首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingolipids have been implicated in various cellular processes including growth, cell-cell or ligand-receptor interactions, and differentiation. In addition to their importance as reservoirs of metabolites with important signaling properties, sphingolipids also help provide structural order to plasma membrane lipids and proteins within the bilayer. Glycosylated sphingolipids, and sphingomyelin in particular, are involved in the formation of lipid rafts. Although it is well accepted that ceramide, the backbone of all sphingolipids, plays a critical role in apoptosis, less is known about the biological functions of glycosphingolipids. This review summarizes current knowledge of the involvement of glycosphingolipids in cell death and in other pathological processes and diseases. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
3.
Glycosphingolipids in cell surface recognition.   总被引:6,自引:2,他引:4  
R L Schnaar 《Glycobiology》1991,1(5):477-485
  相似文献   

4.
5.
Drug resistance, an all too frequent characteristic of cancer, represents a serious barrier to successful treatment. Although many resistance mechanisms have been described, those that involve membrane-resident proteins belonging to the ABC (ATP binding cassette) transporter superfamily are of particular interest. In addition to cancer, the ABC transporter proteins are active in diseases such as malaria and leishmaniasis. A recent renaissance in lipid metabolism, specifically ceramide and sphingolipids, has fueled research and provided insight into the role of glycosphingolipids in multidrug resistance. This article reviews current knowledge on ceramide, glucosylceramide synthase and cerebrosides, and the relationship of these lipids to cellular response to anticancer agents.  相似文献   

6.
Obesity is associated with an increased risk for insulin resistance, a state characterized by impaired responsiveness of liver, muscle and adipose tissue to insulin. One class of lipids involved in the development of insulin resistance are the (glyco)sphingolipids. Ceramide, the most simple sphingolipid, directly inhibits phosphorylation of the insulin signaling mediator Akt/Protein Kinase B. More complex glycosphingolipids, so-called gangliosides, block phosphorylation of the insulin receptor and down-stream signaling, possibly by exclusion of the insulin receptor from specific membrane domains. Pharmacological inhibition of glycosphingolipid synthesis is found to markedly improve insulin sensitivity in rodent models of insulin resistance. Partial glycosphingolipid reduction is well tolerated and may thus offer an attractive new treatment modality for obesity-induced insulin resistance and type II diabetes.  相似文献   

7.
Drug resistance, an all too frequent characteristic of cancer, represents a serious barrier to successful treatment. Although many resistance mechanisms have been described, those that involve membrane-resident proteins belonging to the ABC (ATP binding cassette) transporter superfamily are of particular interest. In addition to cancer, the ABC transporter proteins are active in diseases such as malaria and leishmaniasis. A recent renaissance in lipid metabolism, specifically ceramide and sphingolipids, has fueled research and provided insight into the role of glycosphingolipids in multidrug resistance. This article reviews current knowledge on ceramide, glucosylceramide synthase and cerebrosides, and the relationship of these lipids to cellular response to anticancer agents.  相似文献   

8.
Glycosphingolipids and antitumor immunity   总被引:3,自引:0,他引:3  
  相似文献   

9.
10.
The expanded polyglutamine (polyQ) tracts observed in autosomal dominant neurodegenerative disorders have the tendency to form intracellular aggregates, thus enhancing apoptotic cell death and the formation of autophagic vesicles. PolyQ accumulation inhibits the ER-associated degradation system (ERAD) resulting in reduced retrotranslocation from the ER and increased accumulation of misfolded proteins in the lumen of ER. Autophagy is an early cellular defense mechanism associated with ER stress, but prolonged ER stress may induce autophagic cell death, with destruction of cellular components and apoptotic cell death. Endoplasmic reticulum (ER) stress may be the key signal for both of these events.  相似文献   

11.
12.
Neutral glycolipids and gangliosides from seven human urothelial cell lines, differing in grades of transformation (TGr), were characterized by fast atom bombardment mass spectrometry, exoglycosidase treatment and an immunostaining procedure. The major neutral glycolipids identified in all cell lines studied included CMH, CDH, CTH, globoside and paragloboside, the gangliosides were GM3, GM2, sialosylparagloboside and GD1a. The following observations were made: 1. GM2 was the major ganglioside in the TGrll cell lines (non-tumorigenic, non-invasive), but a minor component in the TGrIII cell lines (tumorigenic, invasive). 2. All components showed C16:0 and C24:0 as major fatty acids, but in the TGrIII cell lines the fatty acid composition of CMH and some of the gangliosides were more complex showing unsaturated and hydroxy-fatty, acids as well.Abbreviations CMH Monohexosylceramide - CDH Lactosylceramide (Galß1-4GlcCer) - CTH Globotriaosylceramide (Gal1-4Galß1-4GlcCer) - Globoside (GalNAcß1-3Gal1-4Galß1-4GlcCer) - Paragloboside (Galß1-4GlcNacß1-3Galß1-4GlcCer) - 3LM1 Slalosylparagloboside (Neu5Ac2-3Galß1-4GlcNacß1-3Galß1-4GlcCer) - Aslalo-GM2 (GalNAcß1-4Galß1-4GlcCer) - AsialoGM1 (Galß1-3GalNAcß1-4Galß1-4GlcCer) - Hex Hexosyl - HexNAc 2-acetamido-2-deoxyhexosyl - HPTLC high performance thin layer chromatography - FAB-MS fastatom bombardment mass spectrometry - TGr transformation grade Ganglios are named according to Svennerholm [1]  相似文献   

13.
Glycosphingolipids of human plasma   总被引:2,自引:0,他引:2  
A number of glycosphingolipids, including 10 gangliosides, not previously identified in human plasma have been characterized. The plasma contains 2 micrograms of lipid-bound sialic acid/ml plasma and 54% of the gangliosides are monosialo, 30% disialo, 10% trisialo, and 6% tetrasialo. Individual glycosphingolipids were purified by high-performance liquid chromatography and thin-layer chromatography, and were characterized on the basis of their chromatographic mobility, carbohydrate composition, hydrolysis by glycosidases, methylation analysis, and immunostaining with anti-glycosphingolipid antibodies. The monosialogangliosides were identified as GM3, GM2, sialosyl(2-3)- and sialosyl(2-6)lactoneotetraosylceramides, sialosyllacto-N-nor-hexaosylceramide, and sialosyllacto-N-isooctaosylceramide. The major gangliosides in the polysialo fractions contained a ganglio-N-tetraose backbone and were identified as GD3, GD1a, GD1b, and GQ1b. The most abundant neutral glycosphingolipids were glucosyl, lactosyl, globotriaosyl, globotetraosyl and lactoneotetraosylceramides. The other neutral glycosphingolipids, tentatively identified by immunostaining with monoclonal antibodies, contained H1, Lea, Leb, and lacto-N-fucopentose III (X hapten) structures.  相似文献   

14.
As part of a program to investigate the behavior and interactions of glycolipids in biological membranes we have synthesized spin-labeled derivatives of 2 families of carbohydrate-bearing ceramides (glycosphingolipids): simple neutral glycolipids and gangliosides. Galactosyl ceramide has been synthesized with the spin label at 3 different positions on the fatty acid chain. It has been studied in bilayers of various different lipids and lipid mixtures and compared to the corresponding phospholipid spin labels. Considerable similarity has been found between the behavior of galactosyl ceramide and phosphatidylcholine. These similarities include a negligible flip-flop rate, a flexibility gradient in the acyl chains, and exclusion from phosphatidylserine domains in the face of a Ca2+-induced lateral phase separation. Evidence for dramatic clustering of simple neutral glycolipids has not been found. Glycosphingolipids do seem to have the capacity to increase rigidity in fluid lipid bilayers. A general procedure has been developed for covalent attachment of a nitroxide spin label to the headgroup region of complex glycolipids such as gangliosides. Studies of beef brain gangliosides labeled in this manner and incorporated into bilayers of phosphatidylcholine indicate that the headgroup oligosaccharides are in rapid, random motion as opposed to being in any way immobilized. This headgroup mobility depends very little on the fluidity or rigidity of the bilayer. However, headgroup mobility decreases, perhaps as a result of cooperative headgroup interactions, with increasing bilayer concentration of unlabeled ganglioside.  相似文献   

15.
The regulation of glycosphingolipid (GSL) synthesis in culture by fusion-competent (E63) myoblasts and fusion-defective (fu-1) cells was examined. Upon reaching confluency E63 cells fused to form multinucleated myotubes and demonstrated many characteristics of developing skeletal muscle including induction of creatine kinase activity and a shift in creatine kinase isozymes to the MM isoform. The fu-1 cells displayed none of these characteristics, despite the fact that both cells were cloned from the same parental myoblast line (rat L8). There was a transient increase in the synthesis of total neutral GSLs by E63 cells at the time of membrane fusion. In contrast, neutral GSL synthesis by fu-1 cells gradually decreased with time in culture. The major GSLs synthesized by both cell types were lactosylceramide and ganghoside GM3, with more complex structures being observed with prolonged time in culture. Several glycosyltransferase activities were assayed at varying times in culture. Generally, the changes in activities fell into three groups. One group was maximally activated at the end of the culture period (GalT-3, GalNAcT-1 and GalT-6). Another group was maximally activated during the time of active membrane fusion (GlcT and SAT-1). A third group was maximally activated at the time of cell contact and the beginning of membrane fusion (GlcNAcT-1 and GalT-2). In terms of the times of maximal activation there were few differences between E63 and fu-1 cells, with one notable exception. The activity of GalT-2 (lactosylceramide synthase) in E63 cells increased dramatically upon contact and the beginning of membrane fusion, whereas there were no changes in GalT-2 activity in fu-1 cells during time in culture. These results support our hypothesis that membrane glycosphingolipids play an important role in the differentiation of skeletal muscle cells.Abbreviations GSL glycosphingolipid - CK creatine kinase - HPTLC high performance thin layer chromatography - PMSF phenylmethylsulfonyl fluoride - CTH ceramide trihexoside (GbOse3Cer) - GlcCer glycosylceramide - LacC N-acetylglucosamine - NeuNAc N-acetylneuraminic acid (sialic acid)  相似文献   

16.
Neutral and acidic glycosphingolipids were purified from porcine pancreas by chromatography on columns of DEAE-Sephadex and Iatrobeads. The chemical structures of the purified glycolipids were determined by carbohydrate analysis, methylation analysis, enzyme treatment, fatty acid analysis, NMR and IR. The major glycolipid of porcine pancreas was Gal(alpha,1-4)Gal(beta,1-)ceramide. Gangliosides GM3 and GD3 were major acidic components and galactosylceramide 3-sulfate was also found.  相似文献   

17.
To elucidate the biological significance of the lactosylceramide (LacCer) branching in glycosphingolipid (GSL) biosynthesis, we established ganglioside GM3- and lactosylsulfatide SM3-reconstituted cells by introducing the GM3 synthase gene and the sulfotransferase gene, respectively. In SM3-expressing cells, the reduction of beta1 integrin mRNA expression, the reduced adhesivity to fibronectin and laminin, and the suppression of anchorage-independent growth (tumorigenic potential) were observed. On the other hand, in GM3-expressing cells, anchorage-independent growth was promoted and the expression of PDGF alpha receptor mRNA was specifically reduced. Interestingly enough, no change in anchorage-dependent growth was observed in these cells, and tumorigenic signals were controlled selectively in both positive and negative directions. Thus, the spatio-temporal, gene expression control mechanism by individual GSL molecules accumulating in the cell membrane microdomain (raft) has been proven.  相似文献   

18.
19.
To elucidate the biological significance of the lactosylceramide (LacCer) branching in glycosphingolipid (GSL) biosynthesis, we established ganglioside GM3- and lactosylsulfatide SM3-reconstituted cells by introducing the GM3 synthase gene and the sulfotransferase gene, respectively. In SM3-expressing cells, the reduction of β1 integrin mRNA expression, the reduced adhesivity to fibronectin and laminin, and the suppression of anchorage-independent growth (tumorigenic potential) were observed. On the other hand, in GM3-expressing cells, anchorage-independent growth was promoted and the expression of PDGFα receptor mRNA was specifically reduced. Interestingly enough, no change in anchorage-dependent growth was observed in these cells, and tumorigenic signals were controlled selectively in both positive and negative directions. Thus, the spatio-temporal, gene expression control mechanism by individual GSL molecules accumulating in the cell membrane microdomain (raft) has been proven. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Glycosphingolipids of human aorta   总被引:1,自引:0,他引:1  
The structures of the main gangliosides of human aorta (intima and media) were elucidated. The main component (67%) was identified as N-acetylneuraminosyl-lactosylceramide (ganglioside GM3). The aorta tissue contained also gangliosides GM1, GD3, GD1a, and GT1. All sialic acid residues in gangliosides were present as N-acetyl-neuraminosyl derivatives. Among neutral glycosphingolipids of human aorta, the main components were identified as glucosylceramide, lactosylceramide, globotriaosylceramide and globotetraosylceramide. The preliminary data suggest that the composition of the investigated glycosphingolipids in tissue might vary upon atherosclerosis lesions of aorta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号