首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fractalkine (FKN, CX3CL1) is a regulator of leukocyte recruitment and adhesion, and controls leukocyte migration on endothelial cells (ECs). We show that FKN triggers different effects in CD16+ and CD16 monocytes, the two major subsets of human monocytes. In the presence of ECs a lipopolysaccharide (LPS)-stimulus led to a significant increase in tumor necrosis factor (TNF)-secretion by CD16+ monocytes, which depends on the interaction of CX3CR1 expressed on CD16+ monocytes with endothelial FKN. Soluble FKN that was efficiently shed from the surface of LPS-activated ECs in response to binding of CD16+ monocytes to ECs, diminished monocyte adhesion in down-regulating CX3CR1 expression on the surface of CD16+ monocytes resulting in decreased TNF-secretion. In this process the TNF-converting enzyme (TACE) acts as a central player regulating FKN-shedding and TNFα-release through CD16+ monocytes interacting with ECs. Thus, the release and local accumulation of sFKN represents a mechanism that limits the inflammatory potential of CD16+ monocytes by impairing their interaction with ECs during the initial phase of an immune response to LPS. This regulatory process represents a potential target for therapeutic approaches to modulate the inflammatory response to bacterial components.  相似文献   

2.
The origins of dendritic cells (DCs) are poorly understood. In inflammation, DCs can arise from blood monocytes (M(O)s), but their steady-state origin may differ, as shown for Langerhans cells. Two main subsets of M(O)s, defined by expression of different chemokine receptors, CCR2 and CX(3)CR1, have been described in mice and humans. Recent studies have identified the inflammatory function of CCR2(high)CX(3)CR1(low) M(O)s but have not defined unambiguously the origin and fate of CCR2(low)CX(3)CR1(high) cells. In this study, we show that rat M(O)s can also be divided into CCR2(high)CX(3)CR1(low)(CD43(low)) and CCR2(low)CX(3)CR1(high)(CD43(high)) subsets with distinct migratory properties in vivo. Using whole body perfusion to obtain M(O)s, including the marginating pool, we show by adoptive transfer that CD43(low) M(O)s can differentiate into CD43(high) M(O)s in blood without cell division. By adoptive transfer of blood M(O)s followed by collection of pseudoafferent lymph, we show for the first time that a small proportion of intestinal lymph DCs are derived from CCR2(low)CX(3)CR1(high)(CD43(high)) blood M(O)s in vivo under steady-state conditions. This study confirms one of the possible origins of CCR2(low)CX(3)CR1(high) blood M(O)s and indicate that they may contribute to migratory intestinal DCs in vivo in the absence of inflammatory stimuli.  相似文献   

3.
Modification of vaccine carriers by decoration with glycans can enhance binding to and even targeting of dendritic cells (DCs), thus augmenting vaccine efficacy. To find a specific glycan-“vector” it is necessary to know glycan-binding profile of DCs. This task is not trivial; the small number of circulating blood DCs available for isolation hinders screening and therefore advancement of the profiling. It would be more convenient to employ long-term cell cultures or even primary DCs from murine blood. We therefore examined whether THP-1 (human monocyte cell line) and DC2.4 (immature murine DC-like cell line) could serve as a model for human DCs. These cells were probed with a set of glycans previously identified as binding to circulating human CD14low/-CD16+CD83+ DCs. In addition, we tested a subpopulation of murine CD14low/-CD80+СD11c+CD16+ cells reported as relating to the human CD14low/-CD16+CD83+ cells. Manα1–3(Manα1–6)Manβ1–4GlcNAcβ1–4GlcNAcβ bound to both the cell lines and the murine CD14low/-CD80+СD11c+CD16+ cells. Primary cells, but not the cell cultures, were capable of binding GalNAcα1–3Galβ (Adi), the most potent ligand for binding to human circulating DCs. In conclusion, not one of the studied cell lines proved an adequate model for DCs processes involving lectin binding. Although the glycan-binding profile of BYRB-Rb (8.17)1Iem mouse DCs could prove useful for assessing human DCs, important glycan interactions were missing, a situation which was aggravated when employing cells from the BALB/c strain. Accordingly, one must treat results from murine work with caution when seeking vaccine targeting of human DCs, and certainly should avoid cell lines such as THP-1 and DC2.4 cells.  相似文献   

4.
5.
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.  相似文献   

6.
Recent genetic evidence has implicated the adhesive chemokine CX3CL1 and its leukocyte receptor CX3CR1 in atherosclerosis. We previously proposed a mechanism involving foam cell anchorage to vascular smooth muscle cells because: 1) CX3CL1 and CX3CR1 are expressed by both cell types in mouse and human atherosclerotic lesions; 2) foam cells are reduced in lesions in cx3cr1(-/-)apoE(-/-) mice; and 3) proatherogenic lipids (oxidized low density lipoprotein [oxLDL] and oxidized linoleic acid derivatives) induce adhesion of primary human macrophages to primary human coronary artery smooth muscle cells (CASMCs) in vitro in a macrophage CX3CR1-dependent manner. Here we analyze this concept further by testing whether atherogenic lipids regulate expression and function of CX3CL1 and CX3CR1 on CASMCs. We found that both oxLDL and oxidized linoleic acid derivatives indirectly up-regulated CASMC CX3CL1 at both the protein and mRNA levels through an autocrine feedback loop involving tumor necrosis factor alpha production and NF-kappaB signaling. Oxidized lipids also up-regulated CASMC CX3CR1 but through a different mechanism. Oxidized lipid stimulation also increased adhesion of macrophages to CASMCs when CASMCs were stimulated prior to assay, and a synergistic pro-adhesive effect was observed when both cell types were prestimulated. Selective inhibition with a CX3CL1-specific blocking antibody indicated that adhesion was strongly CASMC CX3CL1-dependent. These findings support the hypothesis that CX3CR1 and CX3CL1 mediate heterotypic anchorage of foam cells to CASMCs in the context of atherosclerosis and suggest that this chemokine/chemokine receptor pair may be considered as a pro-inflammatory target for therapeutic intervention in atherosclerotic cardiovascular disease.  相似文献   

7.
The chemokine receptor CX3CR1 is thought to regulate inflammation in part by modulating NK cell adhesion, migration, and killing in response to its ligand CX3CL1 (fractalkine). Recent reports indicate that IL-15, which is essential for development and survival of NK cells, may negatively regulate CX3CR1 expression, however, the effects of the cytokine on human NK cell CX3CR1 expression and function have not been fully delineated. Here, we demonstrate that short term culture in IL-15 decreases surface expression of CX3CR1 on cultured CD56+ cells from human blood resulting in diminished chemotaxis and calcium flux in response to CX3CL1. Cells cultured long term in IL-15 (more than five days) completely lost surface expression as well as mRNA and protein for CX3CR1. The effect was specific since mRNA for CCR5 was increased and mRNA for CXCR4 was unchanged in these cells by IL-15. Thus, exogenous IL-15 is a negative regulator of CX3CR1 expression and function in human CD56+ NK cells. The data imply that the use of IL-15 alone to expand NK cells ex vivo for immunotherapy may produce cells impaired in their ability to traffic to sites of inflammation.  相似文献   

8.
The transmembrane chemokine CX3CL1 and its receptor CX3CR1 are thought to be involved in the trafficking of immune cells during an immune response and in the pathology of various human diseases including cancer. However, little is known about the expression and function of CX3CR1 in human glioma-infiltrating microglia/macrophages (GIMs), representing the major cellular stroma component of highly malignant gliomas. Here, we show that CX3CR1 is overexpressed at both the mRNA and protein level in solid human astrocytomas of different malignancy grades and in glioblastomas. CX3CR1 was localized in ionized calcium-binding adapter molecule 1 (Iba1) and CD11b/c positive GIMs in situ as shown by fluorescence microscopy. In accordance with this, freshly isolated human GIM-enriched fractions separated by CD11b MACS technology displayed high Iba1 and CX3CR1 mRNA expression levels in vitro. Moreover, cultured human GIMs responded to CX3CL1-triggered activation of CX3CR1 with adhesion and migration in vitro. Besides an increase in motility, CX3CL1 also enhanced expression of matrix metalloproteases 2, 9, and 14 in GIM fractions in vitro. These data indicate that the CX3CL1/CX3CR1 system has a crucial tumor-promoting role in human glioblastomas via its impact on glioma-infiltrating immune subsets.  相似文献   

9.
Adipose tissue macrophages (ATMs) accumulate in fat during obesity and resemble foam cells in atherosclerotic lesions, suggesting that common mechanisms underlie both inflammatory conditions. CX(3)CR1 and its ligand fractalkine/CX(3)CL1 contribute to macrophage recruitment and inflammation in atherosclerosis, but their role in obesity-induced adipose tissue inflammation is unknown. Therefore, we tested the hypothesis that CX(3)CR1 regulates ATM trafficking to epididymal fat and contributes to the development of adipose tissue inflammation during diet-induced obesity. Cx(3)cl1 and Cx(3)cr1 expression was induced specifically in epididymal fat from mice fed a high-fat diet (HFD). CX(3)CR1 was detected on multiple myeloid cells within epididymal fat from obese mice. To test the requirement of CX(3)CR1 for ATM trafficking and obesity-induced inflammation, Cx(3)cr1(+/GFP) and Cx(3)cr1(GFP/GFP) mice were fed a HFD. Ly-6c(Low) monocytes were reduced in lean Cx(3)cr1(GFP/GFP) mice; however, HFD-induced monocytosis was comparable between strains. Total ATM content, the ratio of type 1 (CD11c(+)) to type 2 (CD206(+)) ATMs, expression of inflammatory markers, and T-cell content were similar in epididymal fat from obese Cx(3)cr1(+/GFP) and Cx(3)cr1(GFP/GFP) mice. Cx(3)cr1 deficiency did not prevent the development of obesity-induced insulin resistance or hepatic steatosis. In summary, our data indicate that CX(3)CR1 is not required for the recruitment or retention of ATMs in epididymal adipose tissue of mice with HFD-induced obesity even though CX(3)CR1 promotes foam cell formation. This highlights an important point of divergence between the mechanisms regulating monocyte trafficking to fat with obesity and those that contribute to foam cell formation in atherogenesis.  相似文献   

10.
11.

Background

Dendritic cells (DCs) are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS) induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN) partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown.

Results

We demonstrated that IFN-alpha (IFNα)-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner.

Conclusions

The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.  相似文献   

12.
There are two major myeloid pulmonary dendritic cell (DC) populations: CD103+ DCs and CD11bhigh DCs. In this study, we investigated in detail the origins of both myeloid DC pools using multiple experimental approaches. We show that, in resting lung, Ly-6ChighCCR2high monocytes repopulated CD103+ DCs using a CCR2-dependent mechanism, and these DCs preferentially retained residual CCR2 in the lung, whereas, conversely, Ly-6ClowCCR2low monocytes repopulated CD11bhigh DCs. CX3CR1 was required to generate normal numbers of pulmonary CD11bhigh DCs, possibly because Ly-6Clow monocytes in the circulation, which normally express high levels of CX3CR1, failed to express bcl-2 and may have diminished survival in the circulation in the absence of CX3CR1. Overall, these data demonstrate that the two circulating subsets of monocytes give rise to distinct tissue DC populations.  相似文献   

13.
To investigate vasoactive intestinal peptide (VIP) effect on dendritic cells (DCs) to gastric cancer (GC) cells in vitro involving immune escape mechanism of GC, we observed DC-SIGN (CD209), Ii chain (CD74), MHC-II and collaborative costimulatory molecules CD40, CD80, CD86 expressions in DCs, which co-incubated with GC cells and VIP. Human umbilical cord blood (HUCB) were obtained from healthy volunteers and human mononuclear cells were isolated from HUCB by density gradient centrifugation. Monocytes were purified from mononuclear cells using adherence separation and were treated with recombinant human granulocyte–macrophage colony-stimulating factor (rh GM-CSF), recombinant human interleukin-4 (rh IL-4) to induce immature monocyte-derived DCs (moDCs). Recombinant human tumor necrosis factor (rh TNF-α) was added on the 5th day to induce mature moDCs. Mature moDCs were collected on the 10th day, and co-incubated with MKN45, VIP and mannan, respectively. CD1a and CD83 expressions were detected by immunocytochemistry. VIP, VPAC1, CD209, CD74, MHC-II, CD40, CD80 and CD86 expressions of DCs were detected by immunocytochemistry and RT-PCR. VPAC1 was detected in DCs, but VIP did not detected in DCs. When DCs were co-incubated with MKN45 cells, MKN45 cells could inhibit DCs’ expressions of CD209, CD74, MHC-II, CD40, CD80 and CD86 in the mRNA and protein levels (p < 0.05), and VIP could further inhibit CD209, CD74, MHC-II, CD40, CD80 and CD86 expressions of DCs in the mRNA and protein levels (p < 0.05). The inhibition could not been reversed by mannan. CD209 was positively correlated with CD74, MHC-II, CD40, CD80 and CD86 in mRNA level and protein expression intensity in DCs. VIP could inhibit CD209, CD74, MHC-II, CD40, CD80 and CD86 expressions of DCs, and inhibit antigen-presenting ability of DCs. VIP may promote immune escape of GC by inhibiting CD209, CD74, MHC-II, CD40, CD80 and CD86 expressions of DCs.  相似文献   

14.
TNFα-matured dendritic cells (DCs) pulsed with tumor antigens are being evaluated as cancer vaccines. It has been shown that DCs produce IL12 during a limited time span and subsequently enter a stage of IL12 exhaustion. If DCs are generated ex vivo, the patient could receive IL12-exhausted DCs which may be detrimental for stimulating anti-tumor Th1 responses. Furthermore, many cancer patients exhibit a cytokine profile skewed toward IL10 and TGFβ. This immunological profile, called the Tr1/Th3 response, is associated with the presence of regulatory T-cells. Tr1/Th3 responses potently inhibit DC maturation, thereby regulating Th1 responses. In the present study, we produced genetically engineered DCs that continuously express Th1-related cytokines such as IL12, and resist negative signals from Tr1/Th3-dominated bladder carcinoma cells. Human immature DCs were genetically engineered by adenoviral vectors to express CD40L, or were treated with TNFα as a positive control for maturation. The expression of different Th1/Th3 and inflammatory cytokines was monitored. IL12 and IFNγ were expressed by CD40L-engineered DCs, while TNFα-matured DCs lacked IFNγ and exhibited low IL12 expression. The addition of recombinant IL10 to genetically engineered DCs did not abolish their Th1 profile. Likewise, coculture with tumor cell lines expressing TGFβ with or without recombinant IL10 did not revert to the engineered DCs. We further demonstrate that the resistance of CD40L-expressing DCs to TGFβ and IL10 may be due to decreased levels of TGFβ and IL10 receptors. Thus, CD40L-engineered DCs are robust Th1-promoting ones that are resistant to Tr1/Th3-signaling via IL10 and TGFβ.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) infection of the human thymus results in depletion of CD4-bearing thymocytes. This depletion is initially manifested in the immature CD4+/CD8+ thymocyte subset. To determine cellular factors involved in HIV infection in the thymus, we examined the expression of the recently identified viral coreceptor, CXCR4, on fresh human thymocytes and on human cells from SCID-hu (Thy/Liv) mice. CXCR4 is a member of the chemokine receptor family which is required along with CD4 for entry into the cell of syncytium-inducing (SI) HIV-1 strains. Our analyses show that CXCR4 expression is modulated during T-lymphoid differentiation such that immature thymocytes display an increased frequency and higher surface density of the coreceptor than do more mature cells. In addition, using an SI strain of HIV-1 which directs expression of a reporter protein on the surface of infected cells, we have found that the immature CD4+/CD8+ thymocytes that express the highest levels of both CD4 and CXCR4 are the cells that are preferentially infected and depleted by the virus in vitro. Thus, high levels of both primary receptor and coreceptor may allow efficient infection of the thymus by certain HIV-1 strains. This in part may explain the rapid disease progression seen in some HIV-infected children, where the thymus is actively involved in the production of new T lymphocytes.  相似文献   

16.
The ability of human dendritic cells (DC) to uptake synthetic micro- and nanosized particles was assessed by flow cytometry and fluorescent microscopy. DCs were differentiated in vitro from blood monocytes in the presence of recombinant cytokines. Further maturation of DC in culture after the addition of maturation factors resulted in the increased expression of HLA-DR and co-stimulatory molecules CD80, CD83, CD86, in comparison with immature DC. Active internalization of Fluoresbrite-YG fluorescent microbeads (0.2 μm) was noted for immature but not mature DCs. The decrease of endocytic activity after DC maturation correlated with the reduced expression of CD209, the surface membrane receptor participating in phagocytosis. Unlike microparticles, the uptake of nanoscale Quantum dots-655 did not depend on the stage of DC maturation and probably was mediated by a different endocytosis mechanism.  相似文献   

17.
18.
Allergic asthma is a T helper type 2 (T(H)2)-dominated disease of the lung. In people with asthma, a fraction of CD4(+) T cells express the CX3CL1 receptor, CX3CR1, and CX3CL1 expression is increased in airway smooth muscle, lung endothelium and epithelium upon allergen challenge. Here we found that untreated CX3CR1-deficient mice or wild-type (WT) mice treated with CX3CR1-blocking reagents show reduced lung disease upon allergen sensitization and challenge. Transfer of WT CD4(+) T cells into CX3CR1-deficient mice restored the cardinal features of asthma, and CX3CR1-blocking reagents prevented airway inflammation in CX3CR1-deficient recipients injected with WT T(H)2 cells. We found that CX3CR1 signaling promoted T(H)2 survival in the inflamed lungs, and injection of B cell leukemia/lymphoma-2 protein (BCl-2)-transduced CX3CR1-deficient T(H)2 cells into CX3CR1-deficient mice restored asthma. CX3CR1-induced survival was also observed for T(H)1 cells upon airway inflammation but not under homeostatic conditions or upon peripheral inflammation. Therefore, CX3CR1 and CX3CL1 may represent attractive therapeutic targets in asthma.  相似文献   

19.
20.
H Zhang  C Guo  D Wu  A Zhang  T Gu  L Wang  C Wang 《PloS one》2012,7(7):e41147
Hydrogen sulfide, as a novel gaseous mediator, has been suggested to play a key role in atherogenesis. However, the precise mechanisms by which H(2)S affects atherosclerosis remain unclear. Therefore, the present study aimed to investigate the potential role of H(2)S in atherosclerosis and the underlying mechanism with respect to chemokines (CCL2, CCL5 and CX3CL1) and chemokine receptors (CCR2, CCR5, and CX3CR1) in macrophages. Mouse macrophage cell line RAW 264.7 or mouse peritoneal macrophages were pre-incubated with saline or NaHS (50 μM, 100 μM, 200 μM), an H(2)S donor, and then stimulated with interferon-γ (IFN-γ) or lipopolysaccharide (LPS). It was found that NaHS dose-dependently inhibited IFN-γ or LPS-induced CX3CR1 and CX3CL1 expression, as well as CX3CR1-mediated chemotaxis in macrophages. Overexpression of cystathionine γ-lyase (CSE), an enzyme that catalyzes H(2)S biosynthesis resulted in a significant reduction in CX3CR1 and CX3CL1 expression as well as CX3CR1-mediated chemotaxis in stimulated macrophages. The inhibitory effect of H(2)S on CX3CR1 and CX3CL1 expression was mediated by modulation of proliferators-activated receptor-γ (PPAR-γ) and NF-κB pathway. Furthermore, male apoE(-/-) mice were fed a high-fat diet and then randomly given NaHS (1 mg/kg, i.p., daily) or DL-propargylglycine (PAG, 10 mg/kg, i.p., daily). NaHS significantly inhibited aortic CX3CR1 and CX3CL1 expression and impeded aortic plaque development. NaHS had a better anti-atherogenic benefit when it was applied at the early stage of atherosclerosis. However, inhibition of H(2)S formation by PAG increased aortic CX3CR1 and CX3CL1 expression and exacerbated the extent of atherosclerosis. In addition, H(2)S had minimal effect on the expression of CCL2, CCL5, CCR2 and CCR5 in vitro and in vivo. In conclusion, these data indicate that H(2)S hampers the progression of atherosclerosis in fat-fed apoE(-/-) mice and downregulates CX3CR1 and CX3CL1 expression on macrophages and in lesion plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号