首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major classes of enteric bacteria harbour a conserved core genomic structure, common to both commensal and pathogenic strains, that is most likely optimized to a life style involving colonization of the host intestine and transmission via the environment. In pathogenic bacteria this core genome framework is decorated with novel genetic islands that are often associated with adaptive phenotypes such as virulence. This classical genome organization is well illustrated by a group of extracellular enteric pathogens, which includes enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC) and Citrobacter rodentium, all of which use attaching and effacing (A/E) lesion formation as a major mechanism of tissue targeting and infection. Both EHEC and EPEC are poorly pathogenic in mice but infect humans and domestic animals. In contrast, C. rodentium is a natural mouse pathogen that is related to E. coli, hence providing an excellent in vivo model for A/E lesion forming pathogens. C. rodentium also provides a model of infections that are mainly restricted to the lumen of the intestine. The mechanism's by which the immune system deals with such infections has become a topic of great interest in recent years. Here we review the literature of C. rodentium from its emergence in the mid-1960s to the most contemporary reports of colonization, pathogenesis, transmission and immunity.  相似文献   

2.
Western-style diet (WSD), which is high in fat and low in fiber, lacks nutrients to support gut microbiota. Consequently, WSD reduces microbiota density and promotes microbiota encroachment, potentially influencing colonization resistance, immune system readiness, and thus host defense against pathogenic bacteria. Here we examined the impact of WSD on infection and colitis in response to Citrobacter rodentium. We observed that, relative to mice consuming standard rodent grain-based chow (GBC), feeding WSD starkly altered the dynamics of Citrobacter infection, reducing initial colonization and inflammation but frequently resulting in persistent infection that associated with low-grade inflammation and insulin resistance. WSD’s reduction in initial Citrobacter virulence appeared to reflect that colons of GBC-fed mice contain microbiota metabolites, including short-chain fatty acids, especially acetate, that drive Citrobacter growth and virulence. Citrobacter persistence in WSD-fed mice reflected inability of resident microbiota to out-compete it from the gut lumen, likely reflecting the profound impacts of WSD on microbiota composition. These studies demonstrate potential of altering microbiota and their metabolites by diet to impact the course and consequence of infection following exposure to a gut pathogen.  相似文献   

3.
Here we review the history, clinical significance, pathology and molecular pathogenesis of Citrobacter rodentium, the causative agent of transmissible murine colonic hyperplasia. C. rodentium serves as an important model pathogen for investigating the mechanisms controlling attaching and effacing pathology, epithelial hyperproliferation, and tumor promotion in the distal colon of the mouse.  相似文献   

4.
5.
  1. Download : Download high-res image (292KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
8.
9.
10.
LRP5 and LRP6 comprise a subfamily of lipoprotein-receptor related proteins that function as co-receptors for Wnt proteins. Mutation of human LRP5 is responsible for osteoporosis-pseudoglioma syndrome and disruption of Lrp6 in mice causes similar effects to mutation of several different Wnt genes. We have cloned Xenopus homologues of Lrp5 and Lrp6 (Xlrp5, Xlrp6) and examined their expression during embryogenesis. Both genes are expressed maternally and ubiquitously through early development. At later stages, Xlrp5 is found in the eye, forebrain, hindbrain, branchial arches and the tip of the tail bud. Xlrp6 is expressed throughout the central nervous system, branchial arches, in the eye and otic vesicle. Both genes are also expressed at the intersomitic boundary. These results suggest roles for Wnt signaling via LRP proteins in these tissues.  相似文献   

11.
Citrobacter rodentium belongs to a family of extracellular enteric pathogens that include enterohaemorrhagic and enteropathogenic Escherichia coli, which colonises the gastrointestinal mucosa by the attaching and effacing (A/E) mechanism. We previously described the appearance of a 'hyper-infectious' state after passage of C. rodentium through the murine gastrointestinal tract. Here we report that host-adapted C. rodentium is able to efficiently adhere and trigger actin polymerisation on cultured epithelial cells. Consistent with these observations we recorded higher levels of expression of genes carried on the LEE pathogenicity island and type III secretion system effector genes carried on prophages compared with in vitro-grown bacteria; importantly, the level of ler gene expression was unchanged. These phenotypes were lost after shed C. rodentium was adapted to the external environment. Upon exposure of C57Bl/6 mice, environmentally adapted C. rodentium was no longer infectious at the low doses associated with host-adapted bacteria and the bacteria were found to be localised in the caecal patch in a similar way to C. rodentium cultured in laboratory media. Thus, the 'hyper-infectious' host-adapted state, allowing efficient transmission and colonisation of naive hosts, is transient in nature and gradually lost after shedding into the environment.  相似文献   

12.
Citrobacter rodentium is an enteric bacterial pathogen of the mouse intestinal tract that triggers inflammatory responses resembling those of humans infected with enteropathogenic and enterohemorrhagic Escherichia coli. Inflammasome signaling is emerging as a central regulator of inflammatory and host responses to several pathogens, but the in vivo role of inflammasome signaling in host defense against C. rodentium has not been characterized. Here, we show that mice lacking the inflammasome components Nlrp3, Nlrc4, and caspase-1 were hypersusceptible to C. rodentium-induced gastrointestinal inflammation. This was due to defective interleukin (IL)-1β and IL-18 production given that il-1β(-/-) and il-18(-/-) mice also suffered from increased bacterial burdens and exacerbated histopathology. C. rodentium specifically activated the Nlrp3 inflammasome in in vitro-infected macrophages independently of a functional bacterial type III secretion system. Thus, production of IL-1β and IL-18 downstream of the Nlrp3 and Nlrc4 inflammasomes plays a critical role in host defense against enteric infections caused by C. rodentium.  相似文献   

13.
14.
15.
16.
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium belong to the family of attaching and effacing (A/E) bacterial pathogens. They intimately attach to host intestinal epithelial cells, trigger the effacement of intestinal microvilli, and cause diarrheal disease. Central to their pathogenesis is a type III secretion system (T3SS) encoded by a pathogenicity island called the locus of enterocyte effacement (LEE). The T3SS is used to inject both LEE- and non-LEE-encoded effector proteins into the host cell, where these effectors modulate host signaling pathways and immune responses. Identifying the effectors and elucidating their functions are central to understanding the molecular pathogenesis of these pathogens. Here we analyzed the type III secretome of C. rodentium using the highly sensitive and quantitative SILAC (stable isotope labeling with amino acids in cell culture)-based mass spectrometry. This approach not only confirmed nearly all known secreted proteins and effectors previously identified by conventional biochemical and proteomic techniques, but also identified several new secreted proteins. The T3SS-dependent secretion of these new proteins was validated, and five of them were translocated into cultured cells, representing new or additional effectors. Deletion mutants for genes encoding these effectors were generated in C. rodentium and tested in a murine infection model. This study comprehensively characterizes the type III secretome of C. rodentium, expands the repertoire of type III secreted proteins and effectors for the A/E pathogens, and demonstrates the simplicity and sensitivity of using SILAC-based quantitative proteomics as a tool for identifying substrates for protein secretion systems.  相似文献   

17.
18.
19.
Citrobacter rodentium is an attaching and effacing pathogen used as a murine model for enteropathogenic Escherichia coli. The mucus layers are a complex matrix of molecules, and mucus swelling, hydration and permeability are affected by many factors, including ion composition. Here, we used the C. rodentium model to investigate mucus dynamics during infection. By measuring the mucus layer thickness in tissue explants during infection, we demonstrated that the thickness changes dynamically during the course of infection and that its thickest stage coincides with the start of a decrease of bacterial density at day 14 after infection. Although quantitative PCR analysis demonstrated that mucin mRNA increases during early infection, the increased mucus layer thickness late in infection was not explained by increased mRNA levels. Proteomic analysis of mucus did not demonstrate the appearance of additional mucins, but revealed an increased number of proteins involved in defense responses. Ussing chamber-based electrical measurements demonstrated that ion secretion was dynamically altered during the infection phases. Furthermore, the bicarbonate ion channel Bestrophin-2 mRNA nominally increased, whereas the Cftr mRNA decreased during the late infection clearance phase. Microscopy of Muc2 immunostained tissues suggested that the inner striated mucus layer present in the healthy colon was scarce during the time point of most severe infection (10 days post infection), but then expanded, albeit with a less structured appearance, during the expulsion phase. Together with previously published literature, the data implies a model for clearance where a change in secretion allows reformation of the mucus layer, displacing the pathogen to the outer mucus layer, where it is then outcompeted by the returning commensal flora. In conclusion, mucus and ion secretion are dynamically altered during the C. rodentium infection cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号