首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study has been made of the basal dendrites of Meynert cells in the striate cortex of the macaque monkey in sections parallel to the pial surface impregnated by the Golgi technique. The longest basal dendrite observed extended up to 0.6 mm and the average length of the longest dendrite on each cell was about 0.28 mm. In general, the dendritic field was in the form of an ellipse with mean major and minor axes of 0.22 mm and 0.11 mm respectively, and encompassing an area of about 0.13 mm2. The directions of the major axes were perpendicular to the lunate sulcus in the sections adjacent to the lunate sulcus, and parallel to the horizontal meridian in sections taken from the region of the representation of the meridian, suggesting that the basal dendritic fields are orientated in parallel with the directions of the ocular dominance bands.  相似文献   

2.
Peaks in more than 5000 spike train correlograms, obtained from monkey striate cortex, were measured. Earlier work had shown qualitatively that there are frequent prominent peaks having widths in a range around 50 ms, and narrower peaks less than about 7 ms wide. Here we demonstrate that the distribution of peak widths shows a dichotomy.  相似文献   

3.
4.
5.
The basal dendrites of Meynert cells in the striate cortex have been studied with the Golgi method in the brains of monkeys that had been reared for varying periods with the eyelids closed over one eye. The lengths and arrangement of the dendrites were compared with those in normal brains. In the visually deprived brain almost half of the cells had basal dendrites that were apparently normal with the dendritic fields in the form of an ellipse and the long axes parallel to the direction of the ocular dominance bands. The other cells had dendritic fields that have rarely been seen in normal material and two distinct types could be recognized. The 'lop-sided' cell had an ellipsoidal dendritic field with the major axis parallel to the ocular dominance bands, but the extents of the dendrites along the minor axis were very asymmetric; the ratio of the means of the long and short arms of the minor axis of the 'lop-sided' cell is 2.3:1 compared with 1.1:1 in normal brains. The 'perpendicular' type of cell also had an ellipsoidal dendritic field but the relation of the major and minor axes to the direction of the ocular dominance bands was the reverse of the normal cell, with the long axis of the ellipse being aligned perpendicular to the bands. 'Lop-sided' cells formed approximately 18% of the total of Meynert cells studied and the 'perpendicular' 32%. The proportion of the cells with abnormal basal dendritic fields, and particularly the 'perpendicular', increased with longer durations of eyelid closure. It is suggested that the alterations in the dendritic fields of the 'lop-sided' and 'perpendicular' cells may be correlated with the changes in width of the ocular dominance bands that are known to occur after monocular eyelid suture.  相似文献   

6.
The responses of cortical cells to gratings and bars were compared. The excitatory and inhibitory on-and off-zones of a simple cell are composed of on- and off-subfields of CGL. Any zone is formed by an opponent pair of subfields one of which gives an excitatory effect, the other — inhibitory. Such organization assumes the linear properties of a simple field. The deviations from linearity are due to spatial dis-placements of the subfields, heterogeneity of subfields, or the absence of one subfield in the opponent pair. Subfields may be both phasic and tonic, even in the same RF. Analysis of the most common type of a complex cell with modulated responses against unmodulated background shows that a mask eliminating stimulation of any half of the RF causes (according to the theory of filtres) increasing the bandwidth due to the increase or the appearance of responses to side low and high frequencies. The modulated components of the responses from both halves of the RF are out of phase. Analysis of this fact and the responses to thin bars suggests that a complex field is formed by linear and nonlinear subsystems converging onto output neuron. Other types of complex fields are organized by different combinations of subsystems. Limited in area by masking the RF responds to much higher spatial frequencies than the whole RF. The optimal frequency in two-dimensional spatial frequency characteristics of the RF does not change with orientation. Simple RFs and a part of complex RF calculate the amplitude and the phase of the stimulus, the other part of complex RFs (with unmodulated response) calculate only amplitude. Given all this, the RFs are grating filters of spatial frequency.  相似文献   

7.
A nerve net model for the visual cortex of higher vertebrates is presented. A simple learning procedure is shown to be sufficient for the organization of some essential functional properties of single units. The rather special assumptions usually made in the literature regarding preorganization of the visual cortex are thereby avoided. The model consists of 338 neurones forming a sheet analogous to the cortex. The neurones are connected randomly to a retina of 19 cells. Nine different stimuli in the form of light bars were applied. The afferent connections were modified according to a mechanism of synaptic training. After twenty presentations of all the stimuli individual cortical neurones became sensitive to only one orientation. Neurones with the same or similar orientation sensitivity tended to appear in clusters, which are analogous to cortical columns. The system was shown to be insensitive to a background of disturbing input excitations during learning. After learning it was able to repair small defects introduced into the wiring and was relatively insensitive to stimuli not used during training.  相似文献   

8.
Receptive field position and orientation disparities are both properties of binocularly discharged striate neurons. Receptive field position desparities have been used as a key element in the neural theory for binocular depth discrimination. Since most striate cells in the cat are binocular, these position disparities require that cells immediately adjacent to one another in the cortex should show a random scatter in their monocular receptive field positions. Superimposed on the progressive topographical representation of the visual field on the striate cortex there is experimental evidence for a localized monocular receptive field position scatter. The suggestion is examined that the binocular position disparities are built up out of the two monocular position scatters. An examination of receptive field orientation disparities and their relation to the random variation in the monocular preferred orientations of immediately adjacent striate neurons also leads to the conclusion that binocular orientation disparities are a consequence of the two monocular scatters. As for receptive field position, the local scatter in preferred orientation is superimposed on a progressive representation of orientation over larger areas of the cortex. The representation in the striate cortex of visual field position and of stimulus orientation is examined in relation to the correlation between the disparities in receptive field position and preferred orientation. The role of orientation disparities in binocular vision is reviewed.  相似文献   

9.
The mechanism mediating the adaptation of cortical Area 17 oriented line detector cells is modeled. A novel form of environment and convergence property (which places a requirement on distribution of optimal stimuli) is utilized to show that classical concepts of synaptic efficiency loss due only to disuse are inadequate under the convergence property. A reasonable alternative is presented: a form of synaptic control which reduces synaptic efficiency at non-active synapses as a function of cell firing rate. We show that adequate solutions to our convergence property exist for members of this class. Simulations of this adequate mechanism indicate that under the very disjoint environment defined, small perturbations of the environment's distribution of stimuli may lead to large perturbations of the distribution of stimuli to which Area 17 cells are optimally responsive. A simulation indicates that this effect may be accentuated by a lateral interaction which causeslike cell optimal stimuli to form near each other in cortex; and the effect may be reduced by a lateral interaction which causes like cell optimal stimuli to not form near each other. A form of neurophysiological experiment is suggested for verification.  相似文献   

10.
11.
12.
The visual topography within striate and lateral extrastriate visual cortices was studied in adult hamsters. The cortical areas 17 and 18a in the left hemisphere were electrophysiologically mapped upon stimulation of the right eye, correlating receptive field positions in the visual field with cortical recording sites. Reference lesions were placed at selected cortical sites. Like in rats and other mammals, the lateral extrastriate cortex contained multiple representations of the visual field. Rostral area 18a contained the rostrolateral maps, with medial and lateral divisions. More caudally and sharing a common border with V1, maps in lateromedial, posterolateral and posterior areas were found. More laterally and forming a "third tier" of visual maps, anterolateral, laterolateral-anterior, laterolateral and laterolateral-posterior areas were found. There was also an indication of a possible pararhinal map. The plan so defined is virtually identical to that of rats. The results may be useful to understand a basic mammalian plan in the organization of the visual cortex.  相似文献   

13.
14.
15.
Recent studies of primary visual cortex (V1) redefine layers 3 and 4 of V1 in monkeys and show that monkeys, apes and humans have different laminar specializations. Projections from V1 define a smaller, but complete, third visual area, and a dorsomedial area. The middle temporal visual area has two types of motion-sensitive modules with inputs from cytochrome oxidase columns in V1. Second-level somatosensory areas have been described in humans, and a second-level auditory area is shown to respond to somatosensory stimuli.  相似文献   

16.
In the visual cortex of the monkey the horizontal organization of the preferred orientations of orientation-selective cells follows two opposing rules:(1) neighbors tend to have similar orientation preferences, and(2) many different orientations are observed in a local region. We have described a classification for orientation maps based on the types of topological singularities and the spacing of these singularities relative to the cytochrome oxidase blobs. Using the orientation drift rate as a measure we have compared simulated orientation maps to published records of horizontal electrode recordings.  相似文献   

17.
The principal target of lateral geniculate nucleus in the cat visual cortex is the stellate neurons of layer 4. In previously reported work with intracellular recording and extracellular stimulation in slices of visual cortex, three general classes of fast excitatory synaptic potentials (EPSPs) in layer 4a spiny stellate neurons were identified. One of these classes, characterized by large and relatively invariant amplitudes (mean 1.7 mV, average coefficient of variation (CV) 0.083) were attributed to the action of geniculate axons because, unlike the other two classes, they could not be matched by intracortical inputs, using paired recording. We have examined in detail the properties of this synaptic input in twelve examples, selecting for study those EPSPs where there was secure extracellular stimulation of the single fibre input to a pair of stimuli 50 ms apart. In our analysis, we conclude that the depression that these inputs show to the second stimulus is entirely postsynaptic, since the evidence strongly suggests that the probability of transmitter release at the synaptic site(s) remains 1.0 for both stimuli. We argue that the most plausible explanation for this postsynaptic depression is a reduction in the average probability of opening the synaptic channels. Using a simple biochemical analysis (c.f. Sigworth plot), it is then possible to calculate the number of synaptic channels and their probability of opening, for each of the 12 connections. The EPSPs had a mean amplitude of 1.91 mV (+/- 1.3 mV SD) and a mean CV of 0.067 (+/- 0.022). The calculated number of channels ranged from 20 to 158 (59.4 +/- 48.7) and their probability of opening to the first EPSP had an average of 0.83 (+/- 0.09), with an average depression of the probability to 0.60 for the second EPSP. Geniculate afferents also terminate in layer 6. Intracellular recordings were also made in the upper part of this layer and a total of 51 EPSPs were recorded from pyramidal cells of three principal types. Amongst this dataset we sought EPSPs with similar properties to those characterized in layer 4a. Three examples were found, which is a much lower percentage (6%) than the incidence of putative geniculate EPSPs found in layer 4a (42%).  相似文献   

18.
Coverage and the design of striate cortex   总被引:2,自引:0,他引:2  
Hubel and Wiesel (1977) suggested that ocular dominance and orientation columns in the macaque monkey striate cortex might be bands of uniform width that intersected orthogonally. They pointed out that if this were the case, there would be an equal allocation of cells of different orientation preference to each eye and to each point in visual space. However, orientation and ocular dominance columns have a more complex structural organization than is implied by this model: for example, iso-orientation domains do not intersect ocular dominance stripes at right angles and the two columnar systems have different periodicities. This raises the question as to how well the striate cortex manages to allocate equal numbers of neurons of different orientation preference to each eye and to each region of visual space, a factor referred to here as coverage. This paper defines a measure of uniformity of coverage, c, and investigates its dependence on several different parameters of columnar organisation. Calculations were done first using a simplified one-dimensional model of orientation and ocular dominance columns and were then repeated using more realistic two-dimensional models, generated with the algorithms described in the preceding paper (Swindale 1991). Factors investigated include the relative periodicities of the two columnar systems, the size of the cortical point image, the width of orientation tuning curves, whether columns are spatially anisotropic or not, and the role of the structural relationships between columns described by Blasdel and Salama (1986). The results demonstrate that coverage is most uniform when orientation hypercolumns are about half the size of ocular dominance hypercolumns. Coverage is most uneven when the hypercolumns are the same size, unless they are related in the way described by Blasdel and Salama, in which case coverage gets only slightly worse as the size ratio (ori/od) increases above 0.5. The minimum diameter of cortical point image that ensures reasonably uniform coverage is about twice the size of an ocular dominance hypercolumn i.e. about 1.5–2.0 mm.  相似文献   

19.
By the third postnatal week, intrinsic developmental programs have established a framework within the cat visual system; this will be used to guide the course of subsequent experience-dependent development. Key elements in this framework are precociously mature cells in visual cortex area 17. These orientation-selective cells are predominantly first-order neurons, they are concentrated in layers IV and VI of area 17, most of them are activated monocularly, many may receive their direct excitatory input from lateral geniculate nucleus X cells, and the distribution of their preferred orientations is biased toward horizontal and vertical. Between the third and the sixth postnatal week, most of the remaining cells in area 17 develop orientation selectivity; this extension of orientation selectivity is blocked or delayed if kittens are deprived of normal patterned visual stimulation. Furthermore, exposure to a limited range of stimulus orientations can lead to an increase in the proportion of orientation-selective cells, and the range of orientation preferences that the cells acquire is restricted by the range of orientations to which the animal is exposed. This occurs with no apparent change in the physiology or morphology of intrinsically selective area 17 cells. Thus selective exposure may have its effect by influencing the connections between the intrinsically selective cells and higher-order neurons in area 17. Experience-dependent changes in the visual system may function to "fine-tune" sensory processing and thus optimize the system's response to the dominant features of the environment. This experience-dependent process could help the young animal to focus its "attention" on those features of its environment that are critical to its survival.  相似文献   

20.
BACKGROUND: It is believed that a face-specific system exists within the primate ventral visual pathway that is separate from a domain-general nonface object coding system. In addition, it is believed that hemispheric asymmetry, which was long held to be a distinct feature of the human brain, can be found in the brains of other primates as well. We show here for the first time by way of a functional imaging technique that face- and object-selective neurons form spatially distinct clusters at the cellular level in monkey inferotemporal cortex. We have used a novel functional mapping technique that simultaneously generates two separate activity profiles by exploiting the differential time course of zif268 mRNA and protein expression. RESULTS: We show that neurons activated by face stimulation can be visualized at cellular resolution and distinguished from those activated by nonface complex objects. Our dual-activity maps of face and object selectivity show that face-selective patches of various sizes (mean, 22.30 mm2; std, 32.76 mm2) exist throughout the IT cortex in the context of a large expanse of cortical territory that is responsive to visual objects. CONCLUSIONS: These results add to recent findings that face-selective patches of various sizes exist throughout area IT and provide the first direct anatomical evidence at cellular resolution for a hemispheric asymmetry in favor of the right hemisphere. Together, our results support the notion that human and monkey brains share a similarity in both anatomical organization and distribution of function with respect to high-level visual processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号