首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
beta-catenin signaling is heavily involved in organogenesis. Here, we investigated how pancreas differentiation, growth and homeostasis are affected following inactivation of an endogenous inhibitor of beta-catenin, adenomatous polyposis coli (Apc). In adult mice, Apc-deficient pancreata were enlarged, solely as a result of hyperplasia of acinar cells, which accumulated beta-catenin, with the sparing of islets. Expression of a target of beta-catenin, the proto-oncogene c-myc (Myc), was increased in acinar cells lacking Apc, suggesting that c-myc expression is essential for hyperplasia. In support of this hypothesis, we found that conditional inactivation of c-myc in pancreata lacking Apc completely reversed the acinar hyperplasia. Apc loss in organs such as the liver, colon and kidney, as well as experimental misexpression of c-myc in pancreatic acinar cells, led to tumor formation with high penetrance. Surprisingly, pancreas tumors failed to develop following conditional pancreas Apc inactivation. In Apc-deficient acini of aged mice, our studies revealed a cessation of their exaggerated proliferation and a reduced expression of c-myc, in spite of the persistent accumulation of beta-catenin. In conclusion, our work shows that beta-catenin modulation of c-myc is an essential regulator of acinar growth control, and unveils an unprecedented example of Apc requirement in the pancreas that is both temporally restricted and cell-specific. This provides new insights into the mechanisms of tumor pathogenesis and tumor suppression in the pancreas.  相似文献   

2.
Downregulation of the c-myc gene in HL-60 cells is associated with growth inhibition and induction of differentiation. Previous studies have reported that the growth inhibitors TGF beta and TNF alpha downregulate c-myc mRNA levels, suggesting the possibility that these agents may exert some of their phenotypic effects via c-myc downregulation. Our study demonstrates that although both growth inhibitors produce a similar decrease in c-myc protein synthesis, TNF alpha produces a greater growth inhibition and differentiation induction in HL-60 cells. Combined addition of anti-myc oligomer with either growth inhibitor produces no additive effect. In fact, 4 microM anti-myc oligomer produces the same growth and differentiation effects as does 10 ng/ml TGF beta 1. We conclude that downregulation of c-myc expression represents a common mechanism of growth inhibition by TGF beta and TNF alpha, but that TNF alpha possesses an additional effect that is independent of c-myc expression.  相似文献   

3.
A rat liver gap junction (GJ) cDNA probe that detects mRNA encoding the 32 Kd GJ-protein (connexin 32) was employed to study GJ-protein gene expression in rat liver tumors induced by a single exposure to diethylnitrosamine (DEN) followed by exposure to 2-acetylaminofluorene (AAF)/CCl4/AAF or induced by systemic administration of N-ethyl-N-hydroxyethylnitrosamine (EHEN). All carcinomas generated by these carcinogens showed markedly reduced levels of GJ-protein mRNA. This may indicate that GJ-protein levels and gap-junctional intercellular communication (GJIC) capacity are also severely compromised. Moreover, all hyperplastic nodules also showed a reduced level of GJ-protein mRNA. Taken together with our earlier finding that the liver tumor promoter phenobarbital inhibits GJ-protein gene expression, these results suggest that deranged GJIC is a relatively early event in liver multistage carcinogenesis. A range of other cDNA probes was also used to characterize gene expression in the DEN-induced tumors. Induction of expression was seen for glutathione S-transferase (placental form) (GST-P), gamma-glutamyltranspeptidase (GGT), and c-raf but not for c-Ha-ras or c-myc.  相似文献   

4.
We have investigated the effects of transforming growth factor alpha (TGF alpha) in C3H10T1/2 cells, on S phase entry and early gene activation events associated with cell cycle progression. We find that EGF and TGF alpha, which both utilize the EGF receptor for signal generation, are able to stimulate DNA synthesis in these cells with nearly superimposable kinetics; however, the stimulation by TGF alpha was slightly greater at nearly all time points assayed. This report is the first showing that TGF alpha, like EGF, vigorously induces c-myc and c-fos gene expression in these cells. A significant stimulation of c-myc and c-fos mRNA levels is observed with both TGF alpha and EGF; c-myc mRNA levels show an 8-fold induction with both mitogens, while c-fos inductions were on the order of 12 to 14-fold at maximum. However, the induction of c-myc mRNA by TGF alpha has slower kinetics than by EGF.  相似文献   

5.
Alterations in c-myc proto-oncogene expression after treatment of human mammary carcinoma MDA-468 cells with epidermal growth factor (EGF) and/or transforming growth factor beta (TGF beta) have been investigated. A stimulation of c-myc messenger RNA was detected within 60 min after treatment with EGF. This induction persisted for at least 24 hr, albeit to a lower extent. The early and late increase in c-myc mRNA levels induced by EGF were inhibited by the presence of TGF beta. TGF beta alone induced little change in c-myc mRNA levels. The effect of TGF beta represents a novel action of this hormone at the level of gene expression.  相似文献   

6.
TGF-beta regulation of epithelial cell proliferation.   总被引:4,自引:0,他引:4  
  相似文献   

7.
Wu XM  Xu JP  Zhang R  Xu RK 《生理学报》1999,51(6):675-680
利用本实验室建立的17β-雌二醇诱致Sprague-Dawley(SD)大鼠原位垂体和异体移植于肾囊的垂体同时形成催乳素瘤的动物模型,采用Northem印迹杂交方法,我们观察了E2长期作用(120d)后诱发的原位与移植垂体PRL瘤中PRL基因和两种转化生长因子TGFα和TGFβ1基因表达水平的改变。结果表明:在E2长期作用后,原位垂体与异体移植于肾囊,从而远离下丘脑的垂体均可形成垂体PRL瘤;原位  相似文献   

8.
Rat transforming growth factor alpha (TGF alpha) inhibits glycogen synthesis in rat and guinea pig hepatocyte cultures and counteracts the stimulation of glycogen deposition and activation of glycogen synthase caused by insulin. The EC50 for inhibition of glycogen deposition was 0.2nM. The inhibition of glycogen synthesis was also observed in the absence of extracellular Ca2+ and was not blocked by indomethacin, suggesting that it is not mediated by production of prostaglandins. Since TGF alpha is produced by hepatocytes during liver regeneration and by macrophages during endotoxin stimulation, it may have an autocrine/paracrine effect on hepatic carbohydrate metabolism in these states, and may account for the low hepatic glycogen levels during liver regeneration and the impaired glucose tolerance associated with sepsis.  相似文献   

9.
10.
We have characterized the expression of transforming growth factor alpha (TGF alpha) and its receptor, the epidermal growth factor receptor (EGF-R), in normal and malignantly transformed human mammary epithelial cells. Human mammary epithelial cells were derived from a reduction mammoplasty (184), immortalized by benzo-a-pyrene (184A 1N4), and further transformed by the oncogenes simian virus 40 T (SV40 T), v-Ha-ras, and v-mos alone or in combination using retroviral vectors. 184 and 184A 1N4 cells require EGF for anchorage-dependent clonal growth. In mass culture, they secrete TGF alpha at high concentrations and exhibit an attenuated requirement for exogenous EGF/TGF alpha. SV40 T transformed cells have 4-fold increased EGF-R, have acquired the ability to clone in soft agar with EGF/TGF alpha supplementation, but are not tumorigenic. Cells transformed by v-mos or v-Ha-ras are weakly tumorigenic and capable of both anchorage dependent and independent growth in the absence of EGF/TGF alpha. Cells transformed by both SV40 T and v-Ha-ras are highly tumorigenic, are refractory to EGF/TGF alpha, and clone with high efficiency in soft agar. The expression of v-Ha-ras is associated with a loss of the high (but not low) affinity binding component of the EGF-R. Malignant transformation and loss of TGF alpha/EGF responsiveness did not correlate with an increase in TGF alpha production. Thus, TGF alpha production does not appear to be a tumor specific marker for human mammary epithelial cells. Differential growth responses to EGF/TGF alpha, rather than enhanced production of TGF alpha, may determine the transition from normal to malignant human breast epithelium.  相似文献   

11.
Primary well-differentiated dimethylbenzene alpha-anthracene (DMBA)-or nitrosomethylurea (NMU)-induced rat mammary adenocarcinomas that are estrogen dependent possess biologically active and immunoreactive transforming growth factor alpha (TGF alpha), which can be detected in a sort agar growth-promoting assay and by a specific liquid-phase competitive RIA, respectively. In contrast, tissue extracts prepared from transplantable undifferentiated DMBA-I and NMU-II rat mammary carcinomas that are estrogen independent and metastatic exhibit low or undetectable levels of TGF alpha. In addition, the primary DMBA- and NMU-induced rat mammary adenocarcinomas express a specific 4.8-kilobase TGF alpha mRNA species, whereas little or no TGF alpha mRNA can be detected in the transplantable DMBA-I and NMU-II tumors. Primary tumors synthesize type IV basement membrane collagen, whereas the transplantable tumors elaborate very little type IV collagen. Either TGF alpha or estrogens can differentially enhance the synthesis of type IV collagen by 0.5- to 4-fold over total protein synthesis in primary cultures of normal mouse mammary epithelial cells or in primary NMU-induced tumor cells, respectively. Therefore, TGF alpha could function as an estrogen-inducible autocrine growth factor for well differentiated rat mammary tumor cells by its ability to selectively regulate type IV collagen synthesis. Estrogens can modulate TGF alpha production in vivo in primary DMBA-induced rat mammary tumors, because ovariectomy results in a rapid decline (within 6 h) of TGF alpha mRNA levels. This response to estrogens can also be observed in vitro. Primary DMBA- or NMU-induced rat mammary tumor cells cultured in the presence of 17 beta-estradiol (10(-8) M) for 4 days show an increase in the level of TGF alpha mRNA over cells not treated with estrogen. This increase in TGF alpha mRNA is paralleled by a 2- to 3-fold increase in the levels of immunoreactive TGF alpha that can be detected and in the conditioned medium from estrogen-treated cells. These results suggest that TGF alpha may be an adjunct marker for those mammary tumors that are well differentiated adenocarcinomas and estrogen dependent and that estrogen-independent tumors do not constitutively produce TGF alpha or express TGF alpha mRNA.  相似文献   

12.
BK virus (BKV) is a polyomavirus which infects a large percentage of the human population. It is a potent transforming agent and is tumorigenic in rodents. BKV DNA has also been found in human brain, pancreatic islet, and urinary tract tumors, implicating this virus in neoplastic processes. BKV T antigen (TAg) is highly homologous to simian virus 40 TAg, particularly in regions required for mitogenic stimulation and binding to tumor suppressor proteins, The experiments presented in this report show that BKV TAg can bind the tumor suppressor protein p53. BKV TAg also has the ability to bind to members of the retinoblastoma (pRb) family of tumor suppressor proteins both in vivo and in vitro. However, these interactions are detected only when large amounts of total protein are used, because the levels of BKV TAg normally produced from viral promoter-enhancer elements are too low to bind a significant amount of the pRb family proteins in the cell. The low levels of BKV TAg produced by the viral promoter elements are sufficient to affect the levels and the phosphorylation patterns of these proteins and to induce serum-independent growth in these cells. Additional events, however, are required for full transformation. These data further support the notion that BKV TAg can affect cellular growth control mechanisms and may in fact be involved in neoplastic processes.  相似文献   

13.
14.
We have studied the estrogenic regulation and the potential autocrine role of transforming growth factor alpha (TGF alpha) in the human breast cancer cell line MCF-7. A biologically active apparent mol wt 30 k TGF alpha was identified by gel filtration chromatography in medium conditioned by MCF-7 breast cancer cells. We previously reported induction of TGF alpha levels in medium by 17 beta-estradiol. We now report correlated increases in TGF alpha mRNA, by Northern and slot blot analysis, after estrogen treatment of MCF-7 cells in vitro. In vivo experiments confirmed these data: estrogen withdrawal from MCF-7 tumor-bearing nude mice resulted in a decline in tumor size and TGF alpha mRNA levels. To explore the functional significance of TGF alpha in MCF-7 cells, anti-TGF alpha antibody was added to MCF-7 soft agar cloning assays. Inhibition of MCF-7 growth resulted, supporting an autocrine role for TGF alpha. Further experiments using an anti-EGF receptor antibody expanded this data, demonstrating inhibition of estrogen-stimulated monolayer MCF-7 cell growth. Examining the generality of TGF alpha expression, 4.8 kilobase TGF alpha mRNAs were seen in three other human breast cancer cell lines, MDA-MB-231, ZR 75B, and T47D. Expression of TGF alpha mRNA was detected in 70% of estrogen receptor positive and negative primary human breast tumors from 40 patients when examined by slot blot and Northern analysis. Thus, we have demonstrated broad expression of TGF alpha in human breast cancer, its hormonal regulation in an estrogen-responsive cell line, and its possible functional significance in MCF-7 cell growth.  相似文献   

15.
16.
Cell numbers are regulated by a balance among proliferation, growth arrest, and programmed cell death. A profound example of cell homeostasis, controlled throughout life, is the complex process of blood cell development, yet little is understood about the intracellular mechanisms that regulate blood cell growth arrest and programmed cell death. In this work, using transforming growth factor beta 1 (TGF beta 1)-treated M1 myeloid leukemia cells and genetically engineered M1 cell variants, the regulation of growth arrest and apoptosis was dissected. Blocking of early expression of MyD118, a novel differentiation primary response gene also shown to be a primary response gene induced by TGF beta 1, delayed TGF beta 1-induced apoptosis, demonstrating that MyD118 is a positive modulator of TGF beta 1-mediated cell death. Elevated expression of bcl-2 blocked the TGF beta 1-induced apoptotic pathway but not growth arrest induced by TGF beta 1. Deregulated expression of either c-myc or c-myb inhibited growth arrest and accelerated apoptosis, demonstrating for the first time that c-myb plays a role in regulating apoptosis. In all cases, the apoptotic response was correlated with the level of MyD118 expression. Taken together, these findings demonstrate that the primary response gene MyD118 and the c-myc, c-myb, and bcl-2 proto-oncogenes interact to modulate growth arrest and apoptosis of myeloid cells.  相似文献   

17.
18.
Transforming growth factor-beta 1 (TGF beta 1) is a multifunctional regulator of cell growth and differentiation. We report here that TGF beta 1 decreased the proliferation of nontransformed bovine anterior pituitary-derived cells grown in culture. We have previously demonstrated that these cells express both TGF alpha and its receptor [the epidermal growth factor (EGF) receptor] and that expression can be stimulated by phorbol ester (TPA) and EGF. TGF beta 1 treatment over a 2-day period decreased the proliferation of pituitary cells. This decreased growth rate was accompanied by a decrease in the TGF alpha mRNA level. The effect of TGF beta 1 on TGF alpha mRNA down-regulation was both dose dependent (maximal effect observed at 1.0 ng/ml TGF beta 1) and time dependent (minimum of 2-day treatment with TGF beta 1 was required before a decrease in TGF alpha mRNA was observed). Studies on TGF alpha mRNA stability indicated that TGF beta 1 did not alter the TGF alpha mRNA half-life. Treatment of the TGF beta 1 down-regulated cells with EGF resulted in the stimulation of TGF alpha mRNA levels; thus, the TGF beta 1-treated cells remained responsive to EGF. The decreased proliferation in response to TGF beta 1 could be only partially reversed by simultaneous treatment of the cells with EGF (10(-9)M) and TGF beta 1 (3.0 ng/ml). Qualitatively, the TGF beta 1-induced reduction of TGF alpha mRNA content was independent of cell density. TGF beta 1 treatment of the anterior pituitary-derived cells also reduced the levels of c-myc and EGF receptor mRNA. These results represent the first demonstration of the down-regulation of TGF alpha synthesis by a polypeptide growth factor and suggest that TGF beta 1 may be a physiological regulator of TGF alpha production in vivo.  相似文献   

19.
We found previously that transforming growth factor-beta 1 (TGF beta 1) mRNA levels are markedly elevated in rat prostate cancer (Dunning R3327 sublines) compared to levels in normal prostate. Our goal was to determine whether elevated expression of TGF beta 1 is biologically relevant to prostate cancer growth in vivo. We chose as our model the R3327-MATLyLu prostate cancer epithelial cell line, which produces metastatic anaplastic tumors when reinoculated in vivo. Our approach was to stably transfect MATLyLu cells with an expression vector that codes for latent TGF beta 1 and to isolate subclones of cells that over-expressed TGF beta 1 mRNA. We also isolated a subclone of MATLyLu cells transfected with a control vector lacking the TGF beta 1 cDNA insert. We then studied the growth of these cells in vivo and in vitro. Twenty days after sc inoculation of 10(6) cells in vivo, TGF beta 1-overproducing MATLyLu tumors were 50% larger, markedly less necrotic, and produced more extensive metastatic disease (lung metastases in 73% of all lobes and lymph node metastases in 88% of animals) compared to control MATLyLu tumors (lung metastases, 21%; lymph node metastases, 7%). Thus, TGF beta 1 produced in vivo is biologically active and can promote prostate cancer growth, viability, and aggressiveness, perhaps via effects on the host and/or on the tumor cells themselves. When followed in vitro, TGF beta 1-overproducing cells became growth inhibited, but this effect was transient as cells subsequently resumed proliferating. Growth inhibition was due to TGF beta, because it could be prevented by TGF beta-neutralizing antibody. Therefore, prostate cancer cells can activate and respond to secreted latent TGF beta 1, and although the cells are transiently inhibited in vitro, there is no net inhibition of growth. The ability of the cells to respond to endogenously produced TGF beta 1 suggests that TGF beta 1 overexpression enhances tumor growth in vivo at least in part via an effect of TGF beta 1 on the tumor cells themselves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号