首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crucian carp (Carassius carassius) increases in body depth in response to chemical cues from piscivores and the deeper body constitutes a morphological defence against gape-limited piscivores. In the field, deep-bodied individuals suffer a density-dependent cost when competing with shallow-bodied conspecifics. Here, we use hydrodynamic theory and swimming respirometry to investigate the proposed mechanism underlying this effect, high drag caused by the deep-bodied morphology. Our study confirms that drag is higher for deep-bodied crucian carp, both in terms of estimated theoretical drag and power curve steepness. However, deep-bodied fish swimming at the velocity associated with minimum cost of transport, U mc, did not experience higher costs of transport than shallow-bodied fish. Deep-bodied crucian carp had significantly lower standard metabolic rates, i.e. metabolic rates at rest, and also lower U mc, and the resulting costs of transport were similar for the two morphs. Nevertheless, when deep-bodied individuals deviate from U mc, e.g. when increasing foraging effort under competition, their steeper power curves will cause substantial energy costs relative to shallow-bodied conspecifics. Furthermore, there is evidence that reductions in standard metabolic rate incur costs in terms of lower stress tolerance, reduced growth rate, and life history changes. Thus, this work provides links between hydrodynamics, a cost-reducing mechanism, and a density-dependent fitness cost associated with an inducible defence. Received: 22 March 1999 / Accepted: 14 June 1999  相似文献   

2.
Summary The dynamics of gap junctions between outer horizontal cells or their axon terminals in the retina of the crucian carp were investigated during light and dark adaptation by use of ultrathin-section and freeze-fracture electron microscopy. Light adaptation was induced by red light, while dark adaptation took place under ambient dark conditions. The two principal findings were: (1) The density of connexons within an observed gap junction is high in dark-adapted retina, and low in light-adapted retina. This, respectively, may reflect the coupled and uncoupled state of the gap junction. (2) The size of individual gap junctions is larger in light-than in dark-adapted retinae. Whereas the overall area occupied by gap junctions is reduced with dark adaptation, the percentage of small and very small gap junctions increases dramatically. A lateral shift of connexons in the gap junctional membrane is strongly suggested by these reversible processes of densification and dispersion. Two additional possibilities of gap junction modulation are discussed: (1) the de novo formation of very small gap junctions outside the large ones in the first few minutes of dark adaptation, and (2) the rearrangement of a portion of the very large gap junctions. The idea that the cytoskeleton is involved in such modulatory processes is corroborated by thin-section observations.Dedicated to Professor J. Peiffer on the occasion of his 65th birthday  相似文献   

3.
Synaptic ribbons are trilaminated plate-shaped presynaptic densities of certain types of receptor cells and neurons. In cone photoreceptors, these structures dissassemble and reassemble in response to light and to a variety of other stimuli. We used the lithium-ionenhanced disassembly and reassembly of synaptic ribbons to characterize structural intermediates in these cyclic changes. A few minutes after exposure of isolated retinas from the crucian carp (Carassius carassius) to lithium, ribbons fragmented into 50-nm-sized dense globular structures. These small spheres were concentrically surrounded by synaptic vesicles attached to them by stalk-like fine bridging filaments. Disassembly always started at the free cytoplasmic edges of the ribbons and proceeded toward the membrane-associated edges. As the disassembly process never started at the membraneanchored site, synaptic ribbons appeared to be polarized structures with functionally different ends. Spheres were subjected to further depolymerization. They disintegrated into clusters of small granular material and disappeared after ca. 45 min of lithium treatment. Spheres were not observed during the reassembly of synaptic ribbons, indicating that the assembly of synaptic ribbons proceeds via smaller subunits.  相似文献   

4.
Growth and potential photosynthetic activity of phytoplankton passed through intestine of crucian carp (Carassius auratus) from a small Siberian reservoir were compared with those of phytoplankton taken the directly from the reservoir. The dominant phytoplankton species in the reservoir, Microcystis aeruginosa, showed a significant increase of growth after the passage. Subdominant Planktothrix agardhii also showed an increase in growth rate, while subdominants Anabaena flos-aquae and Aphanizomenon flos-aquae were not stimulated by the gut passage.  相似文献   

5.
Crucian carp Carassius carassius show great phenotypic plasticity in individual morphology and physiology, and strong variation in population density in different fish communities. Small fish with shallow bodies and large heads are typical in overcrowded monospecific fish communities in small ponds, whereas deep-bodied, large fish are found in larger, multispecies lakes. Crucian carp are especially vulnerable to predation by piscivorous fish and their greater relative body depth in multispecies fish communities has been proposed to be an induced defence against size-limited predation, and hence to be an adaptive feature. Data are presented here on the two divergent body forms in field populations in eastern Finland, together with results of laboratory experiments on predator effects on morphology and physiology (growth, respiration, heart rate). The deep body can be achieved in a few months by introducing a low population density of shallow-bodied fish into a food-rich environment with no piscivores. In the laboratory, both the presence of piscivores (chemical cues) and enhanced food availability increased the relative depth of crucian carp, but only to a modest extent when compared to natural variation. It is concluded that the deep-body form of crucian carp in the low density populations of multispecies fish communities is the normal condition. Reproduction in monospecific ponds results in high intraspecific competition, low growth rate and a stunted morphology. According to pilot tests, the mechanism behind the predator effect in the laboratory might be a behavioural reaction to chemical cues (alarm substances/predator odour) causing changes in energy allocation: predator-exposed crucian carp adopt a 'hiding' mode with decreased activity (less swimming, lower respiration and heart rate) and with higher overall growth. Whether, and to what extent, this predator-induced mechanism works in nature is unclear.  相似文献   

6.
Fishes show a remarkable diversity of shapes which have been associated with their swimming abilities and anti-predator adaptations. The crucian carp (Carassius carassius) provides an extreme example of phenotypic plasticity in body shape which makes it a unique model organism for evaluating the relationship between body form and function in fishes. In crucian carp, a deep body is induced by the presence of pike (Esox lucius), and this results in lower vulnerability to gape-limited predators, such as pike itself. Here, we demonstrate that deep-bodied crucian carp attain higher speed, acceleration and turning rate during anti-predator responses than shallow-bodied crucian carp. Therefore, a predator-induced morphology in crucian carp enhances their escape locomotor performance. The deep-bodied carp also show higher percentage of muscle mass. Therefore, their superior performance in escape swimming may be due to a combination of higher muscle power and higher thrust.  相似文献   

7.
Transferrin (Tf) is a kind of non-heme β-globulin with two iron ions (Fe3+)-binding sites. To prove Tf’s physiological functions, Fe3+-proteins, serum iron contents, and total iron-binding capabilities were tested for Tfs of crucian carps (Carassius auratus) and sliver carps (Hypophthalmichthys molitrix). The above results demonstrated that sliver carps shared 1/3 Tf alleles with crucian carps; Tf of crucian carps had stronger Fe3+-binding ability and transportation ability in plasma than that of sliver carps. In addition, the results of oxygen consumption experiments indicated that crucian carps had the higher oxygen utility rate than sliver carps. For acute hypoxia exposure assay, normoxic gas mixture, hypoxic gas mixture A, and hypoxic gas mixture B were used to induce oxygen-regulated gene expression of crucian carps in acute hypoxia. The results of quantitative real-time PCR revealed that mRNA levels of Tf gene, Tfr gene and ATPase gene were down-regulated in acute hypoxia but mRNA level of LDHa gene was up-regulated in acute hypoxia. The results of crucian carp Tf-cDNA sequence analysis showed that cDNA regions of two Fe3+-binding sites were T747–T1026 and T1737–A1884 based on the principle of bioinformatics. The sequence conservation of two Fe3+-binding sites was higher than that of the other five regions, which were confirmed according to the subregion model of Tf-cDNA sequence.  相似文献   

8.
The hypoxia tolerance of larval and juvenile round crucian carp, Carassius auratus grandoculis, and largemouth bass, Micropterus salmoides, was determined using respirometry to examine the potential of hypoxic areas in the macrophyte zone as physiological refugia for round crucian carp. The tolerance, which was measured as the critical oxygen concentration (Pc), was 1.32 mg O2/l in the round crucian carp and 1.93 mg O2/l in the largemouth bass. As the round crucian carp tolerated hypoxia better than the largemouth bass, hypoxic areas in the macrophyte zone might function as physiological refugia for round crucian carp.  相似文献   

9.
We have determined the occurrence of responses at different levels (morphological, physiological and biochemical) in the omnivorous rodent Akodon azarae upon cold acclimation (15 degrees C). A short-term enhancement in food consumption appeared to account for the maintenance of both mass and body composition. At the morphological level, the main response was an increase in the dimensions of small intestine, which constitutes the section of the gut where absorption and secretion take place. An increase in sucrase specific activity was only found in small intestine. Sucrose independent maltase activity was very low since 99.8% of total maltase activity was due to sucrase-isomaltase (SI) complex. Protease specific activities were not affected. The fact that resting metabolic rates determined at 15 and 23 degrees C were similar in cold acclimated animals suggests a change in lower critical temperature. In conclusion, our results show that A. azarae exhibits different strategies to support cold environment that could lead to an enhancement in digestion and absorption efficiency. Furthermore, this work suggests that low temperature is an independent cue of other environmental factors to trigger the strategies allowing the maintenance of body condition in A. azarae.  相似文献   

10.
Summary Body size in Drosophila is known to be closely related to a number of traits with important life history consequences, such as fecundity, dispersal ability and mating success. We examine the quantitative genetic basis of body size in three populations of the cactophilic species Drosophila buzzatii, which inhabit climatically different areas of Australia. Flies were reared individually to eliminate any common environmental component in a full-sib design with families split between two temperatures (18° and 25 °C). The means of several size measures differ significantly among populations while the genetic correlations among these traits generally do not differ, either among populations from different natural environments or between the different laboratory temperatures. This stability of correlation structure is necessary if laboratory estimates of genetic correlations are to have any connection with the expression of genetic variation in the field. The amount of variance due to genotype-by-environment interactions (family x temperature of development) varied among populations, apparently in parallel with the magnitudes of seasonal and diurnal variation in temperature experienced by the different populations. A coastal population, inhabiting a relatively thermally benign environment, showed no interaction, while two inland populations, inhabiting thermally more extreme areas, showed interaction. This interaction term is a measure of the amount of genetic variation in the degree of phenotypic plasticity of body size in response to temperature of development. Thus the inland flies vary in their ability to attain a given body size at a particular temperature while the coastal flies do not. This phenotypic plasticity is shown to be due primarily to differences among genotypes in the amount of response to the change in temperature. A possible selective basis for the maintenance of genetic variation for the levels of phenotypic plasticity is proposed.  相似文献   

11.
曾令清  付世建  曹振东 《生态学报》2016,36(6):1746-1755
为考察鲫(Carassius auratus)幼鱼标准代谢的个体差异与运动力竭后代谢特征和行为的关系,在(25.0±0.5)℃条件下测定80尾鲫幼鱼标准代谢率(SMR),筛选出40尾实验鱼[体重(13.54±0.20)g,体长(8.05±0.07)cm],其中包括20尾高SMR个体和20尾低SMR个体,测定运动至力竭实验鱼的最大代谢率(MMR),并计算代谢空间(AS=MMR-SMR)、相对代谢空间(FAS)和过量耗氧(EPOC)总量,随后测定单尾鱼的快速启动行为[反应时间(RT)、最大线速度(Umax)、最大线加速度(Amax)和120ms移动距离(S120)]以及个性行为(勇敢性和活跃性)。结果显示鲫幼鱼的SMR与AS、FAS和EPOC总量均呈负相关,而与MMR不相关;MMR与AS、FAS和EPOC总量均呈正相关;协方差分析显示高SMR个体组的代谢恢复速率与低SMR个体组无显著差异。鲫幼鱼的SMR与快速启动行为的RT呈正相关,与Amax呈负相关,而与Umax和S120均不相关。在快速启动行为中,鲫幼鱼的RT与Umax、Amax和S120均呈负相关,而Umax与Amax和S120呈正相关。鲫幼鱼的SMR与其勇敢性指标如潜伏期(L)、曝露时间(ET)和探头频率(AF)以及活跃性指标如运动时间比(PTM)、撞墙频率(FHW)均不相关,但鲫幼鱼的PTM与FHW和ET呈正相关。研究表明在实验室条件下鲫幼鱼的能量代谢特征、快速启动和个性行为存在明显的个体差异现象,并且部分表型特征之间存在权衡,提示这些权衡可能是鲫幼鱼的生理、行为与栖息环境相互作用的综合结果。  相似文献   

12.
Caroline Ross 《Oecologia》1992,92(3):383-390
Morphological and life history traits of two clones of the cladoceran Daphnia pulex were measured in the presence and absence of size-selective insect predators, the midge larva Chaoborus flavicans, which preys on small Daphnia, and the water bug Notonecta glauca, which preys on large Daphnia. The aim was to detect predator-induced phenotypic changes, particularly the effect of simultaneous exposure to both types of predators. Other work has shown that in the presence of Chaoborus americanus, Daphnia pulex produce a socalled neck spine which may carry several teeth. The morphological modifications are supposed to serve as an anti-predator device. Furthermore, females exposed to Chaoborus often delay their maturation; this has been interpreted as a cost that balances the benefits of the neck teeth. In this investigation, females of both clones produced fewer but larger offspring than control animals when reared in the presence of Chaoborus flavicans. The offspring showed the typical neck spine and delayed first reproduction. In the presence of Notonecta glauca, one of the clones produced more and smaller offspring, and maturation occurred at earlier instars. The other clone also produced more offspring than the control but there was no size difference. When both predators were present, in most cases the reactions of the daphnids were similar to those in the Notonecta experiment. The response to Chaoborus appeared to be suppressed. The observed modifications are interpreted as evolved strategies that reduce the impact of size-selective predation. They are consistent with predictions of life-history theory.  相似文献   

13.
We examined diet-dependent plasticity in head shape in larvae of the eastern long-toed salamander, Ambystoma macrodactylum columbianum. Larvae in some populations of this species exhibit trophic polymorphism, with some individuals possessing exaggerated trophic features characteristic of a cannibalistic morphology in larval Ambystoma; e.g. a disproportionately broad head and hypertrophied vomerine teeth. We hypothesized that 1) head shape variation results from feeding upon different types of prey and that 2) cannibal morphs are induced by consumption of conspecifics. To induce variation, we fed three groups of larvae different diets: 1) brine shrimp nauplii only; 2) nauplii plus anuran tadpoles; 3) nauplii, tadpoles and conspecific larval salamanders. Comparisons of size (mass)-adjusted means revealed that this manipulation of diet induced significant variation in six measures of head shape, but not in the area of the vomerine tooth patch. For five of the six head traits, larvae that ate tadpoles and brine shrimp nauplii developed significantly broader, longer and deeper heads than did larvae that only ate brine shrimp nauplii. The ingestion of conspecifics, in addition to nauplii and tadpoles, significantly altered two head traits (interocular-width and head depth), compared to larvae only fed nauplii and tadpoles. Canonical discriminant function analysis detected two statistically reliable canonical variables: head depth was most highly associated with the first canonical variable, whereas three measures of head width (at the jaws, gills and eyes) and interocular width were most highly associated with the second canonical variable. Despite this diet-enhanced morphological variation, there was no indication that any of the three types of diet (including conspecific prey) induced the exaggerated trophic features of the cannibal morph in this species. These results illustrate that ingestion of different types of prey contributes to plasticity in head shape, but that some other proximate cue(s), either alone or in combination with diet variation, is essential to induce the extremes of trophic polymorphism in this species.  相似文献   

14.
A greenhouse experiment was performed to investigate root growth dynamics, plant growth, root porosity and root morphology of a marsh plant Deyeuxia angustifolia, one of the dominant species in the Sanjiang Plain, China. The aim of this study was to elucidate how this plant adjusts its root system to acclimate to different hydrological environments. Experimental treatments included three water depths: −5, 0 and 5 cm (relative to the soil surface). Biomass accumulation was higher in the −5 cm (0.90 g per plant) and 0 cm water-depth (1.18 g per plant) than that in the 5 cm water-depth treatments (0.66 g per plant), indicating that plant growth was inhibited in the high water level. Root:shoot ratio (0.67 versus 0.42–0.43), the length (16 cm versus 12–13 cm) and diameter of adventitious roots (0.47 mm versus 0.41 mm), and root number (167 versus 81–119 number of roots per plant) were higher in the 0 cm water-depth than those in the high and low water-depth treatments. Enhanced water level led to slightly increased porosity of main roots, but porosity was about 7% in all treatments. After 8 weeks, roots had been distributed into 14, 11 and 7 cm soil depth in the 0, −5 and 5 cm water-depth treatments, respectively, indicating that both high and low water levels led to shallow root systems. Our data suggest that D. angustifolia can adjust root morphology and root growth pattern according to water level, and that this plant has limited oxygen diffusion potential to the roots due to the reduced biomass in the high water level.  相似文献   

15.
16.
Cronin G  Lodge DM 《Oecologia》2003,137(1):32-41
Phenotypic responses of Potamogeton amplifolius and Nuphar advena to different light (7% and 35% of surface irradiance) and nutrient environments were assessed with field manipulation experiments. Higher light and nutrient availability enhanced the growth of P. amplifolius by 154% and 255%, respectively. Additionally, biomass was allocated differently depending on the resource: high light availability resulted in a higher root/shoot ratio, whereas high nutrient availability resulted in a lower root/shoot ratio. Low light availability and high nutrient availability increased the nitrogen content of leaf tissue by 53% and 40% respectively, resulting in a 37% and 31% decrease in the C/N ratio. Root nitrogen content was also increased by low light and high nutrient availability, by 50% (P=0.0807) and 77% respectively, resulting in a 20% and 40% decrease in root C/N ratio. Leaf phenolics were significantly increased 72% by high light and 31% by high nutrient availability, but root phenolic concentrations were not altered significantly. None of these changes in tissue constituents resulted in altered palatability to crayfish. N. advena was killed by the same high nutrient treatment that stimulated growth in P. amplifolius, preventing assessment of phenotypic responses to nutrient availability. However, high light availability increased overall growth by 24%, but this was mainly due to increased growth of the rhizome (increased 100%), resulting in a higher root/shoot ratio. High light tended to increase the production of floating leaves (P=0.09) and significantly decreased the production of submersed leaves. High light availability decreased the nitrogen content by 15% and 25% and increased the phenolic concentration by 88% and 255% in floating and submersed leaves, respectively. These differences in leaf traits did not result in detectable differences in damage by herbivores.  相似文献   

17.
Summary We examined the demographic costs of Chaoborus-induced defensive spine structures in Daphnia pulex. Our aim was to assess the role of resource limitation and the interaction effects of limiting food level and antipredator structures on fitness of D. pulex and to pinpoint those life stages that are most sensitive to changes in the defence regime. Chaoborus-induced and typical morphotypes of D. pulex were reared at high and low food concentrations. Instar-based matrix population models were used to quantify the effects of predator-induction, food and their interaction on fitness of D. pulex. Predator-induction caused a statistically significant reduction in fitness at low food levels, but not at high food levels. Sensitivity analyses revealed that the fitness effects were primarily due to changes in the growth rate in instars 1–5, and secondarily to small reductions in the fertility of instars 5–10. The interaction between Chaoborus exposure and low food concentration was negative, and mediated through growth and fertility components. Both these components were reduced more in the Chaoborus-exposed, low food treatment than would be expected in the absence of interaction.  相似文献   

18.
目的了解鲫成体透明的原因,探讨该性状的应用特性,为透明鲫作为水生实验动物材料系统开发提供基础。方法对透明鲫进行繁殖,并观察其后代性状,了解透明性状的遗传规律;体视镜观察透明鲫色素细胞的种类与分布,并与鲫比较;组织切片和压片确认微孢子虫对透明鲫的感染,并观察感染症状的变化。结果鲫的透明性状可以遗传,大部分后代表现为通体透明,心、肝、肾、肠、鳔、鳃、脊椎等组织器官肉眼清晰可见。与正常鲫比较,透明鲫的主要色素细胞为黄色素细胞,并未发现虹彩色素细胞,黑色素细胞的数量也大为减少。微孢子虫对鱼体的感染过程可直观观察,病原的扩散和空间分布能实时获得,具普通鱼类无法比拟的应用优势。结论虹彩色素细胞的缺失是鲫透明突变的结构基础。由于透明鲫内部器官可直接观测,无需依靠解剖或复杂仪器系统,在同一动物身上可能获得一系列的动态试验数据,或可作为模型材料广泛应用于生命科学不同领域。  相似文献   

19.
Although herbivores often have a negative impact on plant fitness, sometimes plants may benefit from their consumers. However, these positive interactions usually occur as a result of plant damage (e.g., overcompensation, defense induction). I present evidence of a novel way by which plants may benefit from their consumers without being eaten. Plants of Carduus nutans increased their physical defenses when grown in external refuse dumps of the leaf-cutting ant Acromyrmex lobicornis. Seedlings planted in refuse exhibited longer spines and tougher leaves than those planted in control soils. Pick-up assays with entire leaves and leaf discs demonstrated that these enhanced physical defenses prevented leaf-cutting ant harvest. Additionally, plants established in refuse dumps showed fewer insect herbivory than those in non-nest soils. The nutrient-rich refuse dump appeared to reduce the stage at which leaves are tender and thus more vulnerable to herbivory. This is the first case where plants may benefit from insect herbivores via waste products without the cost of being eaten. This illustrates how plants may plastically respond to reliable cues of the risk of herbivory.  相似文献   

20.
Predator‐inducible defenses constitute a widespread form of adaptive phenotypic plasticity, and such defenses have recently been suggested linked with the neuroendocrine system. The neuroendocrine system is a target of endocrine disruptors, such as psychoactive pharmaceuticals, which are common aquatic contaminants. We hypothesized that exposure to an antidepressant pollutant, fluoxetine, influences the physiological stress response in our model species, crucian carp, affecting its behavioral and morphological responses to predation threat. We examined short‐ and long‐term effects of fluoxetine and predator exposure on behavior and morphology in crucian carp. Seventeen days of exposure to a high dose of fluoxetine (100 µg/L) resulted in a shyer phenotype, regardless of the presence/absence of a pike predator, but this effect disappeared after long‐term exposure. Fluoxetine effects on morphological plasticity were context‐dependent as a low dose (1 µg/L) only influenced crucian carp body shape in pike presence. A high dose of fluoxetine strongly influenced body shape regardless of predator treatment. Our results highlight that environmental pollution by pharmaceuticals could disrupt physiological regulation of ecologically important inducible defenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号