to parental plants. The absence of aneuploids suggests that in these clones irradiation resulted in complete elimination of the irradiated N. tabacum nuclei. Resistance is inherited maternally (five clones tested). The demonstration of chloroplast transfer and the presence of N. tabacum plastids in the N. plumbaginifolia plants was confirmed by chloroplast DNA fragmentation patterns after EcoRI digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号