首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H2SO4 soluble proteins extracted from nuclei incubated with phosphatidylserine multilamellar vesicles (PS MLV) have been analysed by means of two-dimensional gel electrophoresis with particular attention to the uH2A fraction. A reduction of H1, H1 degrees and proteins A5, B7, B15 and B23 has been observed in lipid treated nuclei, while the core histones, as well as uH2A are unaffected by liposome treatment. Since these proteins show in vitro the same binding affinity for PS, their behaviour appears to be related to difference in localization in the nucleosome, responsible for their variable accessibility in the chromatin. These results might explain how this phospholipid induces a decondensation of chromatin and a stimulation of RNA synthesis.  相似文献   

2.
We describe several morphological and functional modifications in isolated rat liver nuclei incubated in the presence of phosphatidylserine (PS) multilamellar vesicles (MLV). These effects, which occur through the release of histone H1, induce chromatin decondensation, as shown by electron microscopy and nuclease digestion. Flow cytometry was employed to monitor these changes in chromatin structure in isolated nuclei by means of perpendicular light scatter (PLS) and fluorescence signals. Chromatin decondensation induced by PS or by low pH treatment was accompanied by an increase in perpendicular light scatter and by less efficient binding of ethidium bromide. These flow cytometric findings are peculiar to chromatin decondensation induced by displacement of histone H1. Conversely, chromatin decondensation caused by lowering of the divalent ion concentration, without displacement of histone H1, is characterized only by an increase in perpendicular light scatter.  相似文献   

3.
Sasaki Y  Harada H 《Plant physiology》1991,96(4):1161-1166
We have previously reported the existence of pollen mother cell nuclear protein (PMCP) which appears during microsporogenesis in lily (Lilium spesiosum). It is very similar to mammalian testis specific H1 histone, H1t. In this paper, we describe the PMCP distribution in lily nucleosomes. Isolated nuclei were treated with micrococcal nuclease, and template active and inactive chromatin fractions were prepared. The nucleosome repeat length of pollen mother cells was determined to be 210 base pairs. The majority of the PMCP was found in the template inactive chromatin fraction, similar to other histones. PMCP was contained in the nucleosome monomer, but not in the core particle. However, PMCP was mainly found in the nucleosome dimer when slightly digested. Salt extraction from isolated nuclei indicated that PMCP and H1 histone share similar binding affinities to DNA. Judging from our results, it seems probable that PMCP links two core particles more strongly than H1 histone does. Since it is known that meiotic chromatin includes nick transferase and nuclease activity, one possible role of PMCP is the protection of its own chromatin. Other possible functions of PMCP are also discussed.  相似文献   

4.
Phospholipid liposomes affect the histone pattern of isolated rat liver nuclei. Multilamellar vesicles (MLV) obtained with phosphatidylserine (PS) release a large amount of the lysine rich histones, while those obtained with phosphatidylcholine (PC) do not induce significant changes with respect to controls. This different response has been compared to the effects obtained with Heparin, which slightly modifies the relative ratio of the histone fractions. These data might account for the mode by which phospholipids induce transitions of the chromatin structure and changes of the endogenous RNA polymerase activity.  相似文献   

5.
Abstract: Total cerebral hemisphere nuclei purified from adult rabbit brain were subfractionated into neuronal and glial populations. Previous studies have shown that chromatin in neuronal nuclei is organized in an unusual nucleosome conformation compared with glial or kidney nuclei, i.e., a short DNA repeat length is present. We now analyze whether this difference in chromatin organization is associated with an alteration in the histone component of nucleosomes. Total histone isolated by acid/urea-protamine extraction of purified neuronal, glial, and kidney nuclei was analyzed by electrophoresis on SDS-polyacrylamide slab gels. Histone H1 that was selectively extracted from nuclei was also examined. Differences were not observed on SDS gels in the electrophoretic mobilities of histones associated with either the nucleosome core particle (histones H2A, H2B, H3, H4) or the nucleosome linker region (histone H1). Total histone and selectively extracted histone H1 were also analyzed on acid/urea slab gels that resolve histones on the basis of both molecular weight and charge differences. When analyzed in this system, differences with respect to electrophoretic mobility were not detected when comparing either selectively extracted histone H1 or total histone from neuronal and glial nuclei. Quantitative analyses were also performed and neuronal nuclei were found to contain less histone H1 per milligram DNA compared with glial or kidney nuclei. Neuronal nuclei also demonstrated a lower ratio of histone H1/core histone. These results suggest that the pronounced difference in chromatin organization in neuronal compared with glial nuclei, which is reflected by a short DNA repeat length in neurons, appears to be associated with quantitative differences in neuronal histone H1.  相似文献   

6.
Raman spectra have been observed of nucleosome core particles (I) prepared from chicken erythrocyte chromatin, its isolated 146 bp DNA (II), and its isolated histone octamer (H2A+H2B+H3+H4)2 (III). By examining the difference Raman spectra, (I)-(II), (I)-(III), and (I)-(II)-(III), several pieces of information have been obtained on the conformation of the DNA moiety, the conformation of the histone moiety, and the DNA-histone interaction in the nucleosome core particles. In the nucleosome core particles, about 15 bp (A.T rich) portions of the whole 146 bp DNA are considered to take an A-form conformation. These are considered to correspond to its bent portions which appear at intervals of 10 bp.  相似文献   

7.
Nucleosome dimers containing, on average, a single molecule of histone H5 have been isolated from chicken erythrocyte nuclei and the associated DNA fragments cloned and sequenced. The average sequence organization of at least one of the two nucleosomes in the dimers is highly asymmetric and suggests that the torsional, as well as the axial, flexibility of DNA is a determinant of nucleosome positioning. On average the nucleosome dimer is a polar structure containing linker DNA of variable lengths. The sequences associated with H5 containing nucleosomes and core particles are sufficiently different to indicate that removal of histone H5 (or H1) from chromatin may result in the migration of the histone octamer and a consequent exposure of sites for regulatory proteins.  相似文献   

8.
We have reconstructed nucleosomes from a histone octamer (H2A, H2B, H3, H4)2 and DNA 146 b.p. or 2-3 thousands b.p. in length. Comparison by means of DNA-histone cross-links of the primary organization of minimal nucleosomes obtained by reconstruction or isolated from chromatin of chicken erythrocyte nuclei has demonstrated a high similarity in histone location on their DNAs. Simultaneously, there have been observed some variations in the character of interaction for all core histones with DNA on nucleosomes. Thus, the cross-link of histone H4 with DNA of a core particle at H4 sites (65), unlike H4(55) and H4(88) sites, significantly depends on the superstructure of chromatin, ionic strength of solution and the presence of denaturating agents. All these differences are expected to probe the existence of conformational isomers for core particles. (Bracketed is the distance from the histone interaction site with the DNA of the core particle to the DNA 5'-terminus.)  相似文献   

9.
Changes in nucleosome repeat length during avian erythroid development have been previously correlated with changes in H5 content. In order to determine the effects of H5 on the length of DNA in mononucleosomal particles as a function of differentiation, a two-dimensional electrophoretic system was used to analyse DNA and histones of particles generated by micrococcal nuclease digestion of nuclei from several stages of erythroid development. Although the relative proportions of H5- to H1-containing mononucleosomes increased during development, only in mature erythrocytes did H5 protect a greater length of linker DNA from micrococcal nuclease digestion than did H1. These results suggest that changes in average nucleosome repeat length during erythroid development can be attributed only partially to an increase in the proportion of H5-containing nucleosomes which contribute to this average.  相似文献   

10.
The chromatin structure of morphologically-similar, but increasingly-malignant erythroleukemia cells was investigated using milk micrococcal nuclease digestion of isolated nuclei. The maximum solubilization of chromatin was unique for each of the three cell types: the least malignant (our Stage II) released 61% of its chromatin DNA, the most malignant (Stage IV), 46%, and the intermediate (Stage III) released 36%. An analysis of the nucleosome oligomers liberated by digestion also demonstrated differences. After 15 minutes of digestion when release was reaching its maximum, a greater proportion of large nucleosomal oligomers (sizes > trinucleosome) was released from Stage II nuclei than from Stage III or IV nuclei. The cell types also differed in the relative amount of H1-depleted mononucleosomes released. Analysis of the size of the double-stranded DNA associated with mononucleosomal particles showed that Stage III mononucleosomes were smaller (148 bp) than Stage IV (167 bp) or Stage II (190 bp). In addition, while the DNA of mononucleosomes depleted in H1 was smaller than that in the H1-containing species, relative size differences among the different cell types were retained. These data suggested that the difference in the mononuocleosome particle size resistant to nuclease digestion was independent of histone H1. Differences in nucleosome repeat length were also noted among the cell types. These studies have demonstrated dramatic differences in chromatin structure associated with malignant potential of an otherwise morphologically identical cell type. These findings may reflect changes in the relative amounts of H2a variants which we have previously described among the different malignant cell types.  相似文献   

11.
Structural organization of the meiotic prophase chromatin in the rat testis   总被引:3,自引:0,他引:3  
Pachytene nuclei were isolated from rat testes by the unit gravity sedimentation technique and contained histone variants H1a, H1t, TH2A, TH2B, and X2 in addition to the somatic histones H1bde, H1c, H2A, H2B, H3, and H4. The basic organization of the pachytene chromatin namely the nucleosome repeat length and the accessibility to micrococcal nuclease, was similar to that of rat liver interphase chromatin. However, when digested by DNase I, the susceptibility of pachytene chromatin was 25% more than liver chromatin under identical conditions. Nucleosome core particles were isolated from both liver and pachytene nuclei and were characterized for their DNA length and integrity of the nucleoprotein on low ionic strength nucleoprotein gels. While liver core particles contained all the somatic histones H2A, H2B, H3, and H4, in the pachytene core particles, histone variants TH2A, X2, and TH2B had replaced nearly 60% of the respective somatic histones. A comparison of the circular dichroism spectra obtained for pachytene and liver core particles indicated that the pachytene core particles were less compact than the liver core particles. Studies on the thermal denaturation properties of the two types of core particles revealed that the fraction of the pachytene core DNA melting at the premelting temperature region of 55-60 degrees C was significantly higher than that of the liver core DNA.  相似文献   

12.
A comparison of the DNase I digestion products of the 32P-5'-end-labeled pachytene nucleosome core particles (containing histones H2A, TH2A, X2, H2B, TH2B, H3, and H4) and liver nucleosome core particles (containing somatic histones H2A, H2B, H3, and H4) revealed that the cleavage sites that are 30, 40, and 110 nucleotides away from the 5'-end are significantly more accessible in the pachytene core particles than in the liver core particles. These cleavage sites correspond to the region wherein H2B interacts with the nucleosome core DNA. These results, therefore, suggest that the histone-DNA interaction at these sites in the pachytene core particles is weaker, possibly because of the presence of the histone variant TH2B interacting at similar topological positions in the nucleosome core as that of its somatic counterpart H2B. Such a loosened structure may also be maintained even in the native pachytene chromatin since micrococcal nuclease digestion of pachytene nuclei resulted in a higher ratio of subnucleosomes (SN4 + SN7) to mononucleosomes than that observed in liver chromatin.  相似文献   

13.
We have studied the hydrodynamic properties of the complexes formed by interaction of nucleosome core particles with excess histone octamers containing two each of the four core histones. The results are consistent with tight binding of two to three octamers to the exterior of each core particle. The binding is dependent upon the presence of the H3/H4 histone pair: when H3/H4 alone are added to nucleosome core particles, tight binding is observed, but H2A/H2B alone are bound only weakly. We have also examined the properties of the nucleosome core in solutions containing 0·1 m to 0·7 M-NaCl. We show that in this salt range the core particle undergoes some changes in shape, reflected in a 14% increase in the frictional coefficient. Even at the highest salt concentrations used, however, the nucleosome core is still a compact, folded structure.  相似文献   

14.
Binding of linker histones to the core nucleosome   总被引:1,自引:0,他引:1  
Binding of chicken erythrocyte linker histones H1/H5 to the core nucleosome has been studied. Histones H1/H5 bind very efficiently to the isolated core nucleosome in vitro. The binding of linker histones to the core nucleosome is associated with aggregation of the particles. Approximately one molecule of linker histone binds per core nucleosome in the aggregates, irrespective of the concentration of the linker histones and the salt used. Histone H5 shows greater binding affinity to the core nucleosome as compared to H1. The carboxyl-terminal fragment of the linker histones binds strongly to the core nucleosome while the binding of the central globular domain is weak. Each core nucleosome is capable of binding two molecules of carboxyl-terminal fragment of linker histone. The core nucleosome containing one molecule of carboxyl-terminal fragment of linker histone requires higher salt concentration for aggregation while the core nucleosome containing two molecules of carboxyl-terminal fragment of linker histone can self-associate even at lower salt concentrations. On the basis of these results we are proposing a novel mechanism for the condensation of chromatin by linker histones and other related phenomena.  相似文献   

15.
Histones H1 and H5: one or two molecules per nucleosome?   总被引:21,自引:2,他引:19       下载免费PDF全文
We have determined histone stoichiometries in nuclei from several sources by a direct chemical method, with the particular aim of quantitating histone H1 and, in chicken erythrocytes, H5, and of distinguishing between one and two molecules per nucleosome. The four histones H3, H4, H2A and H2B are found in equimolar amounts, as expected for the core histone octamer. The molar ratio of H1 in lymphocyte and glial nuclei is 1.0 per octamer, and in liver nuclei from three species 0.8 per octamer. These results suggest that each nucleosome has one H1 molecule; nucleosomes could acquire two molecules of H1 only at the expense of others containing none. The stoichiometry of H5 in chicken erythrocyte nuclei is similar to that of H1 in other nuclei, being about 0.9 molecules per nucleosome; the H1 also present in these nuclei amounts to 0.4 molecules per nucleosome.  相似文献   

16.
To examine the factors involved with nucleosome stability, we reconstituted nonacetylated particles containing various lengths (192, 162, and 152 base pairs) of DNA onto the Lytechinus variegatus nucleosome positioning sequence in the absence of linker histone. We characterized the particles and examined their thermal stability. DNA of less than chromatosome length (168 base pairs) produces particles with altered denaturation profiles, possibly caused by histone rearrangement in those core-like particles. We also examined the effects of tetra-acetylation of histone H4 on the thermal stability of reconstituted nucleosome particles. Tetra-acetylation of H4 reduces the nucleosome thermal stability by 0.8 degrees C as compared with nonacetylated particles. This difference is close to values published comparing bulk nonacetylated nucleosomes and core particles to ones enriched for core histone acetylation, suggesting that H4 acetylation has a dominant effect on nucleosome particle energetics.  相似文献   

17.
Structure of nucleosomes and organization of internucleosomal DNA in chromatin   总被引:16,自引:0,他引:16  
We have compared the mononucleosomal pattern produced by micrococcal nuclease digestion of condensed and unfolded chromatin and chromatin in nuclei from various sources with the repeat length varying from 165 to 240 base-pairs (bp). Upon digestion of isolated H1-containing chromatin of every tested type in a low ionic strength solution (unfolded chromatin), a standard series of mononucleosomes (MN) was formed: the core particle, MN145, and H1-containing, MN165, MN175, MN185, MN195, MN205 and MN215 (the indexes give an approximate length of the nucleosomal DNA that differs in these particles by an integral number of 10 bp). In addition to the pattern of unfolded chromatin, digestion of whole nuclei or condensed chromatin (high ionic strength of Ca2+) gave rise to nuclei-specific, H1-lacking MN155. Digestion of H1-lacking chromatin produced only MN145, MN155 and MN165 particles, indicating that the histone octamer can organize up to 165 bp of nucleosomal DNA. Although digestion of isolated sea urchin sperm chromatin (repeat length of about 240 bp) at a low ionic strength gave a typical "unfolded chromatin pattern", digests of spermal nuclei contained primarily MN145, MN155, MN235 and MN245 particles. A linear arrangement of histones along DNA (primary organization) of the core particle was found to be preserved in the mononucleosomes, with the spacer DNA length from 10 to 90 bp on one (in MN155) or both sides of core DNA being a multiple of about 10 bp. In MN235, the core particle occupies preferentially a central position with the length of the spacer DNA on both sides of the core DNA being usually about 30 + 60 or 40 + 50 bp. Histone H1 is localized at the ends of these particles, i.e. close to the centre of the spacer DNA. The finding that globular part of histones H3 and sea urchin sperm H2B can covalently bind to spacer DNA suggests their involvement in the organization of chromatin superstructure. Our data indicate that decondensation of chromatin is accompanied by rearrangement of histone H1 on the spacer DNA sites adjacent to the core particle and thus support a solenoid model for the chromatin superstructure in nuclei in which the core DNA together with the spacer DNA form a continuous superhelix.  相似文献   

18.
Gel electrophoretic analysis of the histone chemical acetylation in the nucleosome core particles with acetic andydride revealed availability of about 14 lysine residues of histone H2A, 15-21 of H2B, 8-11--H3 and 6-9--H4. Moderately lysine-rich histones H2A and H2B were found to be more susceptible to acetylation than arginine-rich H3 and H4. Chemical acetylation enhanced the rate of trypsin digestion in acetylated nucleosomes as evidenced by gel electrophoresis of histone fragments. A more pronounced trypsin digestion was evident at acetylation of only 3-5 histone amino groups per nucleosome. However, even heavily acetylated nucleosomes yielded in familiar trypsin limit digest pattern of histone fragments thus indicating persistence of histone octamer. Nucleosomes which were trace acetylated (up to 3-5 histone amino groups neutralized per nucleosome) and treated with trypsin to remove highly charged terminal histone regions revealed remarkable unfolding and partial dissociation when analyzed by gel electrophoresis. The same trace acetylated nucleosomes did not show such destabilization prior to trypsin digestion.  相似文献   

19.
We have used salt extractions of nuclei and long agarose gels to dissect the chromatin fine structure of the histone gene repeat of Drosophila melanogaster. Extraction of nuclei with 0.35 M KCl removes many non-histone chromosomal proteins but does not significantly disturb the overall nucleosome arrangement of the repeat unit. After extraction of nuclei with 0.55 M KCl, which also removes histone Hl, the basic arrangement of nucleosome core particles in the repeat unit is not greatly disturbed and the exposed DNA segments near the 5' ends of the histone genes are also retained. Extraction of nuclei with 0.75 M or higher KCl concentrations causes extensive nucleosome sliding and rearrangement with accompanying changes in the nucleoprotein organization of the histone gene complex and loss of the 5' hypersensitive sites. Our results indicate that the histone gene repeat displays a highly organized chromatin structure in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号