首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
This study examined the effects of linoleic acid (LA) and gamma-linolenic acid (GLA) on BL6 melanoma growth in cell culture and of safflower oil (SFO) which contains LA and evening primrose oil (EPO) which contains GLA, on melanoma growth when grown in mice. The delta-6-desaturase activity of the melanoma cells in the two systems was also examined and an attempt made to relate the activity of the enzyme to the effects of GLA on cell and tumour growth. LA and GLA were found to be equipotent in inhibiting growth of the in vitro cultured BL6 cells which were found to contain an appreciable level of delta-6-desaturase activity. EPO was however found to be a more potent promoter of in vivo melanoma growth in mice than SFO. Melanomas grown in mice were found to lack delta-6-desaturase activity suggesting that the EPO diet, by providing GLA, was able to compensate for the loss of enzyme activity in the melanomas. The possibility that melanomas in mice have a requirement for GLA for growth while in in vitro cultured cells excess GLA inhibits the growth of the cells through an increase in lipid peroxidation is discussed.  相似文献   

3.
Erythropoietin (EPO) is a prime regulator of the growth and differentiation of erythroid blood cells. The EPO receptor (EPO-R) is expressed in late erythroid progenitors (mature BFU-E and CFU-E), and EPO induces proliferation and differentiation of these cells. By introducing, with a retroviral vector, a normal EPO-R cDNA into murine adult bone marrow cells, we showed that EPO is also able to induce proliferation in pluripotent progenitor cells. After 7 days of coculture with virus-producing cells, bone marrow cells were plated in methylcellulose culture in the presence of EPO, interleukin-3, or Steel factor alone or in combination. In the presence of EPO alone, EPO-R virus-infected bone marrow cells gave rise to mixed colonies comprising erythrocytes, granulocytes, macrophages and megakaryocytes. The addition of interleukin-3 or Steel factor to methylcellulose cultures containing EPO did not significantly modify the number of mixed colonies. The cells which generate these mixed colonies have a high proliferative potential as shown by the size and the ability of the mixed colonies to give rise to secondary colonies. Thus, it appears that EPO has the same effect on EPO-R-expressing multipotent cell proliferation as would a combination of several growth factors. Finally, our results demonstrate that inducing pluripotent progenitor cells to proliferate via the EPO signaling pathway has no major influence on their commitment.  相似文献   

4.
DiFalco MR  Congote LF 《Cytokine》2002,18(1):51-60
Azidothymidine (AZT)-induced anemia in mice can be reversed by the administration of IGF-IL-3 (fusion protein of insulin-like growth factor II (IGF II) and interleukin 3). Although interleukin 3 (IL-3) and erythropoietin (EPO) are known to act synergistically on hematopoietic cell proliferation in vitro, injection of IGF-IL-3 and EPO in AZT-treated mice resulted in a reduction of red cells and an increase of plasma EPO levels as compared to animals treated with IGF-IL-3 or EPO alone. We tested the hypothesis that the antagonistic effect of IL-3 and EPO on erythroid cells may be mediated by endothelial cells. Bovine liver erythroid cells were cultured on monolayers of human bone marrow endothelial cells previously treated with EPO and IGF-IL-3. There was a significant reduction of thymidine incorporation into both erythroid and endothelial cells in cultures pre-treated with IGF-IL-3 and EPO. Endothelial cell culture supernatants separated by ultrafiltration and ultracentrifugation from cells treated with EPO and IL-3 significantly reduced thymidine incorporation into erythroid cells as compared to identical fractions obtained from the media of cells cultured with EPO alone. These results suggest that endothelial cells treated simultaneously with EPO and IL-3 have a negative effect on erythroid cell production.  相似文献   

5.
Obesity has been linked with altered acute inflammation resolution which contributes to obesity-related clinical complications; however, the mechanisms that contribute to obesity-related unresolved inflammation are not fully known. Here we demonstrated that the deficiency of macrophage erythropoietin (EPO) signaling contributed to delayed acute inflammation resolution in diet-induced obese mice. In zymosan-induced acute peritonitis, in line with the delayed resolution of inflammation, the induction of macrophage EPO signaling was significantly reduced in obese mice relative to normal mice. Exogenous EPO induced macrophage EPO signaling and promoted acute inflammation resolution in obese mice. Efferocytosis of apoptotic cells by macrophages which is central in inflammation resolution was impaired in obese mice and restored by exogenous EPO. Mechanistically, macrophage peroxisome proliferator-activated receptor-γ (PPARγ) was greatly reduced in obese mice and EPO increased macrophage PPARγ to promote efferocytosis in obese mice. Together, our results identify an important mechanism underlying aberrant acute inflammation resolution in obesity, with important implications for regulating unresolved acute inflammation and normalizing macrophage defects in obese and diabetic individuals.  相似文献   

6.
Mesenchymal stromal cells (MSC) are an attractive cell-targeting vehicle for gene delivery. MIDGE (an acronym for Minimalistic, Immunologically Defined Gene Expression) construct is relatively safer than the viral or plasmid expression system as the detrimental eukaryotic and prokaryotic gene and sequences have been eliminated. The objective of this study was to test the ability of the human MSC (hMSC) to deliver the erythropoietin (EPO) gene in a nude mice model following nucleofection using a MIDGE construct. hMSC nucleofected with MIDGE encoding the EPO gene was injected subcutaneously in Matrigel at the dorsal flank of nude mice. Subcutaneous implantation of nucleofected hMSC resulted in increased hemoglobin level with presence of human EPO in the peripheral blood of the injected nude mice in the first two weeks post-implantation compared with the control groups. The basal layer of the hair shaft in the dermal layer was found to be significantly positive for immunohistochemical staining of a human EPO antibody. However, only a few basal layers of the hair shaft were found to be positively stained for CD105. In conclusion, hMSC harboring MIDGE-EPO could deliver and transiently express the EPO gene in the nude mice model. These cells could be localized to the hair follicle and secreted EPO protein might have possible role in hair regeneration.  相似文献   

7.
急性髓性白血病HB-1细胞系是由辐射处理的CBA/N小鼠脾脏细胞克隆并建立起来的。静脉注射HB-1细胞到正常CBA/N小鼠体内会诱发急性髓性白血病综合症,并使小鼠2周左右死亡。一般情况下,白血病细胞被接种到小鼠后会侵入造血器官、肺、肾和肝脏。我们在研究中发现了一令人感兴趣的现象,不仅在小鼠的肺、肾和肝脏中,而且在大脑和小脑中也观察到了HB-1细胞。白血病细胞能穿过血脑屏障在正常情况下是难以理解的,因为血脑屏障可阻止血细胞进入脑内,并且严格有选择地让小分子通过。因此,HB-1细胞将是阐明形成血脑屏障的内皮细胞上的附贴分子和选择性地让特殊细胞侵入脑的一个很好的模型。  相似文献   

8.
9.
10.
Leukemia in AKR mice was found to be associated with the presence of a serum factor(s) termed AKR leukemic suppressor factor (AKR-LSF). Suppression was quantitated by measuring the inhibition of PHA-stimulated [3H]thymidine incorporation by normal AKR spleen cells at various dilutions of leukemic mouse serum (LMS). AKR-LSF activity was expressed as units per milliliter, which is the reciprocal of the LMS dilution that inhibited [3H]thymidine uptake by 50% with respect to fetal calf serum control cultures. The amount of activity in the serum directly correlated to the rate of tumor cell growth. Mice receiving 107 BW5147 transplanted leukemia cells had 130 ± 12 units of AKR-LSF activity/ml of serum compared to 40 ± 8 units/ ml for mice with spontaneous leukemia. Normal mouse serum contained 33 ± 11 units/ml. The leukemic serum exhibited no strain specificity in either phytohemagglutinin or lipopolysaccharide assays, but was found to be twofold more inhibitory against mouse spleen cells than that against rat spleen cells. Human lymphocyte blastogenesis was not inhibited by the leukemic serum. LMS did not inhibit the growth of L929 fibroblasts or murine tumor cells in vitro. Further work is necessary to determine what role the suppressor factor may play in the regulation of antitumor cell immunity.  相似文献   

11.
The present study aimed to define the ability of erythropoietin (EPO) to mobilize hematopoietic stem cells (c-kit(+)/sca-1(+)/lin-1(-); KSL-cells) and hematopoietic progenitor cells (CD34(+) cells), including vascular endothelial growth factor receptor 2 expressing hematopoietic progenitor cells (CD34(+)/Flk-1(+) cells). We also sought to determine the role of endothelial nitric oxide synthase (eNOS) in EPO-induced mobilization. Wild type (WT) and eNOS(-/-) mice were injected bi-weekly with recombinant erythropoietin (EPO, 1000U/kg, s.c.) for 14 days. EPO increased the number of KSL, CD34(+), CD34(+)/Flk-1(+) cells in circulating blood of wild type mice. These effects of EPO were abolished in eNOS(-/-) mice. Our results demonstrate that, EPO stimulates mobilization of hematopoietic stem and progenitor cells. This effect of EPO is critically dependent on activation of eNOS.  相似文献   

12.
Erythropoietin(EPO) is the major regulator of mamalian erythropoisis,which stimulates the growth and differentiation of hematopoietic cells through interaction with its receptor(EPO-R),Here we use HEL cells (a human erythro-leukemia cell line) as a model to elucidate the pathway of signal transduction in the EPO-induced HEL cells.Our data show that the EPOR (EPO receptor) on the surface of HEL cells interacts with the Janus tyrosine protein kinase(Jak2) to transduce intracellular signals through phosphorylation of cytoplasmic proteins in EPO-treated HEL cells.Both STAT1 and STAT5 in this cell line are tyrosine-phosphorylated and translocated to nucleus following the dinding of EPO to HEL cells.Furthermore,the dinding of both STAT1 and STAT5 proteins to specific DNA elements(SIE and PIE elements) is revealed in an EPO-dependent manner,Our data demonstrate that the pathway of signal transduction following the binding of EPO to HEL cells is similar to immature eryhroid cell from the spleen of mice infected with anemia strain of Friend virus.  相似文献   

13.
Normal hematopoietic cells require the presence of a protein (MGI) in the appropriate conditioned medium (CM) for cell viability and growth and for differentiation to mature macrophages and granulocytes. Clones of myeloid leukemic cells have been established in culture (D+ clones) which require CM with this protein for differentiation, but not for cell viability and growth. It has been shown that these leukemic cells can be induced by CM to again require, like normal cells, the presence of CM for cell viability and growth. Induction of this requirement, which will be referred to as RVG, occurred before the D+ cells differentiated to mature granulocytes. Clones of myeloid leukemic cells (D? clones) that could not be induced to differentiate to mature cells, did not show the induction of RVG. The steroid hormones prednisolone and dexamethasone can induce some, but not all the changes associated with differentiation of D+ cells. Incubation with these steroids did not result in the induction of a requirement for these steroids for cell growth and viability. Studies with CM from different sources have shown, that all batches that induced RVG also induced differentiation of D+ cells and that both activities were inhibited after treating the CM with trypsin. It is suggested that the same protein (MGI) may be involved in both activities. Incubation of D+ cells with CM resulted in an increase in agglutinability by concanavalin A and this increase was maintained even in the absence of CM. This suggests, that the induction of RVG in D+ myeloid leukemic cells is associated with a change in the cell surface membrane.  相似文献   

14.
Long-term in vitro growth of murine mast cells was dependent on the presence of a mast cell growth factor (MCGF) present in media conditioned by mitogen-activated splenic leukocytes or by various murine leukemic cell lines. MCGF shared a number of properties with granulocyte colony-stimulating factor (G-CSF). Both factors were present in media conditioned by the myelomonocytic leukemic WEHI-3 and the T cell lymphoma, LBRM-33 cell lines. They were relatively sensitive to trypsin treatment, and were resistant to boiling temperature. NZB mice that failed to respond to WEHI-3-derived G-CSF also failed to respond to MCGF. MCGF differed from G-CSF, however, in sensitivity to neuraminidase and lactoferrin, an inhibitor of macrophage CSF production, suppressed G-CSF production by WEHI-3 cells without affecting MCGF production. Furthermore, peritoneal cells produced G-CSF but not MCGF when stimulated with lipopolysaccharide. In vitro production of MCGF by normal spleen cells required the presence of T lymphocytes and is relatively macrophage-independent. The role of T cells in the maturation and growth of mast cells and the physiologic function of MCGF are discussed.  相似文献   

15.
16.
The glycoprotein hormone Erythropoietin (EPO) stimulates red cell production and maturation. EPO is produced by the kidneys and the fetal liver in response to hypoxia (HOX). Recently, EPO expression has also been observed in the central nervous system where it may be neuroprotective. It remained unclear, however, whether EPO is expressed in the peripheral nervous system and, if so, whether a neuronal phenotype is required for its regulation. Herein, we report that EPO expression was induced by HOX and a HOX mimetic in two cell lines derived from neuroblastoma (NB), a tumor of the peripheral nervous system. Both cell lines with inducible EPO expression, SH-SY5Y and Kelly cells, expressed typical neuronal markers like neuropeptide Y (NPY), growth-associated protein-43 (GAP-43), and neuron-specific enolase (ENO). NB cells with a more epithelial phenotype like SH-SHEP and LAN-5 did not show HOX inducible EPO gene regulation. Still, oxygen sensing and up-regulation of hypoxia-inducible factor-1 (HIF-1) were intact in all cell lines. We found that CpG methylation of the HIF binding site (HBS) in the EPO gene 3' enhancer was only present in the SH-SHEP and LAN-5 cells but not in SH-SY5Y and Kelly cells with regulated EPO expression. The addition of recombinant EPO to all NB cells, both under normoxic and hypoxic conditions, had no effect on cell proliferation. We conclude that the ability to respond to HOX with an increase in EPO expression in human NB may depend on CpG methylation and the differentiation status of these embryonic tumor cells but does not affect the proliferative characteristics of the cells.  相似文献   

17.
18.
BALB/c or DBA/2 mice were infected with Abelson murine leukemia virus (A-MuLV), pseudotype Molony murine leukemia virus (M-MuLV). Infection of these mice with 104 focus-forming units of A-MuLV (M-MuLV) induced overt leukemia, detectable grossly or microscopically in 90% of the mice at 20–38 days. However, these methods did not detect leukemia at 17 days or before. Bone marrow cells from A-MuLV-infected leukemic or preleukemic mice were placed in tissue culture in a soft agarose gel. Cells from leukemic or preleukemic BALB/c mice grew to form colonies of 103 cells or more, composed of lymphoblasts, whereas marrow cells from normal uninfected mice did not. Cells from these colonies grew to form ascitic tumors after intraperitoneal inoculation into pristane-primed BALB/c recipient. Colony-forming leukemia cells could be detected in the marrow of A-MuLV-infected mice as early as 8 days after virus incoluation. The number of colony-forming leukemia cells increased as a function of time after virus inoculation. Colony-forming leukemia cells require other cells in order to replicate in tissue culture. Normal bone marrow cells, untreated or after treatment with mitomycin-C, provide this “helper” function. Only in the presence of untreated or mitomycin-C treated helper cells was the number of colonies approximately proportional to the number of leukemia cells plated. Marrow cells from leukemic BALB/c mice form more colonies than those from leukemic DBA/2 mice. The number of colonies formed per 103 microscopically identifiable leukemia cells plated was determined to be 2–3 for leukemic BALB/c mice and 0.3 for DBA/2 mice. Cocultivation of leukemic DBA/2 marrow cells with mitomycin-C treated normal BALB/c cells did not increase the number of colonies formed by the DBA/2 leukemic cells. Thus, the decreased ability of DBA/2 leukemia cells to form colonies appears to be a property of the leukemia cell population.  相似文献   

19.
A non-viral gene therapy vector, pcDNA3-EPO, was constructed by subcloning erythropoietin (EPO) cDNA into plasmid pcDNA3. After liposome-mediated transfection of the NIH 3T3 cells in vitro, EPO expression in the culture medium was detected by ELISA and amounted to 1.25 ± 0.3 IU ml–1. The biological activity of this EPO in the medium was detected after intramuscular injection of BALB/c mice. PCR of genomic DNA and RT-PCR of total RNA also confirmed that the plasmid pcDNA3-EPO had been transfected into the cells. A pool of pcDNA3-EPO transfectants, which stably expressed EPO, was obtained by G418 selection. When pcDNA3-EPO was combined into liposomes and intramuscularly injected into BALB/c mice, the reticulocyte ratio in the positive mice was three times higher than that in the control mice. In vivo expression was maintained in mice for at least one month.  相似文献   

20.

Background

Lnk plays a non-redundant role by negatively regulating cytokine signaling of TPO, SCF or EPO. Retroviral expression of Lnk has been shown to suppress hematopoietic leukemic cell proliferation indicating its therapeutic value in cancer therapy. However, retroviral gene delivery carries risks of insertional mutagenesis. To circumvent this undesired consequence, we fused a cell permeable peptide octa-arginine to Lnk and evaluated the efficacy of inhibition of leukemic cell proliferation in vitro.

Methodology/Principal Findings

In this study, proliferation assays, flow cytometry, Western Blot analyses were performed on wild-type (WT), mutant Lnk R8 or BSA treated M-MOK cells. We found that delivered WT, but not mutant Lnk R8 blocked TPO-induced M-MOK megakaryoblastic leukemic cell proliferation. In contrast, WT Lnk R8 showed no growth inhibitive effect on non-hematopoietic HELA or COS-7 cell. Moreover, we demonstrated that TPO-induced M-MOK cell growth inhibition by WT Lnk R8 was dose-dependent. Penetrated WT Lnk R8 induced cell cycle arrest and apoptosis. Immunoprecipitation and Western blots data indicated WT Lnk R8 interacted with endogeneous Jak2 and downregulated Jak-Stat and MAPK phosphorylation level in M-MOK cells after TPO stimulation. Treatment with specific inhibitors (TG101348 and PD98059) indicated Jak-Stat and MAPK pathways were crucial for TPO-induced proliferation of M-MOK cells. Further analyses using TF-1 and HEL leukemic cell-lines showed that WT Lnk R8 inhibited Jak2-dependent cell proliferation. Using cord blood-derived CD34+ stem cells, we found that delivered WT Lnk R8 blocked TPO-induced megakaryopoiesis in vitro.

Conclusions/Significance

Intracellular delivery of WT Lnk R8 fusion protein efficiently inhibited TPO-induced M-MOK leukemic cell growth by promoting apoptosis. WT Lnk R8 protein delivery may provide a safer and more practical approach to inhibit leukemic cell growth worthy of further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号