首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ribosomes from different tissues and species of animals were tested by several different immunochemical methods. With antisera produced in rabbits by injection of intact ribosomes significant species differences in the antigenic properties of the ribosomes could be demonstrated whereas no tissue conditioned properties in the antigenic determinants were found. Abbreviations. RRL: ribosomes of rat liver; RBL: ribosomes of bovine liver; RBK: ribosomes of bovine kidney; anti-RRL: antiserum against RRL; anti-RBL: antiserum against RBL; anti-RBK: antiserum against RBK.  相似文献   

2.
Summary The proteins in the 80S ribosomes of Drosophila melanogaster ovaries and adults have been characterized by two-dimensional polyacrylamide gel electrophoresis. When ribosomal proteins of ovaries and adults were compared with those from embryos, all 3 tissues showed a similar number of proteins. In addition, qualitatively, the electrophoretograms of proteins extracted from the ribosomes of these 3 tissues were found to be indistinguishable. However, apparent quantitative differences in certain acidic proteins were observed between tissues. Using ribosomes from embryos as a standard for comparison, ribosomes from adult flies that were more than 14 days old appeared to have relatively larger amounts of acidic protiens S7 and S9, and relatively smaller amounts of acidic proteins S14 and S25/S27. The transition period occured during the ninth to thirteenth day of adult fly development. Significant differences were not detected between ovarian and embryonic acidic ribosomal proteins. In contrast to the differential ratio of acidic proteins in ovaries, adults, and embryos, a similar distribution of basic proteins was found in these tissues.  相似文献   

3.
1. Methods for the separation of membrane-bound and free ribosomes from rat brain (cortex) and skeletal muscle were described and the preparations characterized by chemical analysis and electron microscopy. The attachment of ribosomes to membranes is not an artifact of the separation procedure. 2. The rate of incorporation of l-[(14)C]leucine into protein in vitro by the membrane-bound and free ribosomes from these two predominantly non-protein-secreting tissues is compared with that by similar preparations from rat liver. With all three tissues the initial rate was higher for the membrane-bound preparations. 3. By using the technique of discharging nascent polypeptide chains by incubation with puromycin followed by treatment with sodium deoxycholate (Redman & Sabatini, 1966), a major difference was observed for the vectorial discharge of nascent protein synthesized both in vivo and in vitro on membrane-bound ribosomes from liver, on the one hand, and brain and muscle, on the other. Whereas a large part of nascent protein synthesized on membrane-bound liver ribosomes was discharged into the membranous vesicles (presumably destined for export from the cell), almost all nascent protein from membrane-bound ribosomes from brain and muscle was released directly into the supernatant. Incorporation of [(3)H]puromycin into peptidyl-[(3)H]puromycin confirmed these findings. There was thus no difference between membrane-bound and free ribosomes from brain on the one hand, and from free polyribosomes from liver on the other, as far as the vectorial release of newly synthesized protein was concerned. 4. Incubation with puromycin also showed that the nascent chains, pre-formed in vivo and in vitro, are not involved in the attachment of ribosomes to membranes of the endoplasmic reticulum. 5. The differences in vectorial discharge from membrane-bound ribosomes from liver as compared with brain and muscle are not due to the different types of messenger RNA in the different tissues. Polyphenylalanine synthesized on incubation with polyuridylic acid was handled in the same way as polypeptides synthesized with endogenous messenger. 6. It is concluded that there is a major difference in the attachment of ribosomes to the membranes of the endoplasmic reticulum of secretory and non-secretory tissues, which results in a tissue-specific difference in the vectorial discharge of nascent proteins.  相似文献   

4.
Both nongrowing (water-incubated) and growing (hormonally stimulated) Jerusalem artichoke tuber cells contain membrane-bound (mb) ribosomes. Using a rapid flotation procedure, a membrane fraction was prepared from both types of cells. This fraction was enriched in mb ribosomes, contained NADH cytochrome c reductase activity, had RNA:phospholipid and RNA:protein ratios similar to those reported for rough microsomes from animal tissues, and supported synthesis of preinitiated proteins in vitro. Using puromycin and detergent release, vectorial transport of labelled polypeptides was measured in the in vitro system. Of proteins made by mb ribosomes from nongrowing cells, on 12% remained associated with microsome membranes following chain termination. The comparable figure for proteins from mb ribosomes of growing tissue was 42%. The membrane-associated proteins were preferentially protected from protease digestion. Some possible reasons are suggested for the correlation between cell growth and the association of newly synthesized proteins with microsomes. The role of proteins synthesized by mb ribosomes but not vectorially transported, in both growing and nongrowing cells, is unknown.  相似文献   

5.
Protein synthesis by ribosomes from the meristematic region of pea roots (0–0·3 cm) and 2-day-old corn shoots (young tissues) relative to ribosomes from matured regions of pea roots (2·0–2·5 cm) and 10-day-old corn leaves (aged tissues) was compared in the poly U-phenylalanine system. With normal polyribosome preparations, ribosomes from young tissues required approx. 16 mM Mg2+ while ribosomes from aged tissues required 20–22 mM Mg2+ for optimal activity. With monomeric ribosome preparations induced by anaerobic treatment of the seedlings, the Mg2+ optimum was 20–22 mM for ribosomes from both young and aged tissues. A higher level of peptidyl-tRNA in ribosomes from young tissues accounts, at least in part, for the differences in Mg2+ optima between ribosomes from young and aged tissues. Monomeric ribosomes were used for assaying the activity of ribosomes per se. Ribosomes from young pea root tips and ribosomes from 2-day-old corn shoots were 25–30% and 100–150% more active, respectively, than the corresponding ribosomes from aged tissues. Differences in ribosomal proteins revealed by gel electrophoresis correlated with the change in ribosomal activity. Reduced activity in the aged ribosomes was not due to RNase activity or inhibitors.  相似文献   

6.
The bovine mitochondrial system is being developed as a model system for studies on mammalian mitochondrial ribosomes. Information is emerging on the structural organization and RNA binding properties of proteins in these mitochondrial ribosomes. Unexpectedly, these ribosomes appear to interact directly with GTP, via a high affinity binding site on the small subunit. Despite major differences in their RNA content and physical properties, mammalian mitochondrial and cytoplasmic ribosomes contain about the same number of proteins. The proteins in each kind of ribosome have a similar size distribution, and both sets are entirely coded by nuclear genes, raising the possibility that these different ribosomes may contain the same set of proteins. Comparison of bovine mitochondrial and cytoplasmic r-proteins by co-electrophoresis in two-dimensional gels reveals that most of the cytoplasmic ribosomal proteins are more basic than the mitochondrial ribosomal proteins, and that none are co-migratory with mitochondrial ribosomal proteins, suggesting that the proteins in the two ribosomes are different. To exclude the possibility that the electrophoretic differences result only from post-translational modification of otherwise identical proteins, antibodies against several proteins from the large subunit of bovine mitochondrial ribosomes were tested against cytoplasmic ribosomes by solid phase radioimmunoassay and against cytoplasmic ribosomal proteins on Western blots. The lack of cross-reaction of these antibodies with cytoplasmic r-proteins suggests that mitochondrial ribosomal proteins have different primary structures and thus are most likely encoded by a separate set of nuclear genes.  相似文献   

7.
Changes in the incorporation of 14C-amino acids into proteins in vitro were followed under conditions of ischemia induced by abdominal aorta ligature and subsequent recirculation in dogs. Cell saps isolated from L-S spinal cord, spinal ganglia, the sciatic nerve and medulla oblongata were added to the incorporation mixture composed of ribosomes and an enzymatic system from intact brains. Cytosols isolated from ischemic animals affected the rate of in vitro protein synthesis moderately, while repeated ischemia caused a profound decrease in the incorporation of amino acids into proteins. Cytosols from L-S spinal cord and especially from spinal ganglia after three days of recirculation substantially enhanced incorporation thus indicating a massive response of these tissues to ischemic injury. Cell saps from the medulla oblongata increased amino acid incorporation into proteins in vitro in all experimental groups.  相似文献   

8.
Amyloplasts and cytoplasmic ribosomes in cotyledon cells of lotus (Nelvmbo nucifeva Gaertn. ) have been observed on the basis of morphology. Isolation of these ribosomes by centrifugation through 30% to 55% (W/V) sucrose density gradient resulted in three bands of amyloplasts ribosomes and four bands of cytoplasmic ribosomes. The authors used these ribosomes bands for SDS-PAGE electrophoresis to analyse ribosomes of proteins. The patterns of SDS-PAGE between cytoplasmic ribosomes of proteins and amyloplasts ribosomes of proteins were different. The amyloplasts ribosomes of proteins showed 26 kD and 23 kD bands, and the cytoplasmic ribosomes of proteins showed 65 kD band. The analysis of electrophoretic patterns of the cytoplasmic ribosomes of proteins showed that there was a newly synthesized ribosomes protein with 19 kD molecular weight in 18 to 20 days after fertilization.  相似文献   

9.
The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes was studied. Treatment of ribosomes with any one of these proteins caused the 28S rRNA extracted from the inactivated ribosomes to become sensitive to treatment with aniline. A fragment containing about 450 nucleotides was released from the 28S rRNA. Further analysis of the nucleotide sequences of the 450-nucleotide fragments revealed that the aniline-sensitive phosphodiester bond was between A-4324 and G-4325 of the 28S rRNA. These results indicate that all six ribosome-inactivating proteins damage eukaryotic ribosomes by cleaving the N-glycosidic bond at A-4324 of the 28S rRNA of the ribosomes, as does ricin A-chain.  相似文献   

10.
The functional distinction of membrane-bound and free polyribosomes for the synthesis of exportable and non-exportable proteins respectively is not so strict as was initially thought, and it was therefore decided to investigate their relative contribution to the elaboration of an internal protein integrated into a cell structure. Cytochrome c was chosen as an example of a soluble mitochondrial protein, and the incorporation of [(14)C]leucine and delta-amino[(14)C]laevulinate into the molecule was studied by using different ribosomal preparations from regenerating rat liver. A new procedure was devised for the purification of cytochrome c, based on ion-exchange chromatography combined with sodium dodecyl sulphate-polyacrylamide-gel electrophoresis. In spite of cytochrome c being a non-exportable protein, the membrane-bound polyribosomes were at least as active as the free ribosomes in the synthesis in vitro of the apoprotein and the haem moiety. The detergent-treated ribosomes could also effect the synthesis of cytochrome c, although at a lower rate. Since in liver more than two-thirds of the ribosomes are bound to the endoplasmic-reticulum membranes, it is considered that in vivo they are responsible for the synthesis of most of the cytochrome c content of the cell. This suggests that in secretory tissues the endoplasmic reticulum plays a predominant role in mitochondrial biogenesis, although free ribosomes may participate in the partial turnover of some parts of the organelle. The hypothesis on the functional specialization of the different kinds of ribosomes was therefore modified to account for their parallel intervention in the synthesis of proteins associated with membranous structures.  相似文献   

11.
Characterization of ribosomes from dormant spores and vegetative cells of Bacillus cereus strain T has been carried out. Polyuridylic acid binding activity, ribonuclease activity associated with ribosomes, thermal denaturation profile, and sedimentation coefficients are essentially identical for both ribosomal preparations. However, ribosomal protein content of dormant spore ribosomes is about 70% of that of vegetative ribosomes. Polyacrylamide gel electrophoresis of ribosomal proteins shows that some ribosomal proteins are missing from dormant spore ribosomes. Sucrose density gradient centrifugation of ribosomes shows the existence of defective ribosomal subunits, in addition to 30S and 50S subunits, in dormant spore ribosomes. These results indicate that the ribosomes from dormant spores are distinctively different from those of vegetative cells.  相似文献   

12.
Ribosome inactivating proteins (RIPs) inhibit protein synthesis depurinating a conserved residue in the sarcin/ricin loop of ribosomes. Some RIPs are only active against eukaryotic ribosomes, but other RIPs inactivate with similar efficiency prokaryotic and eukaryotic ribosomes, suggesting that different RIPs would interact with different proteins. The SRL in Trypanosoma cruzi ribosomes is located on a 178b RNA molecule named 28Sδ. In addition, T. cruzi ribosomes are remarkably resistant to TCS. In spite of these peculiarities, we show that TCS specifically depurinate the predicted A51 residue on 28Sδ. We also demonstrated that the C-terminal end of ribosomal P proteins is needed for full activity of the toxin. In contrast to TCS, PAP inactivated efficiently T.cruzi ribosomes, and most importantly, does not require from the C-terminal end of P proteins. These results could explain, at least partially, the different selectivity of these toxins against prokaryotic and eukaryotic ribosomes.  相似文献   

13.
Ribosomal functions are vital for all organisms. Bacterial ribosomes are stable 2.4 MDa particles composed of three RNAs and over 50 different proteins. Accumulating damage to ribosomal RNA or proteins can disturb ribosome functioning. Organisms could benefit from degrading or possibly repairing inactive or partially active ribosomes. Reactivation of chemically damaged ribosomes by a process of protein replacement was studied in vitro. Ribosomes were inactivated by chemical modification of Cys residues. Incubation of modified ribosomes with total ribosomal proteins led to reactivation of translational activity. Intriguingly, ribosomal proteins extracted by LiCl are equally active in the restoration of ribosome function. Incubation of 70S ribosomes with isotopically labelled r‐proteins followed by separation of ribosomes was used to identify exchangeable proteins. A similar set of proteins was found to be exchanged in vivo under stress conditions in the stationary phase. We propose that repair of damaged ribosomes might be an important mechanism for maintaining protein synthesis activity following chemical damage.  相似文献   

14.
Sucrose gradient analyses were made on free ribosomes extracted from Azuki bean seedling leaves subjected to mannitol induced water stress. Comparisons were made of the effect of duration of stress and the effect of urea on the free ribosomes. The capacities of the ribosomal fractions to incorporate amino-acids were also studied. Water stress reduced total free ribosomes and proportion of polysomes in the ribosomes as well as the capacity of the ribosomes to incorporate amino-acids into proteins. Polysomes which were broken down by the water stress also appeared to be more susceptible to denaturation and synthesized different proteins than polysomes which remained in the leaves after water stress.  相似文献   

15.
Rat liver rough endoplasmic reticulum membranes (ER) contain two characteristic transmembrane glycoproteins which have been designated ribophorins I and II and are absent from smooth ER membranes. These proteins (MW 65,000 and 63,000 respectively) are related to the binding sites for ribosomes, as suggested by the following findings: (i) The ribophorin content of the rough ER membranes corresponds stoichiometrically to the number of bound ribosomes; (ii) ribophorins are quantitatively recovered with the bound polysomes after most other ER membrane proteins are dissolved with the nonionic detegent Kyro EOB; (iii) in intact rough microsomes ribophorins can be crosslinked chemically to the ribosomes and therefore are in close proximity to them. Treatment of rough microsomes with a low Triton X-100 concentration leads to the lateral displacement of ribosomes on the microsomal surface and to the formation of aggregates of bound ribosomes in areas of membranes which frequently invaginate into the microsomal lumen. Subfractionation of Triton-treated microsomes containing invaginations led to the recovery of smooth and “rough-inverted” vesicles. Ribophorins were present only in the latter fraction, indicating that both proteins are displaced together with the ribosome-binding capacity of rough and smooth microsomal membranes reconstituted after solubilization with detergents sugest that ribophorins are necessary for in vitro ribosome binding. Ribophorin-like proteins were found in rough microsomes obtained from secretory tissues of several animal species. The two proteins present in rat lacrimal gland microsomes have the same mobility as hepatocyte ribophorins and cross-react with antisera against them.  相似文献   

16.
After labeling for two hours in vivo with 32P-labeled orthophosphate, proteins from cytoplasmic ribosomes and nucleolar preribosomal particles of Novikoff hepatoma ascites cells were analyzed by two-dimensional polyacrylamide gel electrophoresis and autoradiography. Five proteins (B2, B3, B6, B32 and B35P) were phosphorylated in the ribosomes. Approximately 19 proteins were phosphorylated in the nucleolar preribosomal particles; although four of these were ribosomal proteins, they were different from the proteins labeled in the ribosomes. The 15 additional phosphorylated nucleolar preribosomal particle proteins were non-ribosomal. These results suggest that phosphorylation of proteins of the nucleolar preribosomal particles is independent of phosphorylation of the cytoplasmic ribosomal proteins and may be a part of the maturation process of preribosomal particles.  相似文献   

17.
The different functional complexes of ribosomes with elongation factor F (EF-G) were studied by digestion experiments with trypsin. It was found that upon interaction of EF-G with ribosomes the L7/L12 proteins are sensitive to trypsin and are trypsin resistant after dissociation of EF-G from ribosomes. The significance of conformational alterations in the L7/L12 and also in the other proteins in the translation process is discussed.  相似文献   

18.
O'Brien TW 《IUBMB life》2003,55(9):505-513
Mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. Typical of mammalian mitochondrial ribosomes, the bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes, to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Human mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system.  相似文献   

19.
1. Ribosomes from M. domestica larvae were isolated and their susceptibility to the action of several ribosome-inactivating proteins (RIPs) from plants was tested. 2. Ribosome-inactivating proteins inhibited, to different extents, phenylalanine polymerization by ribosomes. 3. Analysis of RNA from RIP-treated ribosomes showed the appearance of an aniline-cleavable rRNA fragment resulting from the N-glycosidase activity of the RIPs. 4. The release of adenine from saporin 6-treated M. domestica ribosomes was demonstrated by h.p.l.c. analysis.  相似文献   

20.
Comparison has been made of the proton magnetic resonance (PMR) spectra of translating ribosomes in the pre-translocation and post-translocation states as well as of the complexes of translating ribosomes with elongation factors Tu (EF-Tu) or G (EF-G) in the presence of the uncleavable analogue of GTP--guanylyl-imidodiphosphate (GMP-PNP). It is shown that proteins L7/L12 within the translating ribosomes possess a high intramolecular mobility both in the pre-translocation and in the post-translocation states. The interaction of EF-G with translating ribosomes results in a decrease of the mobility of the L7/L12 proteins. The interaction of EF-Tu with translating ribosomes leads to slight changes in the PMR spectra different from the changes caused by EF-G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号