首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effects of oral contraceptives (OC) on glucose flux and whole body substrate oxidation rates during rest (90 min) and two exercise intensities [60-min leg ergometer cycling at 45 and 65% peak O(2) uptake (Vo(2 peak))]. Eight healthy, eumenorrheic women were studied during the follicular and luteal phases before OC and the inactive and high-dose phases after 4 mo of a low-dose, triphasic OC. Subjects were studied in the morning 3 h after a standardized (308 kcal) breakfast. There were significant reductions in glucose rates of appearance and disappearance during exercise of both intensities with OC but not rest. There were no phase effects on substrate oxidation during rest or exercise. These results are interpreted to mean that, in women fed several hours before study, 1) OC decreases glucose flux, but not overall carbohydrate and lipid oxidation rates during moderate-intensity exercise; and 2) synthetic ovarian hormone analogs in the doses contained in OC have greater metabolic effects on glucose metabolism during exercise than do endogenous ovarian hormones.  相似文献   

2.
We evaluated the hypothesis that fatty acid reesterification would be increased during rest and exercise in the midluteal menstrual cycle phase and during oral contraceptive use, when ovarian hormone concentrations are high, compared with the early follicular phase. Subjects were eight moderately active, weight-stable, eumenorrheic women (24.8 +/- 1.2 yr, peak oxygen consumption = 42.0 +/- 2.3 ml.kg(-1).min(-1)) who had not taken oral contraceptives for at least 6 mo. Plasma free fatty acid (FFA) kinetics were assessed in the 3-h postprandial state by continuous infusion of [1-(13)C]palmitate and [1,1,2,3,3-(2)H]glycerol during 90 min of rest and 60 min of exercise at 45% and 65% peak oxygen consumption in the early follicular and midluteal menstrual cycle phases and during the inactive- and high-dose phases following 4 mo of oral contraceptive use. Plasma FFA rates of appearance, disappearance, and oxidation increased significantly from rest to exercise with no differences noted between menstrual cycle or oral contraceptive phases or exercise intensities. Compared with either menstrual cycle phase, oral contraceptive use resulted in an increase in plasma-derived fatty acid reesterification and a decrease in the proportion of plasma FFA rate of disappearance that was oxidized at rest and during exercise. Endogenous and exogenous synthetic ovarian hormones do not exert a measurable influence on plasma FFA turnover or oxidation at rest or during moderate-intensity exercise in the 3-h postprandial state when carbohydrate use predominates. The increase in whole body lipolytic rate during exercise noted previously with oral contraceptive use is not matched by an increase in fatty acid oxidation and results in an increase in reesterification. Synthetic ovarian hormones contained in oral contraceptives increase lipolytic rate, but fatty acid oxidation during exercise is determined by exercise intensity and its metabolic and endocrine consequences.  相似文献   

3.
Resting and exercise fuel metabolism was assessed in three different phases of the menstrual cycle, characterized by different levels of estrogen relative to progesterone: early follicular (EF, low estrogen and progesterone), midfollicular (MF, elevated estrogen, low progesterone), and midluteal (ML, elevated estrogen and progesterone). It was hypothesized that exercise glucose utilization and whole body carbohydrate oxidation would decrease sequentially from the EF to the MF to the ML phase. Normal-weight healthy females, experiencing a regular menstrual cycle, were recruited. Subjects were moderately active but not highly trained. Testing occurred after 3 days of diet control and after an overnight fast (12-13 h). Resting (2 h) and exercise (50% maximal O(2) uptake, 90 min) measurements of whole body substrate oxidation, tracer-determined glucose flux, and substrate and hormone concentrations were made. No significant difference was observed in whole body fuel oxidation during exercise in the three phases (nonprotein respiratory exchange ratio: EF 0.84 +/- 0.01, MF 0.85 +/- 0.01, ML 0.85 +/- 0.01) or in rates of glucose appearance or disappearance. There were, however, significantly higher glucose (P < 0.05) and insulin (P < 0.001) concentrations during the first 45 min of exercise in the ML phase vs. EF and MF phases. In conclusion, whole body substrate oxidation and glucose utilization did not vary significantly across the menstrual cycle in moderately active women, either at rest or during 90 min of moderate-intensity exercise. During the ML phase, however, this similar pattern of substrate utilization was associated with greater glucose and insulin concentrations. Both estrogen and progesterone are elevated during the ML phase of the menstrual cycle, suggesting that one or both of these sex steroids may play a role in this response.  相似文献   

4.
Women at altitude: carbohydrate utilization during exercise at 4,300 m.   总被引:4,自引:0,他引:4  
To evaluate the hypothesis that exposure to high altitude would reduce blood glucose and total carbohydrate utilization relative to sea level (SL), 16 young women were studied over four 12-day periods: at 50% of peak O(2) consumption in different menstrual cycle phases (SL-50), at 65% of peak O(2) consumption at SL (SL-65), and at 4,300 m (HA). After 10 days in each condition, blood glucose rate of disappearance (R(d)) and respiratory exchange ratio were measured at rest and during 45 min of exercise. Glucose R(d) during exercise at HA (4.71 +/- 0.30 mg. kg(-1). min(-1)) was not different from SL exercise at the same absolute intensity (SL-50 = 5.03 mg. kg(-1). min(-1)) but was lower at the same relative intensity (SL-65 = 6.22 mg. kg(-1). min(-1), P < 0.01). There were no differences, however, when glucose R(d) was corrected for energy expended (kcal/min) during exercise. Respiratory exchange ratios followed the same pattern, except carbohydrate oxidation remained lower (-23.2%, P < 0.01) at HA than at SL when corrected for energy expended. In women, unlike in men, carbohydrate utilization decreased at HA. Relative abundance of estrogen and progesterone in women may partially explain the sex differences in fuel utilization at HA, but subtle differences between menstrual cycle phases at SL had no physiologically relevant effects.  相似文献   

5.
The systemic flux of glycerol and palmitate [a representative nonesterified free fatty acid (NEFA)] was assessed in three different phases of the menstrual cycle at rest and during moderate-intensity exercise. It was hypothesized that circulating glycerol and NEFA turnover would be greatest in the midfollicular (MF) phase of the menstrual cycle, when estrogen is elevated but progesterone low, followed by the midluteal phase (ML; high estrogen and progesterone), and lowest in the early follicular (EF) phase of the menstrual cycle (low estrogen and progesterone). Subjects included moderately active, eumenorrheic, healthy women. Testing occurred after 3 days of diet control and after an overnight fast (12-13 h). Resting and exercise (50% maximal oxygen uptake, 90 min) measurements of tracer-determined glycerol and palmitate kinetics were made. There was a significant increase in both glycerol and palmitate turnover from rest to exercise in all phases of the menstrual cycle (P<0.0001). No significant differences, however, were observed between cycle phases in the systemic flux of glycerol or palmitate, at rest or during exercise. Maximal peripheral lipolysis during exercise, as represented by glycerol rate of appearance at 90 min, equaled 8.45+/-0.96, 8.35+/-1.12, and 7.71+/-0.96 micromol.kg-1.min-1 in the EF, MF, and ML phases, respectively. Circulating free fatty acid utilization also peaked at 90 min of exercise, as indicated by the palmitate rate of disappearance (3.31+/-0.35, 3.17+/-0.39, and 3.47+/-0.26 micromol.kg-1.min-1) in the EF, MF, and ML phases, respectively. In conclusion, systemic rates of glycerol and NEFA turnover (as represented by palmitate flux) were not significantly affected by the cyclic fluctuations in estrogen and progesterone that occur throughout the normal menstrual cycle, either at rest or during 90 min of moderate exercise.  相似文献   

6.
Numerous studies from our and other laboratories have shown that women have a lower respiratory exchange ratio (RER) during exercise than equally trained men, indicating a greater reliance on fat oxidation. Differences in estrogen concentration between men and women likely play a role in this sex difference. Differing estrogen and progesterone concentrations during the follicular (FP) and luteal (LP) phases of the female menstrual cycle suggest that fuel use may also vary between phases. The purpose of the current study was to determine the effect of menstrual cycle phase and sex upon glucose turnover and muscle glycogen utilization during endurance exercise. Healthy, recreationally active young women (n = 13) and men (n = 11) underwent a primed constant infusion of [6,6-2H]glucose with muscle biopsies taken before and after a 90-min cycling bout at 65% peak O2 consumption. LP women had lower glucose rate of appearance (Ra, P = 0.03), rate of disappearance (Rd, P = 0.03), and metabolic clearance rate (MCR, P = 0.04) at 90 min of exercise and lower proglycogen (P = 0.04), macroglycogen (P = 0.04), and total glycogen (P = 0.02) utilization during exercise compared with FP women. Men had a higher RER (P = 0.02), glucose Ra (P = 0.03), Rd (P = 0.03), and MCR (P = 0.01) during exercise compared with FP women, and men had a higher RER at 75 and 90 min of exercise (P = 0.04), glucose Ra (P = 0.01), Rd (P = 0.01), and MCR (P = 0.001) and a greater PG utilization (P = 0.05) compared with LP women. We conclude that sex, and to a lesser extent menstrual cycle, influence glucose turnover and glycogen utilization during moderate-intensity endurance exercise.  相似文献   

7.
To study the effect of menstrual cycle phase and carbohydrate ingestion on glucose kinetics and exercise performance, eight healthy, moderately trained, eumenorrheic women cycled at 70% of peak O(2) consumption for 2 h and then performed a 4 kJ/kg body wt time trial. A control (C) and a glucose ingestion (G) trial were completed during the follicular (F) and luteal (L) phases of the menstrual cycle. Plasma substrate concentrations were similar before the commencement of exercise. Glucose rates of appearance and disappearance were higher (P < 0.05) during the 2nd h of exercise in FC than in LC. The percent contribution of carbohydrate to total energy expenditure was greater in FC than in LC, and subjects performed better (13%, P < 0.05) in FC. Performance improved (19% and 26% in FG and LG compared with FC and LC, respectively, P < 0.05) with the ingestion of glucose throughout exercise. These data demonstrate that substrate metabolism and exercise performance are influenced by the menstrual cycle phase, but ingestion of glucose minimizes these effects.  相似文献   

8.
We examined the effects of menstrual cycle phase and oral contraceptive (OC) use on triglyceride mobilization during 90 min of rest and 60 min of leg ergometry exercise at 45 and 65% peak O(2) uptake (Vo(2 peak)) in eight moderately physically active, eumenorrheic women (24.8 +/- 1.2 yr). Subjects were tested during the follicular phase (FP) and the luteal phase (LP) before OC use and during the inactive phase (IP) and high-dose phase (HP) after 4 complete mo of OC use. Glycerol rate of appearance (R(a)), a measure of triglyceride mobilization, was determined in a 3-h postabsorptive state using a primed constant infusion of [1,1,2,3,3-(2)H]glycerol. Before OC use (BOC), there were no significant differences between FP and LP in any of the variables studied. Dietary composition, exercise patterns, plasma glycerol concentrations, growth hormone concentrations, and exercise respiratory exchange ratio did not change with OC use. However, 4 mo of OC use significantly (P < 0.05) increased glycerol R(a) in HP during exercise at 45% Vo(2 peak) (6.2 +/- 0.2, 6.5 +/- 0.4, and 7.7 +/- 1.1 micromol.kg(-1).min(-1) for BOC, IP, and HP, respectively) and in IP and HP at 65% Vo(2 peak) (6.6 +/- 0.1, 8.2 +/- 0.6, and 8.1 +/- 0.7 micromol.kg(-1).min(-1) for BOC, IP, and HP, respectively). Plasma cortisol concentrations were significantly higher with OC use at rest and during exercise at 45 and 65% Vo(2 peak). In summary, although fluctuations of endogenous ovarian steroids have little effect on triglyceride mobilization, the synthetic ovarian steroids found in OCs increase triglyceride mobilization and plasma cortisol concentrations in exercising women. We conclude that the hierarchy of effects of ovarian steroids and their analogs on triglyceride mobilization in exercising women is as follows: energy flux > OC use > recent carbohydrate nutrition, menstrual cycle effects.  相似文献   

9.
As exercise can improve the regulation of glucose and carbohydrate metabolism, it is important to establish biological factors, such as sex, that may influence these outcomes. Glucose kinetics, therefore, were compared between women and men at rest, during exercise, and postexercise. It was hypothesized that glucose flux would be significantly lower in women than men during both the exercise and postexercise periods. Subjects included normal weight, healthy, eumenorrehic women and men, matched for habitual activity level and maximal oxygen uptake per kilogram lean body mass. Testing occurred following 3 days of diet control, with no exercise the day before. Subjects were tested in the overnight-fasted condition with women studied in the midluteal phase of the menstrual cycle. Resting (120 min), exercise (85% lactate threshold, 90 min), and postexercise (180 min) measurements of glucose flux and substrate metabolism were made. During exercise, women had a significantly lower rate of glucose appearance (Ra) (P<0.001) and disappearance (Rd) (P<0.002) compared with men. Maximal values were achieved at 90 min of exercise for both glucose Ra (mean+/-SE: 22.8+/-1.12 micromol.kg body wt-1.min-1 women and 33.6+/-1.79 micromol.kg body wt-1.min-1 men) and glucose Rd (23.2+/-1.26 and 34.1+/-1.71 micromol.kg body wt-1.min-1, respectively). Exercise epinephrine concentration was significantly lower in women compared with men (P<0.02), as was the increment in glucagon from rest to exercise (P<0.04). During the postexercise period, glucose Ra and Rd were also significantly lower in women vs. men (P<0.001), with differences diminishing over time. In conclusion, circulating blood glucose flux was significantly lower during 90 min of moderate exercise, and immediately postexercise, in women compared with men. Sex differences in the glucagon increase to exercise, and/or the epinephrine levels during exercise, may play a role in determining these sex differences in exercise glucose turnover.  相似文献   

10.
We evaluated the hypothesis that coordinated adjustments in absolute rates of gluconeogenesis (GNG(ab)) and hepatic glycogenolysis (Gly) would maintain euglycemia and match glucose production (GP) to peripheral utilization during rest and exercise. Specifically, we evaluated the extent to which gradations in exercise power output would affect the contribution of GNG(ab) to GP. For these purposes, we employed mass isotopomer distribution analysis (MIDA) and isotope-dilution techniques on eight postabsorptive (PA) endurance-trained men during 90 min of leg cycle ergometry at 45 and 65% peak O(2) consumption (VO(2 peak); moderate and hard intensities, respectively) and the preceding rest period. GP was constant in resting subjects, whereas the fraction from GNG (f(GNG)) increased over time during rest (22.3 +/- 0.9% at 11.25 h PA vs. 25.6 +/- 0.9% at 12.0 h PA, P < 0.05). In the transition from rest to exercise, GP increased in an intensity-dependent manner (rest, 2.0 +/- 0.1; 45%, 4.0 +/- 0.4; 65%, 5.84 +/- 0.64 mg. kg(-1). min(-1), P < 0.05), although glucose rate of disappearance exceeded rate of appearance during the last 30 min of exercise at 65% VO(2 peak). Compared with rest, increases in GP were sustained by 92 and 135% increments in GNG(ab) during moderate- and hard-intensity exercises, respectively. Correspondingly, Gly (calculated as the difference between GP and MIDA-measured GNG(ab)) increased 100 and 203% over rest during the two exercise intensities. During moderate-intensity exercise, f(GNG) was the same as at rest; however, during the harder exercise f(GNG) decreased significantly to account for only 21% of GP. The highest sustained GNG(ab) observed in these trials on PA men was 1.24 +/- 0.3 mg. kg(-1). min(-1). We conclude that, after an overnight fast, 1) absolute GNG rates increased with intensity of effort despite a reduced f(GNG) at 65% VO(2 peak), 2) during exercise Gly is more responsible than GNG(ab) for maintaining GP, and 3) in 12-h fasted men, neither increased Gly or GNG(ab) nor was their combination able to maintain euglycemia during prolonged hard (65% VO(2 peak)) exercise.  相似文献   

11.
The purpose of this investigation was to evaluate the effects of 24-h carbohydrate-poor diet on metabolic and hormonal responses induced by prolonged exercise in both follicular (FP) and luteal (LP) phases of the menstrual cycle. At mid-FP and at mid-LP, seven eumenorrheic young women [means +/- SE; chronological age, 21.1 +/- 0.6 yr; O2 uptake (VO2) peak, 43.7 +/- 2.0 ml X kg-1 X min-1; body fat, 19.2 +/- 2.0%] were subjected to a 90-min bicycle exercise period at an intensity representing 63% of their measured VO2 peak. Venous blood samples obtained before and during exercise were analyzed for levels of substrates (glucose, lactate, free fatty acids, glycerol) and hormones (luteinizing hormone, progesterone, estradiol, insulin, glucagon, cortisol, catecholamines). Contrary to FP, a significant (P less than 0.01) decrease in blood glucose concentration was observed after 70 and 90 min of exercise during LP. Significant phase differences were also observed for blood lactate (highest in FP), cortisol (highest in LP), and progesterone (highest in LP). Although not significantly different, tendencies for menstrual phase dissociations were noticed for some of the other measured variables. Hence, a menstrual phase dissociation in circulating glucose level, unmasked by a prolonged exercise performed after a 24-h carbohydrate-poor diet, suggests to the authors a specific metabolic involvement for gonadotrophic and/or gonadal hormones.  相似文献   

12.
Related to hepatic autoregulation we evaluated hypotheses that 1) glucose production would be altered as a result of a glycerol load, 2) decreased glucose recycling rate (Rr) would result from increased glycerol uptake, and 3) the absolute rate of gluconeogenesis (GNG) from glycerol would be positively correlated to glycerol rate of disappearance (R(d)) during a glycerol load. For these purposes, glucose and glycerol kinetics were determined in eight men during rest and during 90 min of leg cycle ergometry at 45 and 65% of peak O2 consumption (.VO2 (peak)). Trials were conducted after an overnight fast, with exercise commencing 12 h after the last meal. Subjects received a continuous infusion of [6,6-(2)H(2)]glucose, [1-(13)C]glucose, and [1,1,2,3,3-(2)H(5)]glycerol without (CON) or with an additional 1,000 mg (rest: 20 mg/min; exercise: 40 mg/min) of [2-(13)C]- or unlabeled glycerol added to the infusate (GLY). Infusion of glycerol dampened glucose Rr, calculated as the difference between [6,6-(2)H(2)]- and [1-(13)C]glucose rates of appearance (R(a)), at rest [0.35 +/- 0.12 (CON) vs. 0.12 +/- 0.10 mg. kg(-1). min(-1) (GLY), P < 0.05] and during exercise at both intensities [45%: 0.63 +/- 0.14 (CON) vs. 0.04 +/- 0.12 (GLY); 65%: 0.73 +/- 0.14 (CON) vs. 0.04 +/- 0.17 mg. kg(-1). min(-1) (GLY), P < 0.05]. Glucose R(a) and oxidation were not affected by glycerol infusion at rest or during exercise. Throughout rest and both exercise intensities, glycerol R(d) was greater in GLY vs. CON conditions (rest: 0.30 +/- 0.04 vs. 0.58 +/- 0.04; 45%: 0.57 +/- 0.07 vs. 1.19 +/- 0.04; 65%: 0.73 +/- 0.06 vs. 1.27 +/- 0.05 mg. kg(-1). min(-1), CON vs. GLY, respectively). Differences in glycerol R(d) (DeltaR(d)) between protocols equaled the unlabeled glycerol infusion rate and correlated with plasma glycerol concentration (r = 0.97). We conclude that infusion of a glycerol load during rest and exercise at 45 and 65% of .VO2(peak) 1) does not affect glucose R(a) or R(d), 2) blocks glucose Rr, 3) increases whole body glycerol R(d) in a dose-dependent manner, and 4) results in gluconeogenic rates from glycerol equivalent to CON glucose recycling rates.  相似文献   

13.
The effects of menstrual cycle phase and carbohydrate (CHO) supplementation were investigated during prolonged exercise. Nine healthy, moderately trained women cycled at 70% peak O(2) consumption until exhaustion. Two trials were completed during the follicular (Fol) and luteal (Lut) phases of the menstrual cycle. Subjects consumed 0.6 g CHO. kg body wt(-1). h(-1) (5 ml/kg of a 6% CHO solution every 30 min beginning at min 30 of exercise) or a placebo drink (Pl) during exercise. Time to exhaustion during CHO increased from Pl values (P < 0.05) by 14.4 +/- 8.5 (Fol) and 11.4 +/- 7.1% (Lut); no differences were observed between menstrual cycle phases. CHO attenuated (P < 0.05) the decrease in plasma glucose and insulin and the increase in plasma free fatty acids, tryptophan, epinephrine, and cortisol observed during Pl for both phases. Plasma alanine, glutamine, proline, and isoleucine were lower (P < 0.05) in Lut than in Fol phase. CHO resulted in lower (P < 0.05) plasma tyrosine, valine, leucine, isoleucine, and phenylalanine. These results indicate that the menstrual cycle phase does not alter the effects of CHO supplementation on performance and plasma levels of related substrates during prolonged exercise.  相似文献   

14.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

15.
The purpose of this investigation was to determine whether plasma glucose kinetics and substrate oxidation during exercise are dependent on the phase of the menstrual cycle. Once during the follicular (F) and luteal (L) phases, moderately trained subjects [peak O(2) uptake (V(O(2))) = 48.2 +/- 1.1 ml. min(-1). kg(-1); n = 6] cycled for 25 min at approximately 70% of the V(O(2)) at their respective lactate threshold (70%LT), followed immediately by 25 min at 90%LT. Rates of plasma glucose appearance (R(a)) and disappearance (R(d)) were determined with a primed constant infusion of [6,6-(2)H]glucose, and total carbohydrate (CHO) and fat oxidation were determined with indirect calorimetry. At rest and during exercise at 70%LT, there were no differences in glucose R(a) or R(d) between phases. CHO and fat oxidation were not different between phases at 70%LT. At 90%LT, glucose R(a) (28.8 +/- 4.8 vs. 33.7 +/- 4.5 micromol. min(-1). kg(-1); P < 0.05) and R(d) (28.4 +/- 4.8 vs. 34.0 +/- 4.1 micromol. min(-1). kg(-1); P < 0.05) were lower during the L phase. In addition, at 90%LT, CHO oxidation was lower during the L compared with the F phase (82.0 +/- 12.3 vs. 93.8 +/- 9.7 micromol. min(-1) .kg(-1); P < 0.05). Conversely, total fat oxidation was greater during the L phase at 90%LT (7.46 +/- 1.01 vs. 6.05 +/- 0.89 micromol. min(-1). kg(-1); P < 0.05). Plasma lactate concentration was also lower during the L phase at 90%LT concentrations (2.48 +/- 0.41 vs. 3.08 +/- 0.39 mmol/l; P < 0.05). The lower CHO utilization during the L phase was associated with an elevated resting estradiol (P < 0.05). These results indicate that plasma glucose kinetics and CHO oxidation during moderate-intensity exercise are lower during the L compared with the F phase in women. These differences may have been due to differences in circulating estradiol.  相似文献   

16.
Hormone and substrate responses to mild and heavy treadmill exercise were compared in women who used oral contraceptives (OC group; n = 7) and in normally menstruating women (control group; n = 8). Venous blood samples were obtained before exercise (-5 min), during exercise (15, 30, 45, and 60 min), and 30 min after exercise. All samples were analyzed for glucose, lactate, free fatty acids (FFA), glycerol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), human growth hormone (hGH), cortisol, insulin, estradiol (E2), and progesterone (P). Substrate patterns during exercise were not altered by the phase of the menstrual cycle or OC usage. However, in the OC group the FFA concentrations were consistently higher during mild exercise and the glucose concentrations were lower at rest and during exercise than in the control group (P less than 0.05). No differences in lactate or glycerol responses were observed between the groups (P greater than 0.05). The responses of insulin and hGH to exercise were not related to the OC use per se but rather to the steroid status, either endogenous or exogenous. Specifically, during the steroid phases (OC use phase and luteal phase) 1) insulin concentrations were not quite as markedly reduced (i.e., 12% higher when luteal phase and OC usage phase data were combined; P less than 0.05), and 2) hGH concentrations at rest and during light exercise were higher in the OC group during the OC use phase (P less than 0.05). LH patterns were not affected by exercise (P greater than 0.05), but a slight decrease was found in FSH (P less than 0.05). Increments in P and E2 were observed in the control group in both the follicular and luteal phase (P less than 0.05), but much greater increments in P occurred in the luteal phase than in the follicular phase (P less than 0.05). In contrast to the control group, no increments in P, E2, or cortisol occurred in the OC users during exercise (P greater than 0.05). Therefore the new observations in this study are that 1) insulin and growth hormone respond in a complex manner during exercise with either the phase of the menstrual cycle or the phases of OC use and disuse and 2) the steroid concentrations (P, E2, cortisol) are increased in the controls but not in the OC users during exercise. The latter point suggests that normal steroid increments are due to an increased rate of secretion rather than a decrease in the hepatic clearance of these steroids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
For estimating the oxidation rates (Rox) of glucose and other substrates by use of (13)C-labeled tracers, we obtained correction factors to account for label dilution in endogenous bicarbonate pools and TCA cycle exchange reactions. Fractional recoveries of (13)C label in respiratory gases were determined during 225 min of rest and 90 min of leg cycle ergometry at 45 and 65% peak oxygen uptake (VO(2 peak)) after continuous infusions of [1-(13)C]acetate, [2-(13)C]acetate, or NaH(13)CO(3). In parallel trials, [6,6-(2)H]glucose and [1-(13)C]glucose were given. Experiments were conducted after an overnight fast with exercise commencing 12 h after the last meal. During the transition from rest to exercise, CO(2) production increased (P < 0.05) in an intensity-dependent manner. Significant differences were observed in the fractional recoveries of (13)C label as (13)CO(2) at rest (NaH(13)CO(3), 77.5 +/- 2.8%; [1-(13)C]acetate, 49.8 +/- 2.4%; [2-(13)C]acetate, 26.1 +/- 1.4%). During exercise, fractional recoveries of (13)C label from [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO(3) were increased compared with rest. Magnitudes of label recoveries during both exercise intensities were tracer specific (NaH(13)CO(3), 93%; [1-(13)C]acetate, 80%; [2-(13)C]acetate, 65%). Use of an acetate-derived correction factor for estimating glucose oxidation resulted in Rox values in excess (P < 0.05) of glucose rate of disappearance during hard exercise. We conclude that, after an overnight fast: 1) recovery of (13)C label as (13)CO(2) from [(13)C]acetate is decreased compared with bicarbonate; 2) the position of (13)C acetate label affects carbon dilution estimations; 3) recovery of (13)C label increases in the transition from rest to exercise in an isotope-dependent manner; and 4) application of an acetate correction factor in glucose oxidation measurements results in oxidation rates in excess of glucose disappearance during exercise at 65% of VO(2 peak). Therefore, bicarbonate, not acetate, correction factors are advocated for estimating glucose oxidation from carbon tracers in exercising men.  相似文献   

18.
To investigate the effects of the menstrual cycle and of exercise intensity on the relationship between finger blood flow (FBF) and esophageal temperature (Tes), we studied four women, aged 20-32 years. Subjects exercised at 40% and 70% VO2max in the semi-supine posture at an ambient temperature of 20 degrees C. Resting Tes was higher during the luteal phase than the follicular phase (P less than 0.01). There were no significant differences between the two phases in FBF, oxygen consumption, carbon dioxide production, heart rate or minute ventilation at rest and during exercise, respectively. Each regression line of the FBF-Tes relationship consists of two distinct segments of FBF change to Tes (slope 1 and 2). FBF increased at a threshold Tes for vasodilation ([Tes 0]) and the rate of FBF rise became greater at ([Tes 0]) and the rate of FBF rise became greater at another Tes above this threshold ([Tes 0']). For both levels of exercise, [Tes 0] and [Tes 0'] were shifted upward during the luteal phase, but the slopes of the FBF-Tes relationship were almost the same in the two phases of the menstrual cycle. Increasing exercise intensity induced a significant decrease in slope 1 of the FBF-Tes relationship during the follicular (P less than 0.01) and the luteal phases (P less than 0.02), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We hypothesized that the increased blood glucose disappearance (Rd) observed during exercise and after acclimatization to high altitude (4,300 m) could be attributed to net glucose uptake (G) by the legs and that the increased arterial lactate concentration and rate of appearance (Ra) on arrival at altitude and subsequent decrease with acclimatization were caused by changes in net muscle lactate release (L). To evaluate these hypotheses, seven healthy males [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg], on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-D2]glucose (Brooks et al., J. Appl. Physiol. 70: 919-927, 1991) and [3-13C]lactate (Brooks et al., J. Appl. Physiol. 71:333-341, 1991) and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 uptake (65 +/- 2% of both acute altitude and acclimatization peak O2 uptake). Glucose and lactate arteriovenous differences across the legs and arms and leg blood flow were measured. Leg G increased during exercise compared with rest, at altitude compared with sea level, and after acclimatization. Leg G accounted for 27-36% of Rd at rest and essentially all glucose Rd during exercise. A shunting of the blood glucose flux to active muscle during exercise at altitude is indicated. With acute altitude exposure, at 5 min of exercise L was elevated compared with sea level or after acclimatization, but from 15 to 45 min of exercise the pattern and magnitude of L from the legs varied and followed neither the pattern nor the magnitude of responses in arterial lactate concentration or Ra. Leg L accounted for 6-65% of lactate Ra at rest and 17-63% during exercise, but the percent Ra from L was not affected by altitude. Tracer-measured lactate extraction by legs accounted for 10-25% of lactate Rd at rest and 31-83% during exercise. Arms released lactate under all conditions except during exercise with acute exposure to high altitude, when the arms consumed lactate. Both active and inactive muscle beds demonstrated simultaneous lactate extraction and release. We conclude that active skeletal muscle is the predominant site of glucose disposal during exercise and at high altitude but not the sole source of blood lactate during exercise at sea level or high altitude.  相似文献   

20.
Metabolic effects of an overnight fast (postabsorptive state, PA) or a 3.5-day fast (fasted state, F) were compared in eight healthy young men at rest and during exercise to exhaustion at 45% maximum O2 uptake. Glucose rate of appearance (Ra) and disappearance (Rd) were calculated from plasma glucose enrichment during a primed, continuous infusion of [6,6-2H]glucose. Serum substrates and insulin levels were measured and glycogen content of the vastus lateralis was determined in biopsies taken before and after exercise. At rest, whole-body glucose flux (determined by the deuterated tracer) and carbohydrate oxidation (determined from respiratory exchange ratio) were lower in F than PA, but muscle glycogen levels were similar. During exercise, glucose flux, whole-body carbohydrate oxidation, and the rate of muscle glycogen utilization were significantly lower during the fast. In the PA state, glucose Ra and Rd increased together throughout exercise. However, in the F state Ra exceeded Rd during the 1st h of exercise, causing an increase in plasma glucose to levels similar to those of the PA state. The increase in glucose flux was markedly less throughout F exercise. Lower carbohydrate utilization in the F state was accompanied by higher circulating fatty acids and ketone bodies, lower plasma insulin levels, and the maintenance of physical performance reflected by similar time to exhaustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号