首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we examined in vitro luteinizing hormone (LH) release patterns from pituitaries and from pituitary cell cultures (3 and 7 days in culture) to elucidate the endogenous period generated by the gonadotroph cell population and to evaluate the relationship between the basic period generated at the cellular level and the output pattern observed at the organ level. In addition, we examined the effect of photic environmental signals perceived by the animals on LH release patterns from pituitaries in vitro. When the animals were exposed to circadian photoperiodic signals, the in vitro LH release pattern from the pituitaries exhibited ultradian, circadian, and infra-dian frequencies. When the animals were exposed to continuous illumination, the in vitro patterns exhibited only ultradian and infradian frequencies. Furthermore, free running is a process, not a state. This process is driven by a change in the relative dominance of different frequencies that construct the pattern without changing the basic period length. Evaluation of the relative dominance of the different frequencies that construct the pattern indicates that, although infradian oscillators may take part in shaping the output pattern, the basic rhythm generated by the pituitary cells is in the ultradian domain. The results obtained from the examined system suggest that an endogenous oscillator is a cellular entity with ultradian periodicity, and that the rhythmic output of many biological variables is structured by various ultradian components that construct the circadian and infradian output rhythms.  相似文献   

2.
The possibility that the 24h rhythm output is the composite expression of ultradian oscillators of varying periodicities was examined by assessing the effect of external continuously or pulsed (20-minute) Gonadotropinreleasing hormone (GnRH) infusions on in vitro luteinizing hormone (LH) release patterns from female mouse pituitaries during 38h study spans. Applying stepwise analyses (spectral, cosine fit, best-fit curve, and peak detection analyses) revealed the waveform shape of LH release output patterns over time is composed of several ultradian oscillations of different periods. The results further substantiated previous observations indicating the pituitary functions as an autonomous clock. The GnRH oscillator functions as a pulse generator and amplitude regulator, but it is not the oscillator that drives the ultradian LH release rhythms. At different stages of the estrus cycle, the effect of GnRH on the expression of ultradian periodicities varies, resulting in the modification of their amplitudes but not their periods. The functional output from the system of ultradian oscillators may superimpose a “circadian or infradian phenotype” on the observed secretion pattern. An “amplitude control” hypothesis is proposed: The temporal pattern of LH release is governed by several oscillators that function in conjunction with one another and are regulated by an amplitude-controlled mechanism. Simulated models show that such a mechanism results in better adaptive response to environmental requirements than does a single circadian oscillator. (Chronobiology International, 18(3), 399–412, 2001)  相似文献   

3.
The possibility that the 24h rhythm output is the composite expression of ultradian oscillators of varying periodicities was examined by assessing the effect of external continuously or pulsed (20-minute) Gonadotropinreleasing hormone (GnRH) infusions on in vitro luteinizing hormone (LH) release patterns from female mouse pituitaries during 38h study spans. Applying stepwise analyses (spectral, cosine fit, best-fit curve, and peak detection analyses) revealed the waveform shape of LH release output patterns over time is composed of several ultradian oscillations of different periods. The results further substantiated previous observations indicating the pituitary functions as an autonomous clock. The GnRH oscillator functions as a pulse generator and amplitude regulator, but it is not the oscillator that drives the ultradian LH release rhythms. At different stages of the estrus cycle, the effect of GnRH on the expression of ultradian periodicities varies, resulting in the modification of their amplitudes but not their periods. The functional output from the system of ultradian oscillators may superimpose a “circadian or infradian phenotype” on the observed secretion pattern. An “amplitude control” hypothesis is proposed: The temporal pattern of LH release is governed by several oscillators that function in conjunction with one another and are regulated by an amplitude-controlled mechanism. Simulated models show that such a mechanism results in better adaptive response to environmental requirements than does a single circadian oscillator. (Chronobiology International, 18(3), 399-412, 2001)  相似文献   

4.
Cyclosporine (CyA) is extremely useful as an immunosuppressant and it is believed that at least some of its actions are due to antagonizing PRL effects. To determine whether the reported ability of CyA to inhibit gonadotropin release can be modified by PRL, we have examined the effects of treatment of normal and hyperprolactinemic rats with CyA in vivo on the release of LH, FSH and PRL from their pituitaries in vitro. Hyperprolactinemia was induced by implantation of capsules containing diethylstilbestrol (DES) and the animals were examined while the capsules were still in place (DES-IN) or after they had been removed (DES-OUT). Treatment with CyA significantly reduced plasma LH levels in control DES-IN rats without reducing basal LH release from the pituitaries of these animals in vitro. In the DES-IN rats, CyA exposure in vivo did not modify plasma PRL levels, but reduced PRL release in vitro, and interfered with the inhibitory action of dopamine (DA) on PRL release. The effect of DA on gonadotropin release in vitro was modified by CyA treatment. Administration of CyA failed to antagonize the suppressive effects of hyperprolactinemia on plasma LH and FSH levels or on the basal rates of gonadotropin release by incubated pituitaries. We conclude that CyA can reduce PRL release but does not interfere with the actions of PRL on anterior pituitary function.  相似文献   

5.
Biological rhythms have been observed in practically all groups of laboratory mammals and at every level of physiological and behavioural organization. Biological rhythms are classified according to their period as ultradian (less than 24 h), circadian (approximately 24 h), infradian (greater than 24 h), and seasonal or circannual rhythms (approximately 1 year). This review outlines what is known about the neurobiology of biological rhythms in mammals and describes the hierarchical order in which ultradian, circadian and infradian rhythms are related to each other. The article does not attempt to catalogue every physiological variable showing rhythmical fluctuations in laboratory mammals. Rather, it focuses on the basic concepts of circadian rhythms and recent advances made in our understanding of the physiology of the internal clock controlling circadian and other biological rhythms.  相似文献   

6.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

7.
In order to study a possible direct action of LH-RH analogs on the pituitary lactotrophs, we investigated the effect of long-term in vivo pretreatment with D-Trp-6-LH-RH on in vitro secretion of PRL and luteinizing hormone (LH) by the pituitary glands from male and female rats. In vivo pretreatment with D-Trp-6-LH-RH (50 micrograms/day, SC) for 15 days greatly reduced basal in vitro PRL release (p less than 0.01) in female, but not in male pituitary glands. TRH-stimulated PRL secretion was not affected by pretreatment with D-Trp-6-LH-RH in female rats, but was impaired in male pituitaries. Acute in vitro exposure to D-Trp-6-LH-RH did not modify PRL secretion by female pituitary glands pretreated in vivo with the analog. However, this same in vivo pretreatment greatly decreased PRL release from male pituitaries (p less than 0.01). Basal in vitro LH release by male pituitary glands was partially lowered by in vivo pretreatment with D-Trp-6-LH-RH, as compared to controls (p less than 0.01), while basal LH release in female pituitaries remained at control levels. Finally, D-Trp-6-LH-RH-induced stimulation of in vitro LH release was severely impaired in female pituitaries (p less than 0.01) but only slightly reduced in the males.  相似文献   

8.
OBJECTIVE : The aim of the present report was to determine the possible modifications in rat pituitary LH isoforms induced by the spontaneous increase in GnRH at the time of the preovulatory gonadotropin surge. DESIGN: The changes in the quantitative pattern and relative proportions of pituitary LH isoforms in rats on the afternoon of proestrus [INT-P(PM)] were evaluated by comparison with other stages of the estrous cycle (diestrus-1, diestrus-2 and estrus) and ovariectomized (7 and 30 days earlier) animals killed in the morning and in the afternoon of the corresponding day. METHODS: The chromatofocusing technique (pH gradient 11.00-7.00) was used to analyze the different molecular species of intrapituitary LH. RESULTS: Pituitary LH from diestrus-1 animals, considered as a baseline pattern in the cycling rat, eluted as 11 isoforms distributed in pH 9.62-8.82, with greater percentages in pH 9.50-9.01. Except for INT-P(PM) pituitaries, there were no major differences in the pattern of LH heterogeneity in the pituitaries of rats from various stages of the cycle. In contrast, significant changes in the charge distribution and relative abundance of LH isoforms were found in the pituitaries from INT-P(PM) rats. INT-P(PM) pituitaries resolved in 16 LH isoforms with a significant shift to less alkaline pIs (pH 9.62-8.11), the more abundant being focused within pH 9.00-8.51. Conversely, a shift to more basic isoforms resulted after ovariectomy, leading to the accumulation of less mature isoforms in the gonadotrope. CONCLUSIONS: Presumably, the use of animals on INT-P(PM), at the time of the preovulatory LH surge, made it possible to discriminate such changes in LH isoform distribution. That GnRH, released in association with the rising phase of the LH surge, induces these changes in pituitary LH polymorphism appears to be the most likely possibility. In a previous study we demonstrated that GnRH stimulated galactose incorporation into LH in vitro. In the case of pituitaries from INT-P(PM) rats, the shift toward less alkaline isoforms could potentially result from sialylation of increased terminal galactose.  相似文献   

9.
In this study, we show temporal organization of activity patterns in larger temporal series recording. The objective of this study was to determine the temporal pattern of the rest-activity rhythm in manatee (Trichechus manatus manatus) in captivity. Activity recordings were programmed from August 2010 to September 2011 with actimetry devices, and behavior recordings were conducted in dry and rainy seasons. We showed that the marine manatee presents a complex temporal organization, in which the rest-activity rhythm comprises several frequencies with a predominant circadian component and multiple ultradian components. Our results indicate that the animals were more active during the day with respect to the night. The temporal organization of this cycle entails multiple frequencies that include ultradian rhythms, which may be expressions generated by physiological needs, such as food availability and thermoregulatory requirements. These patterns should be taken into consideration for future studies of biological rhythms in manatee.  相似文献   

10.
K A Elias  C A Blake 《Life sciences》1980,26(10):749-755
Experiments were undertaken to investigate if changes occur at the level of the anterior pituitary gland to result in selective follicle-stimulating hormone (FSH) release during late proestrus in the cyclic rat. At 1200 h proestrus, prior to the preovulatory luteinizing hormone (LH) surge in serum and the accompanying first phase of FSH release, serum LH and FSH concentrations were low. At 2400 h proestrus, after the LH surge and shortly after the onset of the second or selective phase of FSH release, serum LH was low, serum FSH was elevated about 4-fold, pituitary LH concentration was decreased about one-half and pituitary FSH concentration was not significantly decreased. During a two hour invitro incubation, pituitaries collected at 2400 h released nearly two-thirds less LH and 2.5 times more FSH than did pituitaries collected at 1200 h. Addition of luteinizing hormone releasing hormone (LHRH) to the incubations caused increased pituitary LH and FSH release. However, the LH and FSH increments due to LHRH in the 2400 h pituitaries were not different from those in the 1200 h pituitaries. The results indicate that a change occurs in the rat anterior pituitary gland during the period of the LH surge and first phase of FSH release which results in a selective increase in the basal FSH secretory rate. It is suggested that this change is primarily responsible for the selective increase in serum FSH which occurs during the second phase of FSH release.  相似文献   

11.
This study was undertaken to examine the consequences of prolonged removal of the pituitary from hypothalamic control and of estrogen-induced pituitary tumors on the susceptibility of GH and TSH release to regulatory influences of dopamine (DA). Adult male Fischer 344 rats were treated with transplants of female anterior pituitaries under the renal capsule or with Silastic capsules containing diethylstilbestrol (DES). Capsules with DES remained in place until the animals were killed (DES-IN) or were removed 7 weeks prior to sacrificing the rats (DES-OUT). Both pituitary grafts and DES caused the expected elevation in plasma prolactin and suppression of plasma GH and TSH levels. Basal GH release in vitro was not affected by exposure to DES in vivo but was reduced by transplantation of the pituitary to an ectopic site. Treatment with DA in vitro suppressed GH release from the in situ pituitaries of control, DES treated and grafted rats but increased GH release from the ectopic pituitaries. Basal release of TSH in vitro was reduced in the pituitaries of DES-IN and DES-OUT animals but was not affected by the presence of pituitary transplants. No detectable TSH was released from the ectopic pituitaries in the absence of DA. DA decreased TSH release from the pituitaries of control, DES-OUT and DES-IN rats but not from the in situ pituitaries of grafted rats. In contrast, DA produced an increase in TSH release from ectopic pituitaries. These results demonstrate that somatotrophs and thyrotrophs removed from the hypothalamic influences on subjected to direct and indirect effects of DES exhibit abnormal responses to DA. We suspect that prolonged absence of normal pituitary control leads to the development of regulatory mechanism of pituitary hormone release which are different from those operating under physiological conditions.  相似文献   

12.
A single injection of estradiol valerate (EV) induces, after a lag period of 4-6 wk, a chronic anovulatory polycystic ovarian (PCO) condition in adult rats. This condition is associated with a selective compromise of luteinizing hormone (LH) release and/or synthesis reflected in low basal serum LH concentrations, decreased pituitary content of LH, and decreased gonadotropin-releasing hormone (GnRH)-stimulated LH secretion. The present study was undertaken to determine to what extent the aberrant LH release in rats with PCO could be related to alterations in pituitary content of GnRH receptors. Pituitary GnRH-receptor content was assessed by the evaluation of saturation binding of a GnRH analog, [125I]-D-Ala6-des-Gly10-GnRH, to pituitary membrane preparations. The receptor content of pituitaries from rats with PCO was compared to that obtained from intact animals at estrus and diestrus. Receptor levels in ovariectomized normal rats and rats with PCO were also assessed. The pituitary GnRH receptor content in PCO rats was similar to that observed in normal controls at estrus and was significantly lower than that for rats at diestrus. Although a twofold increase in pituitary GnRH receptor content was observed at 28 days following the castration of control rats, GnRH receptor content in the pituitaries of PCO rats, at 28 days following ovariectomy, remained unchanged. Although, castration-induced elevations in mean serum LH and follicle-stimulating hormone (FSH) concentrations were observed in both the PCO and control animals, the rise in both gonadotropins was significantly attenuated in the PCO-castrates when compared to the ovariectomized controls. Since GnRH is a major factor in the regulation of pituitary GnRH receptor content, these findings suggest that hypothalamic GnRH release is impaired in rats with PCO and that this impairment is independent of any influences from the polycystic ovaries.  相似文献   

13.
The present experiments were designed to study the interaction between estradiol benzoate (EB) and thyroxine (T4) given in vivo on the responsiveness of pituitary luteinizing hormone (LH) to gonadotropin-releasing hormone (GnRH) and the release of GnRH in vitro. Ovariectomized-thyroidectomized (Ovx-Tx) rats were injected s.c. with saline or T4 (2 micrograms/100 g b.wt), and oil or EB (0.1 microgram) once daily for 40 days following a 2 x 2 factorial design. All animals were then decapitated and blood samples were collected. Anterior pituitaries (APs) were incubated in vitro with and without 0.1 ng GnRH at 37 degrees C for 4 h. Mediobasal hypothalami (MBHs) were excised and then incubated with and without APs from Ovx donor rats. Concentrations of LH and GnRH in the medium and that of LH in the serum were measured by radioimmunoassay. The LH level in media containing MBHs and donor APs was used as the index of bioactive GnRH release. In Ovx-Tx rats, T4 injections reduced the serum LH concentration, the pituitary LH response to GnRH, and the bioactive as well as the immunoreactive GnRH release. The serum LH levels and the spontaneous as well as the GnRH-stimulated release of LH in vitro were suppressed in Ovx-Tx rats following administration of EB. By contrast, the serum LH concentration, as well as pituitary LH response to GnRH and GnRH release in vitro, were higher in the group treated with both T4 and EB than in that treated with saline and EB. These results suggest that the differential changes in the LH secretion after thyroidectomy of Ovx versus non-Ovx rats are due to an antagonistic effect between T4 and estrogen on the response of pituitary LH to GnRH, and the release of GnRH.  相似文献   

14.
To determine if the inhibitory effects of hyperprolactinemia on sexual arousal and serum LH levels could be dissociated from those on erectile function, copulatory behavior was examined in pituitary-grafted, adrenalectomized male rats that had been castrated and given 20mm subcutaneous testosterone implants. Whereas transplantation of three pituitaries under the kidney capsules inhibited mounting rates in intact animals, pituitary grafting did not significantly reduce mounting rates in the adrenalectomized group beyond the effect of adrenalectomy alone. In contrast, the effects of pituitary grafting on erectile function were enhanced in the adrenalectomized animals. Hyperprolactinemia also caused a significant reduction in serum LH, but only in the intact animals. These results suggest that: 1. the effects of hyperprolactinemia on erectile function occur independently from those on sexual arousal, and 2. the inhibitory effects of hyperprolactinemia on sexual arousal are linked to the effects of hyperprolactinemia on LH release.  相似文献   

15.
Many biological processes are driven by biological clocks that, depending on the frequency they generate, are classified into ultradian, circadian and infradian oscillators. In virtually all light-sensitive organisms from cyanobacteria to humans, a circadian timing system adapts cyclic physiology to geophysical time. Recent evidence suggests that even in mammals circadian oscillators function in a cell-autonomous manner. In yeast, an ultradian oscillator regulates cyclic respiratory activity and global gene expression. Circadian oscillators and the ultradian yeast respiratory clock share at least four properties: they follow limit-cycle kinetics, interweave with cellular metabolism, are temperature-compensated and influence the cell division clock.  相似文献   

16.
Rhythmic changes of several histophysiological parameters of the thyroid gland was studied in 144 A/He mice of three age groups: young immature, mature adults and ageing animals. The multicomponent nature of the rhythmic changes was found for each index; it included the circadian component, as well as infradian oscillations. The leading role of the circadian component in the establishment of the biorhythms of the organ functioning was shown, whereas ontogenetic changes were chiefly associated with the ultradian components' attenuation.  相似文献   

17.
Nitric oxide (NO) synthase (NOS) has been found in the gonadotrophs and folliculo-stellate cells of the anterior pituitary. Previous observations from our laboratory suggest that NO may play a role in regulating gonadotropin secretion. Because estrogen secretion by the ovary can influence gonadotropin secretion, we investigated the hypothesis that chronic in vivo NO deficiency has a direct estrogen-independent effect on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. Chronic NO deficiency was induced by adding an NOS inhibitor, N-nitro-L-arginine (L-NNA, 0.6 g/l) to the drinking water of ovariectomized (OVX) rats. The control OVX rats were untreated. After 6-8 weeks, the animals were sacrificed, and the pituitaries were removed and perfused continuously for 4 hr in the presence of pulsatile gonadotropin-releasing hormone (GnRH, 500 ng/pulse) every 30 min. S-Nitroso-L-acetyl penicillamine (SNAP, an NO donor, 0.1 mM) or L-nitro-arginine methyl ester (L-NAME, an NOS inhibitor, 0.1 mM) was added to the media and perfusate samples were collected at 10-min intervals. GnRH-stimulated LH and FSH levels were significantly lower in pituitaries from OVX/NO-deficient pituitaries compared with pituitaries from the OVX control group. The addition of SNAP significantly decreased LH and FSH secretion by pituitaries from OVX control animals, but significantly increased their secretion by pituitaries from the OVX/NO-deficient animals. L-NAME also suppressed LH and FSH secretion by pituitaries from the OVX control animals and stimulated their release by pituitaries from the NO-deficient/OVX animals. Immunohistochemistry of frontal sections through the hypothalamus demonstrated that OVX/NO deficiency is associated with increased GnRH in the median eminence. We conclude that NO has a chronic stimulatory effect on LH and FSH release and the subsequent altered secretory responsiveness to NO agonist or antagonist is the result of chronic NO suppression.  相似文献   

18.
Site of feedback control of FSH secretion in the male rat was studied by measuring changes in serum LH, FSH and hypothalamic LH-RH by radioimmunoassay in rats after castration and after 500 rad X-irradiation to the testis. The rise in serum LH and FSH in castrated animals was associated with a significant fall in hypothalamic LH-RH 16 and 24 days after castration. Serum FSH rose significantly after X-irradiation without a significant change in serum LH or hypothalamic LH-RH content up to 30 days after irradiation. When pituitary halves from X-irradiated animals were incubated in vitro in the presence or absence of synthetic LH-RH, there was a significant rise in FSH (but not LH) released in the incubation medium in the absence of added LH-RH. The response of the pituitaries to LH-RH was, however, not different between control and irradiated rats. It is concluded that the testicular FSH-inhibitory substance acts predominantly at the pituitary gland on the LH-RH independent release of FSH.  相似文献   

19.
The purpose of this study was to investigate whether melanin-concentrating hormone (MCH) acts directly on the median eminence and on the anterior pituitary of female rats regulating LHRH and gonadotropin release. In addition, immunohistochemistry was used to examine the density and distribution of MCH-immunoreactive fibers in the median eminence of proestrous rats. MCH-immunoreactive fibers were found in both the internal and external layers of the median eminence and in close association with hypophysial portal vessels. In the first series of in vitro experiments, median eminences and anterior pituitaries were incubated in Krebs-Ringer bicarbonate buffer containing two MCH concentrations (10(-10) and 10(-8) M). The lowest MCH concentration (10(-10) M) increased (P < 0.01) LHRH release only from proestrous median eminences. Anterior pituitaries incubated with both MCH concentrations also showed that 10(-10) M MCH increased gonadotropin release only from proestrous pituitaries. In the second series of experiments, median eminences and pituitaries from proestrous rats were incubated with graded concentrations of MCH. MCH (10(-10) and 10(-9) M) increased (P < 0.01) LHRH release from the median eminence, and only 10(-10) M MCH increased (P < 0.01) LH and FSH release from the anterior pituitary. The effect of MCH on the stimulation of both gonadotropins from proestrous pituitaries was similar to the effect produced by LHRH. Simultaneous incubation of pituitaries with MCH and LHRH did not modify LH but increased the FSH release induced by LHRH. The present results suggest that MCH could be involved in the regulation of preovulatory gonadotropin secretion.  相似文献   

20.
Circadian stage-dependent effects characterize synthetic ACTH 1-17 preparation (HOE 433 = Synchrodyn 1-17), tested in mice and rats, with reference notably to corticosterone and aldosterone production in vitro and to the behavior of rhythms in these two corticoids as an aspect of the adrenal cortical pacemaker of the circadian system. The possibility to advance or delay the rhythm in serum corticosterone by ACTH 1-17 also is demonstrated, as is a differential behavior of the circadian rhythm in serum aldosterone. Differences in timing of circadian corticosterone and aldosterone responses also are described and await further scrutiny for ultradian and infradian (notably circannual) modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号