首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ataxin-3 is a member of the polyglutamine family of proteins, which are associated with at least nine different neurodegenerative diseases. In the disease state, expansion of the polyglutamine tract leads to dysfunction and death of neurons, as well as formation of proteinaceous aggregates known as nuclear inclusions. Intriguingly, both expanded and non-expanded forms of ataxin-3 are observed within these nuclear inclusions. Ataxin-3 is the smallest of the polyglutamine disease proteins and in its expanded form causes the neurodegenerative disorder Machado-Joseph disease. Using a non-pathological variant containing 28 residues in its polyglutamine tract, we have probed the folding and misfolding pathways of ataxin-3. We describe here the first equilibrium folding pathway delineated for any polyglutamine protein and show that ataxin-3 folds reversibly via a single intermediate species. We have also explored further the misfolding potential of the protein and found that partial destabilization of ataxin-3 by chemical denaturation leads to the formation of fibrillar aggregates by the non-pathological variant. These results provide an insight into the possible mechanisms by which polyglutamine expansion may affect the stability and conformation of the protein. The implications of this are considered in the wider context of the development and pathogenesis of polyglutamine diseases.  相似文献   

2.
Huntingtin-protein interactions and the pathogenesis of Huntington's disease   总被引:11,自引:0,他引:11  
At least nine inherited neurodegenerative diseases share a polyglutamine expansion in their respective disease proteins. These diseases show distinct neuropathological changes, suggesting that protein environment and protein-protein interactions play an important role in the specific neuropathology. A gain of toxic function as a result of an expanded polyglutamine tract can cause the protein huntingtin to interact abnormally with a variety of proteins, resulting in the complex of neuropathological changes seen in Huntington's disease. Recent studies have identified several huntingtin-interacting proteins that might be associated with the normal function of huntingtin and/or involved in the pathology of Huntington's disease. In this article, we focus on the potential roles of huntingtin-protein interactions in the pathogenesis of Huntington's disease.  相似文献   

3.
Previously, we showed that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we investigated the mechanism of ubiquilin's protective effect. Immunofluorescence microscopy and immunoprecipitation studies indicated that ubiquilin colocalized and coimmunoprecipitated more with GFP-huntingtin-exon-1-fusion proteins containing a 74-polyglutamine tract than with GFP-huntingtin-fusion proteins containing a 28-polyglutamine tract or with GFP protein alone. Furthermore, overexpression of ubiquilin selectively enhanced the turnover of the expanded GFP-huntingtin-fusion protein. These results suggest that elevating ubiquilin levels could aid in the selective disposal of potentially toxic expanded polyglutamine proteins that are thought to cause several human diseases.  相似文献   

4.
Parkin, the most commonly mutated gene in familial Parkinson's disease, encodes an E3 ubiquitin ligase. A number of candidate substrates have been identified for parkin ubiquitin ligase action including CDCrel-1, o-glycosylated alpha-synuclein, Pael-R, and synphilin-1. We now show that parkin promotes the ubiquitination and degradation of an expanded polyglutamine protein. Overexpression of parkin reduces aggregation and cytotoxicity of an expanded polyglutamine ataxin-3 fragment. Using a cellular proteasome indicator system based on a destabilized form of green fluorescent protein, we demonstrate that parkin reduces proteasome impairment and caspase-12 activation induced by an expanded polyglutamine protein. Parkin forms a complex with the expanded polyglutamine protein, heat shock protein 70 (Hsp70) and the proteasome, which may be important for the elimination of the expanded polyglutamine protein. Hsp70 enhances parkin binding and ubiquitination of expanded polyglutamine protein in vitro suggesting that Hsp70 may help to recruit misfolded proteins as substrates for parkin E3 ubiquitin ligase activity. We speculate that parkin may function to relieve endoplasmic reticulum stress by preserving proteasome activity in the presence of misfolded proteins. Loss of parkin function and the resulting proteasomal impairment may contribute to the accumulation of toxic aberrant proteins in neurodegenerative diseases including Parkinson's disease.  相似文献   

5.
Large cytoplasmic inclusions called aggresomes are seen in many protein conformational diseases including Huntington’s disease and Parkinson’s disease. The roles of inclusions and aggresomes in these diseases are unresolved critical issues that have been vigorously debated. Two recent studies used microtubule disruption with nocodazole to inhibit aggresome formation and observed increased toxicity of expanded polyglutamines in the context of huntingtin exon 1 and a truncated androgen receptor. Increased toxicity of expanded polyglutamines in the presence of nocodazole was correlated with decreased protein turnover, leading the authors to conclude that aggresomes were cytoprotective and that they directly enhanced clearance of the toxic proteins. Here we show that nocodazole has additional effects, which provide a simple alternative explanation for these previous observations. We confirmed aggresome formation in cells expressing proteins with polyalanine and polyglutamine expansions. As expected, we found a reduction in aggresome formation when microtubule function was disrupted using nocodazole. However, in addition to this effect, nocodazole treatment increased the proportions of cells with nuclear inclusions in PC12 cells expressing huntingtin exon 1 with 74 glutamines. This can be explained as nocodazole inhibits autophagosome-lysosome fusion, a key step in mutant huntingtin exon 1 clearance. This effect alone can explain the previous observations with this compound in polyglutamine diseases and raises doubts about the interpretation of some of the data that have been used to argue that aggresomes protect against polyglutamine mutations.  相似文献   

6.
Huntington's disease (HD) is an autosomal dominant disorder in which there is progressive neurodegeneration producing motor, cognitive and psychiatric symptoms. HD is caused by a trinucleotide (CAG) repeat mutation, encoding an expanded polyglutamine tract in the huntingtin protein. At least eight other neurodegenerative diseases are caused by CAG/glutamine repeat expansions in different genes. Recent evidence suggests that environmental factors can modify the onset and progression of Huntington's disease and possibly other neurodegenerative disorders. This review outlines possible molecular and cellular mechanisms mediating the polyglutamine-induced toxic 'gain of function' and associated gene-environment interactions in HD. Key aspects of pathogenesis shared with other neurodegenerative diseases may include abnormal protein-protein interactions, selective disruption of gene expression and 'pathological plasticity' of synapses in specific brain regions. Recent discoveries regarding molecular mechanisms of pathogenesis are guiding the development of new therapeutic approaches. Knowledge of gene-environment interactions, for example, could lead to development of 'enviromimetics' which mimic the beneficial effects of specific environmental stimuli. The effects of environmental enrichment on brain and behaviour will also be discussed, together with the general implications for neuroscience research involving animal models.  相似文献   

7.
Spinocerebellar ataxia type 1 (SCA1) is one of nine inherited neurodegenerative diseases caused by the expansion of a CAG trinucleotide repeat encoding a polyglutamine tract. SCA1 patients lose motor coordination and develop slurred speech, spasticity, and cognitive impairments. Difficulty with coordinating swallowing and breathing eventually causes death. Genetic evidence indicates that the disease mutation induces a toxic gain of function in the SCA1 encoded protein ATXN1. The discovery that residues in ATXN1 outside of the polyglutamine tract are crucial for pathogenesis hinted that alterations in the normal function of this protein are linked to its toxicity. Biochemical and genetic studies provide evidence that the polyglutamine expansion enhances interactions that are normally regulated by phosphorylation at Ser(776) and a subsequent alteration in its interaction with other cellular proteins. Moreover, the finding that other ATXN1 interactions are decreased in disease suggests that the polyglutamine expansion contributes to disease by both a gain-of-function mechanism and partial loss of function.  相似文献   

8.
Liu N  Bonini NM 《Cell》2006,127(7):1299-1300
Polyglutamine diseases are caused by an expanded glutamine domain thought to confer a toxic activity onto the respective disease proteins. In this issue, propose that toxicity of the polyglutamine protein Ataxin-1 may not be due to abberant protein interactions mediated by the polyglutamine expansion. Instead, they suggest that toxicity is solely due to interactions of Ataxin-1 with its normal binding partners.  相似文献   

9.
Inhibition of polyglutamine-induced protein aggregation could provide treatment options for polyglutamine diseases such as Huntington disease. Here we showed through in vitro screening studies that various disaccharides can inhibit polyglutamine-mediated protein aggregation. We also found that various disaccharides reduced polyglutamine aggregates and increased survival in a cellular model of Huntington disease. Oral administration of trehalose, the most effective of these disaccharides, decreased polyglutamine aggregates in cerebrum and liver, improved motor dysfunction and extended lifespan in a transgenic mouse model of Huntington disease. We suggest that these beneficial effects are the result of trehalose binding to expanded polyglutamines and stabilizing the partially unfolded polyglutamine-containing protein. Lack of toxicity and high solubility, coupled with efficacy upon oral administration, make trehalose promising as a therapeutic drug or lead compound for the treatment of polyglutamine diseases. The saccharide-polyglutamine interaction identified here thus provides a new therapeutic strategy for polyglutamine diseases.  相似文献   

10.
The polyglutamine diseases are a family of nine proteins where intracellular protein misfolding and amyloid-like fibril formation are intrinsically coupled to disease. Previously, we identified a complex two-step mechanism of fibril formation of pathologically expanded ataxin-3, the causative protein of spinocerebellar ataxia type-3 (Machado-Joseph disease). Strikingly, ataxin-3 lacking a polyglutamine tract also formed fibrils, although this occurred only via a single-step that was homologous to the first step of expanded ataxin-3 fibril formation. Here, we present the first kinetic analysis of a disease-associated polyglutamine repeat protein. We show that ataxin-3 forms amyloid-like fibrils by a nucleation-dependent polymerization mechanism. We kinetically model the nucleating event in ataxin-3 fibrillogenesis to the formation of a monomeric thermodynamic nucleus. Fibril elongation then proceeds by a mechanism of monomer addition. The presence of an expanded polyglutamine tract leads subsequently to rapid inter-fibril association and formation of large, highly stable amyloid-like fibrils. These results enhance our general understanding of polyglutamine fibrillogenesis and highlights the role of non-poly(Q) domains in modulating the kinetics of misfolding in this family.  相似文献   

11.
Machado-Joseph's disease is caused by a CAG trinucleotide repeat expansion that is translated into an abnormally long polyglutamine tract in the protein ataxin-3. Except for the polyglutamine region, proteins associated with polyglutamine diseases are unrelated, and for all of these diseases aggregates containing these proteins are the major components of the nuclear proteinaceous deposits found in the brain. Aggregates of the expanded proteins display amyloid-like morphological and biophysical properties. Human ataxin-3 containing a non-pathological number of glutamine residues (14Q), as well as its Caenorhabditis elegans (1Q) orthologue, showed a high tendency towards self-interaction and aggregation, under near-physiological conditions. In order to understand the discrete steps in the assembly process leading to ataxin-3 oligomerization, we have separated chromatographically high molecular mass oligomers as well as medium mass multimers of non-expanded ataxin-3. We show that: (a) oligomerization occurs independently of the poly(Q)-repeat and it is accompanied by an increase in beta-structure; and (b) the first intermediate in the oligomerization pathway is a Josephin domain-mediated dimer of ataxin-3. Furthermore, non-expanded ataxin-3 oligomers are recognized by a specific antibody that targets a conformational epitope present in soluble cytotoxic species found in the fibrillization pathway of expanded polyglutamine proteins and other amyloid-forming proteins. Imaging of the oligomeric forms of the non-pathological protein using electron microscopy reveals globular particles, as well as short chains of such particles that likely mimic the initial stages in the fibrillogenesis pathway occurring in the polyglutamine-expanded protein. Thus, they constitute potential targets for therapeutic approaches in Machado-Joseph's disease, as well as valuable diagnostic markers in disease settings.  相似文献   

12.
At least eight neurodegenerative diseases, including Huntington disease, are caused by expansions in (CAG)n repeats in the affected gene and by an increase in the size of the corresponding polyglutamine domain in the expressed protein. A hallmark of several of these diseases is the presence of aberrant, proteinaceous aggregates in the nuclei and cytosol of affected neurons. Recent studies have shown that expanded polyglutamine (Qn) repeats are excellent glutaminyl-donor substrates of tissue transglutaminase, and that the substrate activity increases with increasing size of the polyglutamine domain. Tissue transglutaminase is present in the cytosol and nuclear fractions of brain tissue. Thus, the nuclear and cytosolic inclusions in Huntington disease may contain tissue transglutaminase-catalyzed covalent aggregates. The (CAG)n/Qn-expansion diseases are classic examples of selective vulnerability in the nervous system, in which certain cells/structures are particularly susceptible to toxic insults. Quantitative differences in the distribution of the brain transglutaminase(s) and its substrates, and in the activation mechanism of the brain transglutaminase(s), may explain in part selective vulnerability in a subset of neurons in (CAG)n-expansion diseases, and possibly in other neurodegenerative disease. If tissue transglutaminase is found to be essential for development of pathogenesis, then inhibitors of this enzyme may be of therapeutic benefit.  相似文献   

13.
A common finding among the expanded polyglutamine disorders is intracellular protein aggregates. Although the precise role of these aggregates in the disease process is unclear, they are generally ubiquitinated, implicating the ubiquitin-proteasome pathway in neuronal degeneration. To investigate the mechanism of aggregate formation, we have developed a cell culture model to express huntingtin designed to have an altered degradation rate through the ubiquitin-dependent N-end rule pathway. We fused the first 171 amino acids of huntingtin, containing either a pathogenic or normal polyglutamine tract, to the enhanced green fluorescent protein (EGFP). The half-life of soluble huntingtin-EGFP was dependent on the degradation signal and the polyglutamine tract length. However, once huntingtin-EGFP with a pathogenic tract had aggregated, the protein was extremely stable. Huntingtin-EGFP with a pathogenic glutamine tract and a shorter half-life displayed a delayed onset of aggregate formation and was more toxic to transfected cells. These data suggest that rapid clearance through the ubiquitin-proteasome pathway slows aggregate formation, yet increases cellular toxicity. Polyglutamine-induced neurotoxicity may therefore be triggered by non-aggregated protein, and aggregate formation itself may be a cellular defense mechanism.  相似文献   

14.
Polyglutamine diseases are a class of inherited neurodegenerative disorders caused by the expansion of a polyglutamine tract within the respective proteins. Clinical studies have revealed that the forming of neuronal intranuclear inclusions by the disease protein is a common pathological feature of polyglutamine diseases. Although there has been considerable progress in understanding polyglutamine diseases, many questions regarding their mechanism are still unanswered. The finding that molecular chaperones are associated with ubiquitinated intranuclear inclusions clearly indicates a crucial role of molecular chaperones in the generation of these fatal diseases. Molecular and chemical chaperones have been found to be a good agent for suppressing many polyglutamine diseases in several animal models. In this review, I discuss the roles of the ubiquitin-proteasome pathway and molecular chaperones in the development of polyglutamine diseases and probable approach for the prevention of many of these fatal disorders using molecular chaperones as a therapeutic agent. Newly found chemical chaperones have been demonstrated to be potentially useful and could be used as a therapeutic strategy in preventing many versions of polyglutamine diseases.  相似文献   

15.
Proteins with expanded polyglutamine domains cause eight inherited neurodegenerative diseases, including Huntington's, but the molecular mechanism(s) responsible for neuronal degeneration are not yet established. Expanded polyglutamine domain proteins possess properties that distinguish them from the same proteins with shorter glutamine repeats. Unlike proteins with short polyglutamine domains, proteins with expanded polyglutamine domains display unique protein interactions, form intracellular aggregates, and adopt a novel conformation that can be recognized by monoclonal antibodies. Any of these polyglutamine length-dependent properties could be responsible for the pathogenic effects of expanded polyglutamine proteins. To identify peptides that interfere with pathogenic polyglutamine interactions, we screened a combinatorial peptide library expressed on M13 phage pIII protein to identify peptides that preferentially bind pathologic-length polyglutamine domains. We identified six tryptophan-rich peptides that preferentially bind pathologic-length polyglutamine domain proteins. Polyglutamine-binding peptide 1 (QBP1) potently inhibits polyglutamine protein aggregation in an in vitro assay, while a scrambled sequence has no effect on aggregation. QBP1 and a tandem repeat of QBP1 also inhibit aggregation of polyglutamine-yellow fluorescent fusion protein in transfected COS-7 cells. Expression of QBP1 potently inhibits polyglutamine-induced cell death. Selective inhibition of pathologic interactions of expanded polyglutamine domains with themselves or other proteins may be a useful strategy for preventing disease onset or for slowing progression of the polyglutamine repeat diseases.  相似文献   

16.
17.
The trinucleotide repeat disorders comprise an ever expanding list of diseases, all of which are caused by an unstable expanded trinucleotide repeat tract. Huntington's disease (HD) is a member of this family of diseases and more specifically, is a Type II trinucleotide repeat disorder. This means that the mutation in HD is an unstable expanded polyglutamine repeat tract, which is expressed at protein level. There is no cure or beneficial treatment for this fatal neurodegenerative disorder, and patients suffer from progressive motor, cognitive and psychiatric dysfunction. Recent years has seen the development of many genetic models of HD, which allow study of the early phases of disease process, at several different levels of cell function. In addition, these models are being used to investigate the potential of a variety of therapeutic agents for clinical use. Here we review these findings, and their implication for HD pathogenesis.  相似文献   

18.
A common thread connecting nine fatal neurodegenerative protein aggregation diseases is an abnormally expanded polyglutamine tract found in the respective proteins. Although the structure of this tract in the large mature aggregates is increasingly well described, its structure in the small early aggregates remains largely unknown. As experimental evidence suggests that the most toxic species along the aggregation pathway are the small early ones, developing strategies to alleviate disease pathology calls for understanding the structure of polyglutamine peptides in the early stages of aggregation. Here, we present a criterion, grounded in available experimental data, that allows for using kinetic stability of dimers to assess whether a given polyglutamine conformer can be on the aggregation path. We then demonstrate that this criterion can be assessed using present-day molecular dynamics simulations. We find that although the α-helical conformer of polyglutamine is very stable, dimers of α-helices lack the kinetic stability necessary to support further oligomerization. Dimers of steric zipper, β-nanotube, and β-pseudohelix conformers are also too short-lived to initiate aggregation. The β-hairpin-containing conformers, instead, invariably form very stable dimers when their side chains are interdigitated. Combining these findings with the implications of recent solid-state NMR data on mature fibrils, we propose a possible pathway for the initial stages of polyglutamine aggregation, in which β-hairpin-containing conformers act as templates for fibril formation.  相似文献   

19.
In at least nine inherited diseases polyglutamine expansions cause neurodegeneration associated with protein misfolding and the formation of ubiquitin-conjugated aggregates. Although expanded polyglutamine triggers disease, functional properties of host polyglutamine proteins also must influence pathogenesis. Using complementary in vitro and cell-based approaches we establish that the polyglutamine disease protein, ataxin-3, is a poly-ubiquitin-binding protein. In stably transfected neural cell lines, normal and expanded ataxin-3 both co-precipitate with poly-ubiquitinated proteins that accumulate when the proteasome is inhibited. In vitro pull-down assays show that this reflects direct interactions between ataxin-3 and higher order ubiquitin conjugates; ataxin-3 binds K48-linked tetraubiquitin but not di-ubiquitin or mono-ubiquitin. Further studies with domain-deleted and site-directed mutants map tetra-ubiquitin binding to ubiquitin interaction motifs situated near the polyglutamine domain. In surface plasmon resonance binding analyses, normal and expanded ataxin-3 display similar submicromolar dissociation constants for tetra-ubiquitin. Binding kinetics, however, are markedly influenced by the surrounding protein context; ataxin-3 that lacks the highly conserved, amino-terminal josephin domain shows significantly faster association and dissociation rates for tetra-ubiquitin binding. Our results establish ataxin-3 as a poly-ubiquitin-binding protein, thereby linking its normal function to protein surveillance pathways already implicated in polyglutamine pathogenesis.  相似文献   

20.
Several neurodegenerative diseases including Huntington disease, Machado-Joseph disease and spinocerebellar ataxias type 1 are caused by expansion of a polyglutamine tract within their respective gene products. In order to assess the role of the tract, 293T cells were transfected with plasmids that contain various lengths of CAG repeat encoding polyglutamine without the repeat disorder proteins: (CAG)27, (CAG)40, (CAG)80, (CAG)130, and (CAG)180. Except for (CAG)27, and (CAG)40, 293T cells showed a common set of morphological alterations such as shrinkage, rounding and surface blebbing when the expanded stretch was expressed. In addition, nuclear staining experiments showed chromatin condensation in COS-7 cells transfected with the vectors containing expanded CAG repeats. These results indicate that expanded polyglutamine itself is able to induce cell death, suggesting existence of a common molecular mechanism in the etiology of neurodegenerative polyglutamine diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号