首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Green Revolution dwarfing genes, Rht-B1b and Rht-D1b, encode mutant forms of DELLA proteins and are present in most modern wheat varieties. DELLA proteins have been implicated in the response to biotic stress in the model plant, Arabidopsis thaliana. Using defined wheat Rht near-isogenic lines and barley Sln1 gain of function (GoF) and loss of function (LoF) lines, the role of DELLA in response to biotic stress was investigated in pathosystems representing contrasting trophic styles (biotrophic, hemibiotrophic, and necrotrophic). GoF mutant alleles in wheat and barley confer a resistance trade-off with increased susceptibility to biotrophic pathogens and increased resistance to necrotrophic pathogens whilst the converse was conferred by a LoF mutant allele. The polyploid nature of the wheat genome buffered the effect of single Rht GoF mutations relative to barley (diploid), particularly in respect of increased susceptibility to biotrophic pathogens. A role for DELLA in controlling cell death responses is proposed. Similar to Arabidopsis, a resistance trade-off to pathogens with contrasting pathogenic lifestyles has been identified in monocotyledonous cereal species. Appreciation of the pleiotropic role of DELLA in biotic stress responses in cereals has implications for plant breeding.  相似文献   

2.
3.
"Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat   总被引:1,自引:0,他引:1  
PCR-based markers were developed to detect the point mutations responsible for the two major semi-dwarfing genes Rht-B1b ( Rht1) and Rht-D1b ( Rht2) in wheat. These markers were validated by testing 19 wheat varieties of known Rht genotype. They included Rht-B1b and Rht-D1b dwarfs, double-mutant varieties and tall wheats. These were correctly genotyped with the Rht-B1b and Rht-D1b-specific primers, as well as markers specific for the tall alleles Rht-B1a and Rht-D1a. Using a family of doubled-haploid lines segregating for Rht-B1b and Rht-D1b, the markers were mapped to the expected homoeologous regions of chromosomes 4B and 4D, respectively. Both markers were strongly correlated with a reduction in height, accounting for 23% ( Rht-B1b) and 44% ( Rht-D1b) of the phenotypic variance in the population. These markers will have utility in marker-assisted selection of the Rht-B1b and Rht-D1b genes in wheat breeding programs.  相似文献   

4.
Fusarium head blight (FHB) is an important disease of wheat worldwide. Soissons is one of the most resistant varieties grown in UK. The current study was undertaken to identify QTL for FHB resistance in Soissons and to determine whether the semi-dwarfing alleles Rht-B1b and Rht-D1b have a similar influence on susceptibility to FHB. A Soissons (Rht-B1b; Rht-D1a) × Orvantis (Rht-B1a; Rht-D1b) doubled haploid (DH) population was assessed for FHB resistance in three trials. Soissons contributed a single, stable major FHB QTL linked to the Rht-D1 locus. In contrast, the Rht-B1b allele (contributed by Soissons) conferred no negative effect on FHB resistance, even conferring a very minor positive effect in one trial. The influence of the Rht-B1b and Rht-D1b alleles on FHB resistance was further investigated using both Mercia and Maris Huntsman near-isogenic lines. Under high disease pressure both Rht-B1b and Rht-D1b significantly decreased Type 1 resistance (resistance to initial infection). However, whilst Rht-D1b has no effect on Type 2 resistance (resistance to spread of the fungus within the spike), Rht-B1b significantly increased Type 2 resistance. Our study demonstrates that the choice of semi-dwarfing gene used in plant breeding programmes may be a significant consideration where resistance to FHB is an important breeding target.  相似文献   

5.
Grain protein content in wheat has been shown to be affected by the NAM-B1 gene where the wildtype allele confers high levels of protein and micronutrients but can reduce yield. Two known non-functional alleles instead increase yield but lead to lower levels of protein and micronutrients. The wildtype allele in hexaploid bread wheat is so far mainly known from historical specimens and a few lines with an emmer wheat introgression. Here we report a screening for the wildtype allele in wheats of different origin. First, a worldwide core collection of 367 bread wheats with worldwide origin was screened and five accessions carrying the wildtype NAM-B1 allele were found. Several of these could be traced to a Fennoscandian origin and the wildtype allele was more frequent in spring wheat. These findings, together with the late maturation of spring wheat, suggested that the faster maturation caused by the wildtype allele might have preserved it in areas with a short growing season. Thus a second set consisting of 138 spring wheats of a northern origin was screened and as many as 33?% of the accessions had the wildtype allele, all of a Fennoscandian origin. The presence of the wildtype allele in landraces and cultivars is in agreement with the use of landraces in Fennoscandian wheat breeding. Last, 22 spelt wheats, a wheat type previously suggested to carry the wildtype allele, were screened and five wildtype accessions found. The wildtype NAM-B1 accessions found could be a suitable material for plant breeding efforts directed towards increasing the nutrient content of bread wheat.  相似文献   

6.
赤霉素作为重要的植物激素,参与了植物诸多发育过程的调控.一些涉及赤霉素生物合成和信号传导途径的重要调控基因对作物的株型、产量和品质能够产生积极的影响,已在农业生产中得到广泛应用.其中,Rht-1和sd-1等位基因由于分别赋予了小麦和水稻半矮化的特性,从而促成了20世纪后半叶的"绿色革命".本文回顾了与"绿色革命"相关的...  相似文献   

7.
A modern Green Revolution gene for reduced height in wheat   总被引:2,自引:0,他引:2       下载免费PDF全文
Increases in the yield of wheat during the Green Revolution of the late 20th century were achieved through the introduction of Reduced height (Rht) dwarfing genes. The Rht‐B1 and Rht‐D1 loci ensured short stature by limiting the response to the growth‐promoting hormone gibberellin, and are now widespread through international breeding programs. Despite this advantage, interference with the plant's response to gibberellin also triggers adverse effects for a range of important agronomic traits, and consequently modern Green Revolution genes are urgently required. In this study, we revisited the genetic control of wheat height using an association mapping approach and a large panel of 1110 worldwide winter wheat cultivars. This led to the identification of a major Rht locus on chromosome 6A, Rht24, which substantially reduces plant height alone as well as in combination with Rht‐1b alleles. Remarkably, behind Rht‐D1, Rht24 was the second most important locus for reduced height, explaining 15.0% of the genotypic variance and exerting an allele substitution effect of –8.8 cm. Unlike the two Rht‐1b alleles, plants carrying Rht24 remain sensitive to gibberellic acid treatment. Rht24 appears in breeding programs from all countries of origin investigated, with increased frequency over the last decades, indicating that wheat breeders have actively selected for this locus. Taken together, this study reveals Rht24 as an important Rht gene of commercial relevance in worldwide wheat breeding.  相似文献   

8.
The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs) were observed for plant height and the SSR markers (−log10 (P-value) ≥4.82) and 280 (−log10 (P-value) ≥5.89) for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA) metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development.  相似文献   

9.
Fusarium head blight (FHB) is an important disease of wheat worldwide. The cultivar Spark is more resistant than most other UK winter wheat varieties but the genetic basis for this is not known. A mapping population from a cross between Spark and the FHB susceptible variety Rialto was used to identify quantitative trait loci (QTL) associated with resistance. QTL analysis across environments revealed nine QTL for FHB resistance and four QTL for plant height (PH). One FHB QTL was coincident with the Rht-1D locus and accounted for up to 51% of the phenotypic variance. The enhanced FHB susceptibility associated with Rht-D1b is not an effect of PH per se as other QTL for height segregating in this population have no influence on susceptibility. Experiments with near-isogenic lines supported the association between susceptibility and the Rht-D1b allele conferring the semi-dwarf habit. Our results demonstrate that lines carrying the Rht-1Db semi-dwarfing allele are compromised in resistance to initial infection (type I resistance) while being unaffected in resistance to spread within the spike (type II resistance).  相似文献   

10.
为系统了解青海小麦矮秆基因的分布特点,并进一步为青海高原小麦的株高育种提供优异种质资源。本研究利用5个矮秆基因的特异性分子标记对82份青海小麦品种资源中的矮秆基因进行了检测,并对不同矮秆基因的降秆效应进行了分析。结果表明:82份青海育成小麦品种中有49份材料至少含有一个矮秆基因,其中Rht-B1b的分布频率最高,约占参试材料的28.0%,其次是分布频率为23.2%的Rht8基因,而矮秆基因Rht-D1b、Rht5以及Rht12的分布频率分别为9.8%、13.4%、9.8%。在49份含有不同种类矮秆基因的材料中,其中16份材料同时含有2种及以上的矮秆基因,即RhtB1b和Rht8、Rht-D1b和Rht8、Rht-B1b和Rht5、Rht-D1b和Rht5、Rht8和Rht5、Rht-B1b和Rht12、Rht5和Rht12,并未发现同时含有矮秆基因Rht-B1b和Rht-D1b的品种;2份材料分别含有3种矮秆基因,即Rht-B1b、Rht8、Rht12和Rht-B1b、Rht5、Rht8;其余31份材料仅含有1种矮秆基因。82份青海育成小麦材料中仅含有Rht-B1b的材料11份,平均株高为86.2 cm,其降秆效应为5.7%;只含有Rht-D1b的材料有5份,平均株高为84.9 cm,其降秆效应为7.1%;仅含有Rht8的材料有9份,平均株高为88.6 cm,其降秆效应为3.1%。因此,在青海育成小麦品种中,矮秆基因的降秆效应为Rht-D1bRht-B1bRht8。  相似文献   

11.
Y Li  J Xiao  J Wu  J Duan  Y Liu  X Ye  X Zhang  X Guo  Y Gu  L Zhang  J Jia  X Kong 《The New phytologist》2012,196(1):282-291
? Rht-D1c (Rht10) carried by Chinese wheat (Triticum aestivum) line Aibian 1 is an allele at the Rht-D1 locus. Among the Rht-1 alleles, little is known about Rht-D1c although it determines an extreme dwarf phenotype in wheat. ? Here, we cloned and functionally characterized Rht-D1c using a combination of Southern blotting, target region sequencing, gene expression analysis and transgenic experiments. ? We found that the Rht-D1c allele was generated through a tandem segmental duplication (TSD) of a >?1?Mb region, resulting in two copies of the Rht-D1b. Two copies of Rht-D1b in the TSD were three-fold more effective in reducing plant height than a single copy, and transformation with a segment containing the tandemly duplicated copy of Rht-D1b resulted in the same level of reduction of plant height as the original copy in Aibian 1. ? Our results suggest that changes in gene copy number are one of the important sources of genetic diversity and some of these changes could be directly associated with important traits in crops.  相似文献   

12.
13.
Fusarium head blight (FHB) resistance is of particular importance in wheat breeding programmes due to the detrimental effects of this fungal disease on human and animal health, yield and grain quality. Segregation for FHB resistance in three European winter wheat populations enabled the identification of resistance loci in well-adapted germplasm. Populations obtained from crosses of resistant cultivars Apache, History and Romanus with susceptible semi-dwarfs Biscay, Rubens and Pirat, respectively, were mapped and analysed to identify quantitative trait loci (QTL) for FHB severity, ear emergence time and plant height. The results of the present study together with previous studies in UK winter wheat indicated that the semi-dwarfing allele Rht-D1b seems to be the major source for FHB susceptibility in European winter wheat. The high resistance level of the cultivars Romanus and History was conditioned by several minor resistance QTL interacting with the environment and the absence of Rht-D1b. In contrast, the semi-dwarf parents contributed resistance alleles of major effects apparently compensating the negative effects of Rht-D1b on FHB reaction. The moderately resistant cultivar Apache contributed a major QTL on chromosome 6A in a genome region previously shown to carry resistance loci to FHB. A total of 18 genomic regions were repeatedly associated with FHB resistance. The results indicate that common resistance-associated genes or genomic regions are present in European winter wheats.  相似文献   

14.
Fusarium head blight (FHB) of wheat has become a serious threat to wheat crops in numerous countries. In addition to loss of yield and quality, this disease is of primary importance because of the contamination of grain with mycotoxins such as deoxynivalenol (DON). The Swiss winter cultivar Arina possesses significant resistance to FHB. The objective of this study was to map quantitative trait loci (QTL) for resistance to FHB, DON accumulation and associated traits in grain in a double haploid (DH) population from a cross between Arina and the FHB susceptible UK variety Riband. FHB resistance was assessed in five trials across different years and locations. Ten QTL for resistance to FHB or associated traits were detected across the trials, with QTL derived from both parents. Very few of the QTL detected in this study were coincident with those reported by authors of two other studies of FHB resistance in Arina. It is concluded that the FHB resistance of Arina, like that of the other European winter wheat varieties studied to date, is conferred by several genes of moderate effect making it difficult to exploit in marker-assisted selection breeding programmes. The most significant and stable QTL for FHB resistance was on chromosome 4D and co-localised with the Rht–D1 locus for height. This association appears to be due to linkage of deleterious genes to the Rht-D1b (Rht2) semi-dwarfing allele rather than differences in height per se. This association may compromise efforts to enhance FHB resistance in breeding programmes using germplasm containing this allele.  相似文献   

15.
鉴定了170份小麦近缘物种材料苗期对北京地区流行的小麦白粉菌小种的抗性表现,包括引自美国和欧洲的斯卑尔脱小麦81份,密穗小麦27份,中国的西藏半野生小麦4份,和引自 CIMMYT 的人工合成六倍体小麦58份。结果表明,3份斯卑尔脱小麦表现抗病,它们是瑞士品种 Hubel 和 Lueg 以及德国的原始品种69Z6.245(编号 PI348085)。人工合成六倍体小麦中有19份材料表现高抗至免疫。密穗小麦材料中有2份(即美国材料 DN-2263和 Coda)表现抗病。4份西藏半野生小麦苗期都不抗小麦白粉病。  相似文献   

16.
Vernalization, the requirement of a long exposure to low temperatures to induce flowering, is an essential adaptation of plants to cold winters. We have shown recently that the vernalization gene VRN-1 from diploid wheat Triticum monococcum is the meristem identity gene APETALA1, and that deletions in its promoter were associated with spring growth habit. In this study, we characterized the allelic variation at the VRN-1 promoter region in polyploid wheat. The Vrn-A1a allele has a duplication including the promoter region. Each copy has similar foldback elements inserted at the same location and is flanked by identical host direct duplications (HDD). This allele was found in more than half of the hexaploid varieties but not among the tetraploid lines analyzed here. The Vrn-A1b allele has two mutations in the HDD region and a 20-bp deletion in the 5 UTR compared with the winter allele. The Vrn-A1b allele was found in both tetraploid and hexaploid accessions but at a relatively low frequency. Among the tetraploid wheat accessions, we found two additional alleles with 32 bp and 54 bp deletions that included the HDD region. We found no size polymorphisms in the promoter region among the winter wheat varieties. The dominant Vrn-A1 allele from two spring varieties from Afghanistan and Egypt (Vrn-A1c allele) and all the dominant Vrn-B1 and Vrn-D1 alleles included in this study showed no differences from their respective recessive alleles in promoter sequences. Based on these results, we concluded that the VRN-1 genes should have additional regulatory sites outside the promoter region studied here.  相似文献   

17.
采用分别保存于长期库及中期库的3个小麦地方品种的6份材料,进行了9项农艺性状及35个与农艺性状相关的微卫星标记检测,每份材料选取30个单株进行遗传多样性与遗传结构分析。结果表明:(1)更新前,3个小麦地方品种均为遗传异质性群体,在SSR位点上的异质度分别为57.14%、48.57%和5.71%。(2)在农艺性状表现上,只有温泉小麦3在株高和穗粒数上更新后比更新前显著增加,其他材料无显著差异。(3)在SSR位点多态性表现上,3个品种在更新后均发生了遗传多样性变化,8个与粒重、产量、生育期性状相关位点存在等位位点丢失现象,其中2个与粒重、生育期相关位点频率变化显著。(4)综合农艺性状调查与SSR分子标记检测结果发现,3个品种更新前后在多样性指数上无显著差异,遗传分化系数Gst分别为0.0269、0.0324和0.0380,即更新前后遗传差异分别为2.69%、3.24%和3.80%。上述结果建议,经繁殖更新的小麦种质资源能够比较完好地保持其遗传多样性和遗传结构。对于遗传异质性小麦地方品种在繁殖更新后存在遗传多样性丢失的危险,为了保证更新前后的遗传完整性,建议在繁殖更新过程中每个品种至少应保持300个单株的群体。  相似文献   

18.
矮秆基因对小麦部分农艺性状的效应   总被引:1,自引:1,他引:1  
以中国主要麦区的124份小麦品种为材料,利用分子标记和系谱分析相结合,对其按照所含的矮秆基因Rht-B1b、Rht-D1b和Rht8进行分类,结合田间株高、旗叶长、小穗数和穗粒数以及室内苗期根系长度等农艺形状的调查,分析不同矮秆基因对小麦农艺性状的效应.结果显示:(1)参试的124份小麦品种(系)中23份含有Rht-B1b,7份含有Rht-D1b,22份含有Rht8基因,34份同时含有Rht-B1b和Rht8,16份同时含有Rht-D1b和Rht8,可分为6组.(2)Rht-B1b和Rht-D1b在降低株高的同时也缩短了旗叶的长度和苗期叶长,Rht8对株高的影响较弱,对旗叶和苗期叶长的影响也较小;3个矮秆基因对苗期根系长度、小穗数没有显著影响;Rht-D1b和Rht8显著增加穗粒数.研究表明,矮秆基因Rht8对小麦株高以及其他农艺性状的影响均较小,但能够显著增加穗粒数,是小麦矮化育种中比较理想的矮秆基因.  相似文献   

19.
During the "Green Revolution" of rice, high-yielding varieties (HYVs) were developed using a semi-dwarf gene (sd1 or OsGA20ox2). The presence or absence of the two mutant alleles (DGWG type in Dee-geo-woo-gen and JKK type in Jikkoku) were surveyed by PCR using 256 accessions of eight wild and two cultivate rice species. The DGWG allele was detected in a landrace (Oryza sativa) and two accessions of wild rice (O. rufipogon), all of which are from China, showing their limited distribution. Genealogical studies of the OsGA20ox2 gene showed that the 62 sequences of O. sativa and O. rufipogon included 20 distinct haplotypes, indicating that the species complex contained OsGA20ox2 genes from two different lineages. The silent site nucleotide diversities (pi and theta(w)) were extremely low in Japonica rice, suggesting a genetic bottleneck. The haplotype network showed that the DGWG and JKK alleles were derived in different lineages. The DGWG carrier (W1944) had unique polymorphisms in the surrounding region of the locus, suggesting that the DGWG allele has been preserved in the wild progenitor, rather than that the DGWG allele has been introgressed from HYVs to W1944. Although a semi-dwarfing plant is a weak competitor under saturated fields, the crossing experiment revealed that the DGWG variant might have been preserved as a hidden variation in the genetic background of wild rice, without expressing a short-stature.  相似文献   

20.
Plant height is an important agronomic trait. Dramatic increase in wheat yield during the“green revolution”is mainly due to the widespread utilization of the Reduced height (Rht)-1 gene. We analyzed th...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号