首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical and osmotic sensitivity of the transient receptor potential vanilloid 4 (TRPV4) channel depends on phospholipase A2 (PLA2) activation and the subsequent production of the arachidonic acid metabolites, epoxyeicosatrienoic acid (EET). We show that both high viscous loading and hypotonicity stimuli in native ciliated epithelial cells use PLA2-EET as the primary pathway to activate TRPV4. Under conditions of low PLA2 activation, both also use extracellular ATP-mediated activation of phospholipase C (PLC)-inositol trisphosphate (IP3) signaling to support TRPV4 gating. IP3, without being an agonist itself, sensitizes TRPV4 to EET in epithelial ciliated cells and cells heterologously expressing TRPV4, an effect inhibited by the IP3 receptor antagonist xestospongin C. Coimmunoprecipitation assays indicated a physical interaction between TRPV4 and IP3 receptor 3. Collectively, our study suggests a functional coupling between plasma membrane TRPV4 channels and intracellular store Ca2+ channels required to initiate and maintain the oscillatory Ca2+ signal triggered by high viscosity and hypotonic stimuli that do not reach a threshold level of PLA2 activation.  相似文献   

2.
Transient receptor potential channels are involved in sensing chemical and physical changes inside and outside of cells. TRPV3 is highly expressed in skin keratinocytes, where it forms a nonselective cation channel activated by hot temperatures in the innocuous and noxious range. The channel has also been implicated in flavor sensation in oral and nasal cavities as well as being a molecular target of some allergens and skin sensitizers. TRPV3 is unique in that its activity is sensitized upon repetitive stimulations. Here we investigated the role of calcium ions in the sensitization of TRPV3 to repetitive stimulations. We show that the sensitization is accompanied by a decrease of Ca(2+)-dependent channel inhibition mediated by calmodulin acting at an N-terminal site (amino acids 108-130) and by an acidic residue (Asp(641)) at the pore loop of TRPV3. These sites also contribute to the voltage dependence of TRPV3. During sensitization, the channel displayed a gradual shift of the voltage dependence to more negative potentials as well as uncoupling from voltage sensing. The initial response to ligand stimulation was increased and sensitization to repetitive stimulations was decreased by increasing the intracellular Ca(2+)-buffering strength, inhibiting calmodulin, or disrupting the calmodulin-binding site. Mutation of Asp(641) to Asn abolished the high affinity extracellular Ca(2+)-mediated inhibition and greatly facilitated the activation of TRPV3. We conclude that Ca(2+) inhibits TRPV3 from both the extracellular and intracellular sides. The inhibition is sequentially reduced, appearing as sensitization to repetitive stimulations.  相似文献   

3.
Transient Receptor Potential (TRP) proteins are non-selective cation channels performing diverse cellular functions. TRPV1 and TRPV4, two calcium-permeable channels of the vanilloid subfamily of TRP proteins, are activated by various physical and chemical stimuli, including noxious heat and mechanical stress, respectively. These channels are also required for exaggerated sensation of painful stimuli, condition referred to as hyperalgesia, which is frequently associated with inflammation. Phosphorylation of TRPV1, involving Protein Kinase C (PKC) and Protein Kinase A (PKA), appears to be the predominant mechanism for channel sensitization and development of heat hyperalgesia. PKC and PKA pathways have also been implicated in the sensitization of TRPV4, but the respective phosphorylation sites remain unknown. Using mass spectrometry, we report now that TRPV4 is phosphorylated on serine 824 by the PKC-activating phorbol 12-myristate 13-acetate. This phosphorylation is prevented by a PKC inhibitor, confirming the involvement of PKC. Ser824, located in the carboxy-terminal cytosolic tail of TRPV4, is also phosphorylated after activation of the PKA pathway by forskolin, albeit less potently. Substitution of Ser824 with aspartic acid, mimicking phosphorylation at this site, increased TRPV4-mediated calcium influx in resting and in stimulated cells, underlining the importance of this residue in TRPV4 regulation. Thus PKC, and possibly PKA, phosphorylate TRPV4 at Ser824 leading to the enhancement of TRPV4 channel function. Our findings suggest an important role of this phosphorylation in TRPV4 sensitization and the development of hyperalgesia.  相似文献   

4.
Ubiquitin (Ub)-mediated regulation of plasmalemmal ion channel activity canonically occurs via stimulation of endocytosis. Whether ubiquitination can modulate channel activity by alternative mechanisms remains unknown. Here, we show that the transient receptor potential vanilloid 4 (TRPV4) cation channel is multiubiquitinated within its cytosolic N-terminal and C-terminal intrinsically disordered regions (IDRs). Mutagenizing select lysine residues to block ubiquitination of the N-terminal but not C-terminal IDR resulted in a marked elevation of TRPV4-mediated intracellular calcium influx, without increasing cell surface expression levels. Conversely, enhancing TRPV4 ubiquitination via expression of an E3 Ub ligase reduced TRPV4 channel activity but did not decrease plasma membrane abundance. These results demonstrate Ub-dependent regulation of TRPV4 channel function independent of effects on plasma membrane localization. Consistent with ubiquitination playing a key negative modulatory role of the channel, gain-of-function neuropathy-causing mutations in the TRPV4 gene led to reduced channel ubiquitination in both cellular and Drosophila models of TRPV4 neuropathy, whereas increasing mutant TRPV4 ubiquitination partially suppressed channel overactivity. Together, these data reveal a novel mechanism via which ubiquitination of an intracellular flexible IDR domain modulates ion channel function independently of endocytic trafficking and identify a contributory role for this pathway in the dysregulation of TRPV4 channel activity by neuropathy-causing mutations.  相似文献   

5.
Recently, we described estrogen and agonists of the G-protein coupled estrogen receptor GPR30 to induce protein kinase C (PKC)ε-dependent pain sensitization. PKCε phosphorylates the ion channel transient receptor potential, vanilloid subclass I (TRPV1) close to a novel microtubule-TRPV1 binding site. We now modeled the binding of tubulin to the TRPV1 C-terminus. The model suggests PKCε phosphorylation of TRPV1-S800 to abolish the tubulin-TRPV1 interaction. Indeed, in vitro PKCε phosphorylation of TRPV1 hindered tubulin-binding to TRPV1. In vivo, treatment of sensory neurons and F-11 cells with estrogen and the GPR30 agonist, G-1, resulted in microtubule destabilization and retraction of microtubules from filopodial structures. We found estrogen and G-1 to regulate the stability of the microtubular network via PKC phosphorylation of the PKCε-phosphorylation site TRPV1-S800. Microtubule disassembly was not, however, dependent on TRPV1 ion conductivity. TRPV1 knock-down in rats inverted the effect of the microtubule-modulating drugs, Taxol and Nocodazole, on estrogen-induced and PKCε-dependent mechanical pain sensitization. Thus, we suggest the C-terminus of TRPV1 to be a signaling intermediate downstream of estrogen and PKCε, regulating microtubule-stability and microtubule-dependent pain sensitization.  相似文献   

6.
Transient receptor potential vanilloid (TRPV) channels, which include the thermosensitive TRPV1–V4, have large cytoplasmic regions flanking the transmembrane domain, including an N-terminal ankyrin repeat domain. We show that a multiligand binding site for ATP and calmodulin previously identified in the TRPV1 ankyrin repeat domain is conserved in TRPV3 and TRPV4, but not TRPV2. Accordingly, TRPV2 is insensitive to intracellular ATP, while, as previously observed with TRPV1, a sensitizing effect of ATP on TRPV4 required an intact binding site. In contrast, ATP reduced TRPV3 sensitivity and potentiation by repeated agonist stimulations. Thus, ATP and calmodulin, acting through this conserved binding site, are key players in generating the different sensitivity and adaptation profiles of TRPV1, TRPV3, and TRPV4. Our results suggest that competing interactions of ATP and calmodulin influence channel sensitivity to fluctuations in calcium concentration and perhaps even metabolic state. Different feedback mechanisms likely arose because of the different physiological stimuli or temperature thresholds of these channels.  相似文献   

7.
Sensory neuron-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are primate-specific proteins that are exclusively expressed in primary sensory neurons and provoke pain in humans. Hence, MRGPR-X1 represent promising targets for future pain therapy, but signaling pathways activated by MRGPR-X1 are poorly understood. The transient receptor potential cation channel V1 (TRPV1) is also expressed in primary sensory neurons and detects painful stimuli such as protons and heat. Gq-promoted signaling has been shown to sensitize TRPV1 via protein kinase C (PKC)-dependent phosphorylation. In addition, recent studies suggested TRPV1 activation via a Gq-mediated mechanism involving diacylglycerol (DAG) or phosphatidylinositol-4,5-bisphosphate (PIP2). However, it is not clear if DAG-promoted TRPV1 activation occurs independently from classic TRPV1 activation modes induced by heat and protons. Herein, we analyzed putative functional interactions between MRGPR-X1 and TRPV1 in a previously reported F11 cell line stably over-expressing MRGPR-X1. First, we found that MRGPR-X1 sensitized TRPV1 to heat and protons in a PKC-dependent manner. Second, we observed direct MRGPR-X1-mediated TRPV1 activation independent of MRGPR-X1-induced Ca2+-release and PKC activity or other TRPV1 affecting enzymes such as lipoxygenase, extracellular signal-regulated kinases-1/2, sarcoma, or phosphoinositide 3-kinase. Investigating several TRPV1 mutants, we observed that removal of the TRPV1 binding site for DAG and of the putative PIP2 sensor decreased MRGPR-X1-induced TRPV1 activation by 71 and 43%, respectively. Therefore, we demonstrate dual functional interactions between MRGPR-X1 and TRPV1, resulting in PKC-dependent TRPV1 sensitization and DAG/PIP2-mediated activation. The molecular discrimination between TRPV1 sensitization and activation may help improve the specificity of current pain therapies.  相似文献   

8.
Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3   总被引:2,自引:0,他引:2  
TRPV4, a member of the vanilloid subfamily of the transient receptor potential (TRP) channels, is activated by a variety of stimuli, including cell swelling, moderate heat, and chemical compounds such as synthetic 4alpha-phorbol esters. TRPV4 displays a widespread expression in various cells and tissues and has been implicated in diverse physiological processes, including osmotic homeostasis, thermo- and mechanosensation, vasorelaxation, tuning of neuronal excitability, and bladder voiding. The mechanisms that regulate TRPV4 in these different physiological settings are currently poorly understood. We have recently shown that the relative amount of TRPV4 in the plasma membrane is enhanced by interaction with the SH3 domain of PACSIN 3, a member of the PACSIN family of proteins involved in synaptic vesicular membrane trafficking and endocytosis. Here we demonstrate that PACSIN 3 strongly inhibits the basal activity of TRPV4 and its activation by cell swelling and heat, while leaving channel gating induced by the synthetic ligand 4alpha-phorbol 12,13-didecanoate unaffected. A single proline mutation in the SH3 domain of PACSIN 3 abolishes its inhibitory effect on TRPV4, indicating that PACSIN 3 must bind to the channel to modulate its function. In line herewith, mutations at specific proline residues in the N terminus of TRPV4 abolish binding of PACSIN 3 and render the channel insensitive to PACSIN 3-induced inhibition. Taken together, these data suggest that PACSIN 3 acts as an auxiliary protein of TRPV4 channel that not only affects the channel's subcellular localization but also modulates its function in a stimulus-specific manner.  相似文献   

9.
The vertebrate transient receptor potential cationic channel TRPV4 has been proposed as an osmo- and mechanosensor channel. Studies using knock-out animal models have further emphasized the relevance of the TRPV4 channel in the maintenance of the internal osmotic equilibrium and mechanosensation. However, at the cellular level, there is still one important question to answer: does the TRPV4 channel generate the Ca(2+) signal in those cells undergoing a Ca(2+)-dependent regulatory volume decrease (RVD) response? RVD in human airway epithelia requires the generation of a Ca(2+) signal to activate Ca(2+)-dependent K(+) channels. The RVD response is lost in airway epithelia affected with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator channel. We have previously shown that the defective RVD in CF epithelia is linked to the lack of swelling-dependent activation of Ca(2+)-dependent K(+) channels. In the present study, we show the expression of TRPV4 in normal human airway epithelia, where it functions as the Ca(2+) entry pathway that triggers the RVD response after hypotonic stress, as demonstrated by TRPV4 antisense experiments. However, cell swelling failed to trigger Ca(2+) entry via TRPV4 channels in CF airway epithelia, although the channel's response to a specific synthetic activator, 4 alpha-phorbol 12,13-didecanoate, was maintained. Furthermore, RVD was recovered in CF airway epithelia treated with 4 alpha-phorbol 12,13-didecanoate. Together, these results suggest that defective RVD in CF airway epithelia might be caused by the absence of a TRPV4-mediated Ca(2+) signal and the subsequent activation of Ca(2+)-dependent K(+) channels.  相似文献   

10.
TRPV4 is a cation channel that responds to a variety of stimuli including mechanical forces, temperature, and ligand binding. We set out to identify TRPV4-interacting proteins by performing yeast two-hybrid screens, and we isolated with the avian TRPV4 amino terminus the chicken orthologues of mammalian PACSINs 1 and 3. The PACSINs are a protein family consisting of three members that have been implicated in synaptic vesicular membrane trafficking and regulation of dynamin-mediated endocytotic processes. In biochemical interaction assays we found that all three murine PACSIN isoforms can bind to the amino terminus of rodent TRPV4. No member of the PACSIN protein family was able to biochemically interact with TRPV1 and TRPV2. Co-expression of PACSIN 3, but not PACSINs 1 and 2, shifted the ratio of plasma membrane-associated versus cytosolic TRPV4 toward an apparent increase of plasma membrane-associated TRPV4 protein. A similar shift was also observable when we blocked dynamin-mediated endocytotic processes, suggesting that PACSIN 3 specifically affects the endocytosis of TRPV4, thereby modulating the subcellular localization of the ion channel. Mutational analysis shows that the interaction of the two proteins requires both a TRPV4-specific proline-rich domain upstream of the ankyrin repeats of the channel and the carboxyl-terminal Src homology 3 domain of PACSIN 3. Such a functional interaction could be important in cell types that show distribution of both proteins to the same subcellular regions such as renal tubule cells where the proteins are associated with the luminal plasma membrane.  相似文献   

11.
Functional interaction between AQP2 and TRPV4 in renal cells   总被引:1,自引:0,他引:1  
We have previously demonstrated that renal cortical collecting duct cells (RCCD(1)), responded to hypotonic stress with a rapid activation of regulatory volume decrease (RVD) mechanisms. This process requires the presence of the water channel AQP2 and calcium influx, opening the question about the molecular identity of this calcium entry path. Since the calcium permeable nonselective cation channel TRPV4 plays a crucial role in the response to mechanical and osmotic perturbations in a wide range of cell types, the aim of this work was to test the hypothesis that the increase in intracellular calcium concentration and the subsequent rapid RVD, only observed in the presence of AQP2, could be due to a specific activation of TRPV4. We evaluated the expression and function of TRPV4 channels and their contribution to RVD in WT-RCCD(1) (not expressing aquaporins) and in AQP2-RCCD(1) (transfected with AQP2) cells. Our results demonstrated that both cell lines endogenously express functional TRPV4, however, a large activation of the channel by hypotonicity only occurs in cells that express AQP2. Blocking of TRPV4 by ruthenium red abolished calcium influx as well as RVD, identifying TRPV4 as a necessary component in volume regulation. Even more, this process is dependent on the translocation of TRPV4 to the plasma membrane. Our data provide evidence of a novel association between TRPV4 and AQP2 that is involved in the activation of TRPV4 by hypotonicity and regulation of cellular response to the osmotic stress, suggesting that both proteins are assembled in a signaling complex that responds to anisosmotic conditions.  相似文献   

12.
Vanilloid receptors of the transient receptor potential family have functions in thermal sensation and nociception. Among them, transient receptor potential vanilloid (TRPV)3 displays a unique property by which the repeated stimulation causes successive increases in its activity. The property has been known as sensitization and is observed in both native cells and cells heterologously expressing TRPV3. Transient increases in intracellular calcium levels have been implicated to play a key role in this process by mediating interaction of calmodulin with the channel. In support of the mechanism, BAPTA, a fast calcium chelator, accelerates the sensitization, whereas the slow chelator EGTA is ineffectual. Here, we show that the sensitization of TRPV3 also occurred independently of Ca(2+). It was observed in both inside-out and outside-out membrane patches. BAPTA, but not EGTA, has a direct potentiation effect on channel activation. Analogues of BAPTA lacking Ca(2+)-buffering capability were similarly effective. The stimulation-induced sensitization and the potentiation by BAPTA are distinguishable in reversibility. We conclude that the sensitization of TRPV3 is intrinsic to the channel itself and occurs as a result of hysteresis of channel gating. BAPTA accelerates the sensitization process by potentiating the gating of the channel.  相似文献   

13.
The transient receptor potential vanilloid 2 (TRPV2) ion channel is activated by a chemical ligand (2-aminoethoxydiphenyl borate; 2-APB), noxious heat and mechanical stimulation. In a heterologous mammalian cell expression system, the oxidant chloramine T (ChT) sensitizes TRPV2 activation in response to 2-APB and heat by oxidation of methionine residues at positions 528 and 607 in rat TRPV2. Here, we used a Xenopus oocyte expression system to determine whether ChT-mediated oxidation can also sensitize TRPV2 to mechanical stimulation. In this system, we confirmed that ChT sensitized TRPV2 activation in response to 2-APB and heat, but we detected no sensitization to mechanical stimulation. This result suggests that the activation mechanism of TRPV2 by a chemical ligand and heat differs from that for mechanical stimulation. Further, we demonstrated that two-electrode voltage clamp recording in the Xenopus oocyte expression system is an excellent format for high throughput analysis of oxidization of redox-sensitive TRP channels.  相似文献   

14.
Jin M  Berrout J  Chen L  O'Neil RG 《Cell calcium》2012,51(2):131-139
The mouse cortical collecting duct (CCD) M-1 cells were grown to confluency on coverslips to assess the interaction between TRPV4 and Ca(2+)-activated K(+) channels. Immunocytochemistry demonstrated strong expression of TRPV4, along with the CCD marker, aquaporin-2, and the Ca(2+)-activated K(+) channels, the small conductance SK3 (K(Ca)2.3) channel and large conductance BKα channel (K(Ca)1.1). TRPV4 overexpression studies demonstrated little physical dependency of the K(+) channels on TRPV4. However, activation of TRPV4 by hypotonic swelling (or GSK1016790A, a selective agonist) or inhibition by the selective antagonist, HC-067047, demonstrated a strong dependency of SK3 and BK-α activation on TRPV4-mediated Ca(2+) influx. Selective inhibition of BK-α channel (Iberiotoxin) or SK3 channel (apamin), thereby depolarizing the cells, further revealed a significant dependency of TRPV4-mediated Ca(2+) influx on activation of both K(+) channels. It is concluded that a synergistic cross-talk exists between the TRPV4 channel and SK3 and BK-α channels to provide a tight functional regulation between the channel groups. This cross-talk may be progressive in nature where the initial TRPV4-mediated Ca(2+) influx would first activate the highly Ca(2+)-sensitive SK3 channel which, in turn, would lead to enhanced Ca(2+) influx and activation of the less Ca(2+)-sensitive BK channel.  相似文献   

15.
Molecular determinants in TRPV5 channel assembly   总被引:8,自引:0,他引:8  
The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional characteristics regarding Ca(2+)-dependent inactivation, ion selectivity, and pharmacological block. Glutathione S-transferase pull-downs and co-immunoprecipitations demonstrated an essential role of the intracellular N- and C-tails in TRPV5 channel assembly by physical interactions between N-N tails, C-C tails, and N-C-tails. Patch clamp analysis in human embryonic kidney (HEK293) cells and (45)Ca(2+) uptake experiments in Xenopus laevis oocytes co-expressing TRPV5 wild-type and truncated proteins indicated that TRPV5 Delta N (deleted N-tail) and TRPV5 Delta C (deleted C-tail) decreased channel activity of wild-type TRPV5 in a dominant-negative manner, whereas TRPV5 Delta N Delta C (deleted N-tail/C-tail) did not affect TRPV5 activity. Oocytes co-expressing wild-type TRPV5 and TRPV5 Delta N or TRPV5 Delta C showed virtually no wild-type TRPV5 expression on the plasma membrane, whereas co-expression of wild-type TRPV5 and TRPV5 Delta N Delta C displayed normal channel surface expression. This indicates that TRPV5 trafficking toward the plasma membrane was disturbed by assembly with TRPV5 Delta N or TRPV5 Delta C but not with TRPV5 Delta N Delta C. TRPV5 channel assembly signals were refined between amino acid positions 64-77 and 596-601 in the N-tail and C-tail, respectively. Pull-down assays and co-immunoprecipitations demonstrated that N- or C-tail mutants lacking these critical assembly domains were unable to interact with tails of TRPV5. In conclusion, two domains in the N-tail (residues 64-77) and C-tail (residues 596-601) of TRPV5 are important for channel subunit assembly, subsequent trafficking of the TRPV5 channel complex to the plasma membrane, and channel activity.  相似文献   

16.
Transient receptor potential vanilloid channel 4 (TRPV4) is a polymodally activated nonselective cationic channel implicated in the regulation of vasodilation and hypertension. We and others have recently shown that cyclic stretch and shear stress activate TRPV4-mediated calcium influx in endothelial cells (EC). In addition to the mechanical forces, acetylcholine (ACh) was shown to activate TRPV4-mediated calcium influx in endothelial cells, which is important for nitric oxide-dependent vasodilation. However, the molecular mechanism through which ACh activates TRPV4 is not known. Here, we show that ACh-induced calcium influx and endothelial nitric oxide synthase (eNOS) phosphorylation but not calcium release from intracellular stores is inhibited by a specific TRPV4 antagonist, AB-159908. Importantly, activation of store-operated calcium influx was not altered in the TRPV4 null EC, suggesting that TRPV4-dependent calcium influx is mediated through a receptor-operated pathway. Furthermore, we found that ACh treatment activated protein kinase C (PKC) α, and inhibition of PKCα activity by the specific inhibitor Go-6976, or expression of a kinase-dead mutant of PKCα but not PKCε or downregulation of PKCα expression by chronic 12-O-tetradecanoylphorbol-13-acetate treatment, completely abolished ACh-induced calcium influx. Finally, we found that ACh-induced vasodilation was inhibited by the PKCα inhibitor Go-6976 in small mesenteric arteries from wild-type mice, but not in TRPV4 null mice. Taken together, these findings demonstrate, for the first time, that a specific isoform of PKC, PKCα, mediates agonist-induced receptor-mediated TRPV4 activation in endothelial cells.  相似文献   

17.
Transient receptor potential (TRP) channels as cellular sensors are thought to function as tetramers. Yet, the molecular determinants governing channel multimerization remain largely elusive. Here we report the identification of a segment comprising 21 amino acids (residues 752-772 of mouse TRPV1) after the known TRP-like domain in the channel C terminus that functions as a tetrameric assembly domain (TAD). Purified recombinant C-terminal proteins of TRPV1-4, but not the N terminus, mediated the protein-protein interaction in an in vitro pulldown assay. Western blot analysis combined with electrophysiology and calcium imaging demonstrated that TAD exerted a robust dominant-negative effect on wild-type TRPV1. When fused with the membrane-tethered peptide Gap43, the TAD blocked the formation of stable homomultimers. Calcium imaging and current recordings showed that deletion of the TAD in a poreless TRPV1 mutant subunit suppressed its dominant-negative phenotype, confirming the involvement of the TAD in assembly of functional channels. Our findings suggest that the C-terminal TAD in TRPV1 channels functions as a domain that is conserved among TRPV1-4 and mediates a direct subunit-subunit interaction for tetrameric assembly.  相似文献   

18.
Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel expressed predominantly in peripheral nociceptors. By detecting and integrating diverse noxious thermal and chemical stimuli, and as a result of its sensitization by inflammatory mediators, the TRPV1 receptor plays a key role in inflammation-induced pain. Activation of TRPV1 leads to a cascade of pro-nociceptive mechanisms, many of which still remain to be identified. Here, we report a novel effect of TRPV1 on the activity of the potassium channel KCNQ2/3, a negative regulator of neuronal excitability. Using ion influx assays, we revealed that TRPV1 activation can abolish KCNQ2/3 activity, but not vice versa, in human embryonic kidney (HEK)293 cells. Electrophysiological studies showed that coexpression of TRPV1 caused a 7.5-mV depolarizing shift in the voltage dependence of KCNQ2/3 activation compared with control expressing KCNQ2/3 alone. Furthermore, activation of TRPV1 by capsaicin led to a 54% reduction of KCNQ2/3-mediated current amplitude and attenuation of KCNQ2/3 activation. The inhibitory effect of TRPV1 appears to depend on Ca(2+) influx through the activated channel followed by Ca(2+)-sensitive depletion of phosphatidylinositol 4,5-bisphosphate and activation of protein phosphatase calcineurin. We also identified physical interactions between TRPV1 and KCNQ2/3 coexpressed in HEK293 cells and in rat dorsal root ganglia neurons. Mutation studies established that this interaction is mediated predominantly by the membrane-spanning regions of the respective proteins and correlates with the shift of KCNQ2/3 activation. Collectively, these data reveal that TRPV1 activation may deprive neurons from inhibitory control mediated by KCNQ2/3. Such neurons may thus have a lower threshold for activation, which may indirectly facilitate TRPV1 in integrating multiple noxious signals and/or in the establishment or maintenance of chronic pain.  相似文献   

19.
Heightened nociceptor function caused by inflammatory mediators such as bradykinin (BK) contributes to increased pain sensitivity (hyperalgesia) to noxious mechanical and thermal stimuli. Although it is known that sensitization of the heat transducer TRPV1 largely subserves thermal hyperalgesia, the cellular mechanisms underlying mechanical hyperalgesia have been elusive. The role of the mechanically activated (MA) channel piezo2 (known as FAM38B) present in mammalian sensory neurons is unknown. We test the hypothesis that piezo2 activity is enhanced by BK, an algogenic peptide that induces mechanical hyperalgesia within minutes. Piezo2 current amplitude is increased and inactivation is slowed by bradykinin receptor beta 2 (BDKRB2) activation in heterologous expression systems. Protein kinase A (PKA) and protein kinase C (PKC) agonists enhance piezo2 activity. BDKRB2-mediated effects are abolished by PKA and PKC inhibitors. Finally, piezo2-dependent MA currents in a class of native sensory neurons are enhanced 8-fold by BK via PKA and PKC. Thus, piezo2 sensitization may contribute to PKA- and PKC-mediated mechanical hyperalgesia.  相似文献   

20.
The vanilloid receptor-1 (TRPV1) plays a key role in the perception of peripheral thermal and inflammatory pain. TRPV1 expression and channel activity are notably up-regulated by proalgesic agents. The transduction pathways involved in TRPV1 sensitization are still elusive. We have used a yeast two-hybrid screen to identify proteins that associate with the N terminus of TRPV1. We report that two vesicular proteins, Snapin and synaptotagmin IX (Syt IX), strongly interact in vitro and in vivo with the TRPV1 N-terminal domain. In primary dorsal root ganglion neurons, TRPV1 co-distributes in vesicles with Syt IX and the vesicular protein synaptobrevin. Neither Snapin nor Syt IX affected channel function, but they notably inhibited protein kinase C (PKC)-induced potentiation of TRPV1 channel activity with a potency that rivaled the blockade evoked by botulinum neurotoxin A, a potent blocker of neuronal exocytosis. Noteworthily, we found that PKC activation induced a rapid delivery of functional TRPV1 channels to the plasma membrane. Botulinum neurotoxin A blocked the TRPV1 membrane translocation induced by PKC that was activated with a phorbol ester or the metabotropic glutamate receptor mGluR5. Therefore, our results indicate that PKC signaling promotes at least in part the SNARE-dependent exocytosis of TRPV1 to the cell surface. Taken together, these findings imply that activity-dependent delivery of channels to the neuronal surface may contribute to the buildup and maintenance of thermal inflammatory hyperalgesia in peripheral nociceptor terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号