首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Mutation frequency decline (MFD) is an irreversible loss of newly-induced suppressor mutations occurring in excision-proficient Escherichia coli during a short period of incubation in minimal medium before plating on broth- or Casamino acids-enriched selective agar. It is known that MFD of UV-induced mutations may occur before DNA containing pre-mutagenic lesions is replicated, but we conclude that MFD can also occur after the damaged DNA has been replicated on the basis of the following evidence. (1) Mutation fixation in rich medium (i.e., loss of susceptibility to mutation frequency decline) with ethyl methanesulphonate mutagenesis begins immediately, whereas with UV it is delayed for 20--30 min. (2) The delay in mutation fixation after UV can be explained neither by inhibition of DNA replication nor by a delay in the appearance of error-prone repair activity in the irradiated population. (3) MFD at later times after UV irradiation is more rapid and is less strongly inhibited by caffeine than is MFD immediately after irradiation. (4) Excision is virtually complete 20 min after 3 J m-2 UV but at that time virtually all mutations are still susceptible to MFD. We have presented evidence elsewhere that in bacteria there is an alternative error-free excision-dependent type of post-replication repair of potentially mutagenic daughter strand gaps. We suggest that this process is inhibited at tRNA loci in the presence of nutrient broth or Casamino acids, possibly because of a broth-dependent change in the structure of the single-stranded region including the tRNA locus.  相似文献   

2.
The initial rates of antimutagenic dark repair were measured in Escherichia coli WP2 trpE65 cells irradiated by UV-light (11 J/m2) and then incubated in liquid media of various compositions. Samples were taken from suspension of incubated bacteria every 5 min following irradiation, mixed with acriflavine to block further repair and plated onto the selective medium containing acriflavine (1 micrograms/ml) to score the Trp+ mutations. The initial rate of antimutagenic repair was estimated from the kinetics of disappearance of mutations in several successive probes. It appeared to depend on the composition of a medium, to establish just after placing irradiated bacteria onto the medium and to decrease significantly in irradiated cells incubated under conditions favourable for growth. The decrease was not due to inhibition of postreplicative repair and was not caused by casaminoacids as such, but by combination of growth factors that provided the intensive protein synthesis. The decrease could be responsible for a strong mutational response of bacteria to irradiation because it secures the survival of premutagenic lesions in DNA till mutation fixation. It is suggested that metabolic regulation of the antimutagenic repair activity exists, based on an active switch of the energy flows required for several parallel metabolic pathways that proceed in irradiated cells.  相似文献   

3.
Nonsense-defective auxotrophic strains of Escherichia coli B/r were used to study mutation frequency decline (MFD) after mutagenesis with ethyl methanesulfonate (EMS). The mutation frequencies for prototrophic revertants that were either converted or de novo glutamine tRNA suppressor mutations declined as treated auxotrophic parental cells were incubated with glucose but without required amino acids (a condition typically producing MFD). The decline for converted suppressor mutations was more rapid than the decline for de novo suppressor mutations after low or moderate EMS treatment, but both suppressor mutation types showed the same slow decline after extensive treatment. The declines for both types of suppressor mutation were eliminated in uvrA-defective cells, and the rapid decline seen for converted suppressor mutations appeared as a slow decline in mfd-defective cells. The results are interpreted that true MFD (the rapid process) affects only the EMS-induced converted glutamine tRNA suppressor mutations. This would account for the rapid decline that is blocked in cells with an mfd defect and in cells with deficient excision repair activity (uvrA or excessive DNA damage). In addition, a second non-specific antimutation mechanism is proposed that is dependent on excision repair only and accounts for the slow decline seen with converted suppressor mutations in some instances and with de novo suppressor mutations at all times. The true MFD mechanism may consist of a physiologically dependent facilitated excision repair specifically for premutational residues located in the transcribed strand of the target DNA sequence (for O6-ethylguanine in cells treated with ethyl methanesulfonate or pyrimidine-pyrimidine photoproducts after UV irradiation).  相似文献   

4.
Summary Ultraviolet radiation produces bacterial revertants that frequently are the result of suppressor mutation. When irradiated cells are incubated under conditions unfavorable for protein synthesis there may be a large decrease in the frequency of observed mutants (mutation frequency decline, or MFD). MFD occurs only in excision-proficient strains and is inhibited by inhibitors of pyrimidine dimer excision. It has therefore been interpreted as enhanced excision of some premutational lesions. Potential de novo UAG suppressor mutation is very susceptible to MFD. Potential conversion mutation, the conversion of a UAG to a UAA suppressor, is at least ten times less susceptible to MFD. A base pair transition at a GC target in a particular tRNA gene is suggested for both de novo suppressor mutation and for conversion mutation. We interpret these results as indicating differential repair of premutational UV photoproducts at two closely spaced sites in the same tRNA gene. The significant difference between these two types of mutation may be the orientation of this target base pair in double helical DNA. The C would be in the transcribed strand of DNA when a nucleic acid alteration produces de novo suppressor mutation. The C would be in the nontranscribed strand, two base pairs removed, when a mutagenic alteration produces suppressor conversion. A model involving facilitated incision by hybridization of the transcribed strand of DNA to its cognate tRNA, under conditions promoting MFD, is described to explain this differential repair.  相似文献   

5.
Enhanced yields of UV-induced back mutants to prototrophy are observed when irradiated cells of the Salmonella typhimurium frameshift strain LT2 hisC3076 (R46) are plated on defined medium containing broth (2.5%, v/v) rather than a trace (0.02 μg/ml) of the required nutrient (histidine). This broth effect is not abolished, and is in fact augmented, in an excision-deficient derivative of hisC3076 (R46) carrying the uvr-302 mutation. Since similar broth effects on UV-induced base-pair substitution mutagenesis have usually been attributed to inhibition of mutation frequency decline (MFD), and since MFD is in turn thought to reflect the activity of an intact excision-repair system, we sought to determine whether or not UV-induced premutational lesions leadinf to the production of frameshifts are susceptible to MFD. Results with the doubly auxotrophic strain LT2 hisC3076 leuA150 (pKM101) showed that in a population of cells actually undergoing MFD (as judged by a rapid loss of UV-induced reversions of the base-pair substitution marker leuA150), no concomitant loss of UV-induced reversions of the frameshift hisC3076 marker could be detected.  相似文献   

6.
Three distinct sections of the ultraviolet mutation frequency response (MFR) curve toward tryptophan prototrophy have been demonstrated in Excherichia coli B/r WP2 trp thy and its uvrA derivative in log-phase growth in minimal medium. The initial section, which appears fluence-squared, may reflect the necessity, if mutation is to result, for induction of two lesions, one located within the potentially mutated genetic locus and the other damaging deoxyribonucleic acid replication and resulting in inducation of the error-prone SOS repair function. A second linear section is ascribed to the continued induction, after exposure above that sufficient for complete SOS expression, of isolated lesions which lead to mutation in potentially mutated loci. The third section demonstrates an increased rate of mutagenesis and suggests the induction of two lesions in proximity which result in additional mutations. Split-exposure studies support the inducible nature of the SOS function and suggest that mutation frequency decline (MFD) is due to exicion resulting from or related to the prevention of SOS induction by inhibition of protein synthesis. Preirradiation tryptophan starvation of the uvr+ strain for 30 min decrease MFR in the first and second sections of the curve. Reduction of MFR in the third section requires more prestarvation time and is blocked by nalidixic acid. The decreased MFR of the first and second sections ascribed to promotion of postirradiation MFD based on excision and that of third section to completion of the chromosome during the prestarvation period.  相似文献   

7.
W. Y. Feng  E. Lee    J. B. Hays 《Genetics》1991,129(4):1007-1020
Nonreplicating lambda phage DNA in homoimmune Escherichia coli lysogens provides a useful model system for study of processes that activate DNA for homologous recombination. We measured recombination by extracting phage DNA from infected cells, using it to transfect recA recipient cells, and scoring the frequency of recombinant infective centers. With unirradiated phage, recombinant frequencies were less than 0.1%. However, recombination could be increased over 300-fold by prior UV irradiation of the phages. The dependence of recombination on UvrA function varied greatly with UV dose. With phage irradiated to 20 J/m2, recombinant frequencies in repressed infections of uvr+ bacteria were one-fifth those in uvrA infections; with phages irradiated to 100 J/m2, frequencies in uvr+ infections were thirty times higher than in uvrA infections. Most UV-stimulated recombination in uvrA infections appeared to depend on the bacterial methyl-directed mismatch-repair system: frequencies were depressed 5-20-fold in uvrA bacteria also lacking MutH, MutL or MutS functions, and recombinant frequencies decreased with increasing GATC-adenine methylation of phage stocks. The biological activity of nonreplicating UV-irradiated phage DNA declined with time after infection of uvrA cells; this decline was photoproduct-dependent, more marked for undermethylated than overmethylated phage DNA, and depended on host MutHLS functions. In uvr+ bacteria, where the UvrABC system provided an alternative, apparently less efficient, route to recombinagenic DNA, UV-stimulated recombinant frequencies were about twice as high in mutH or mutLS as in mut+ cells, in agreement with hyper-rec mut effects previously described by others.  相似文献   

8.
The aim of this work was to assess whether "modeled microgravity" affects cell response to ionizing radiation, increasing the risk associated with radiation exposure. Lymphoblastoid TK6 cells were irradiated with various doses of gamma rays and incubated for 24 h in a modeled microgravity environment obtained by the Rotating Wall Vessel bioreactor. Cell survival, induction of apoptosis and cell cycle alteration were compared in cells irradiated and then incubated in 1g or modeled microgravity conditions. Modulation of genomic damage induced by ionizing radiation was evaluated on the basis of HPRT mutant frequency and the micronucleus assay. A significant reduction in apoptotic cells was observed in cells incubated in modeled microgravity after gamma irradiation compared with cells maintained in 1g. Moreover, in irradiated cells, fewer G2-phase cells were found in modeled microgravity than in 1g, whereas more G1-phase cells were observed in modeled microgravity than in 1g. Genomic damage induced by ionizing radiation, i.e. frequency of HPRT mutants and micronucleated cells, increased more in cultures incubated in modeled microgravity than in 1g. Our results indicate that modeled microgravity incubation after irradiation affects cell response to ionizing radiation, reducing the level of radiation-induced apoptosis. As a consequence, modeled microgravity increases the frequency of damaged cells that survive after irradiation.  相似文献   

9.
In this study, the dose distribution of photon (6 MV) and electron (22 MeV) radiation in a water-phantom was compared with the frequency of apoptotic and micronucleated cells of two human cell lines (BEAS-2B normal bronchial epithelial cells and A549 lung cancer epithelial cells). Formation of micronuclei and apoptotic-like bodies was evaluated by the cytokinesis-block micronucleus test. Measurements were performed for five different phantom depths (3-20 cm). Irradiated cells were placed in a water-phantom in three variants: directly on the axis in the beam, under shielding (only in photon radiation) and outside the beam field. The results reveal a discrepancy between the distribution of physical dose at different depths of the water-phantom and biological effects. This discrepancy is of special significance in case of cells irradiated at a greater depth or placed outside the field and under shield during the exposure to radiation. The frequency of cytogenetic damage was higher than the expected value based on the physical dose received at different depths. Cells placed outside the beam axis were exposed to scattered radiation at very low doses, so we tested if bystander effects could have had a role in the observed discrepancy between physical radiation dose and biological response. We explored this question by use of a medium-transfer technique in which medium (ICM-irradiation conditioned medium) from irradiated cells was transferred to non-irradiated (bystander) cells. The results indicate that when cells were incubated in ICM transferred from cells irradiated at bigger depths or from cells exposed outside the radiation field, the number of apoptotic and micronucleated cells was similar to that after direct irradiation. This suggests that these damages are caused by factors released by irradiated cells into the medium rather than being induced directly in DNA by X-rays. Evaluation of biological effects of scattered radiation appears useful for clinical practice.  相似文献   

10.
Zhou H  Suzuki M  Geard CR  Hei TK 《Mutation research》2002,499(2):135-141
Recent studies have indicated that extranuclear or extracellular targets are important in mediating the bystander genotoxic effects of alpha-particles. In the present study, human-hamster hybrid (A(L)) cells were plated on either one or both sides of double-mylar dishes 2-4 days before irradiation, depending on the density requirement of experiments. One side (with or without cells) was irradiated with alpha-particles (from 0.1 to 100 Gy) using the track segment mode of a 4 MeV Van de Graaff accelerator. After irradiation, cells were kept in the dishes for either 1 or 48 h. The non-irradiated cells were then collected and assayed for both survival and mutation. When one side with cells was irradiated by alpha-particles (1, 10 and 100 Gy), the surviving fraction among the non-irradiated cells was significantly lower than that of control after 48 h co-culture. However, such a change was not detected after 1h co-culture or when medium alone was irradiated. Furthermore, co-cultivation with irradiated cells had no significant effect on the spontaneous mutagenic yield of non-irradiated cells collected from the other half of the double-mylar dishes. These results suggested that irradiated cells released certain cytotoxic factor(s) into the culture medium that killed the non-irradiated cells. However, such factor(s) had little effect on mutation induction. Our results suggest that different bystander end points may involve different mechanisms with different cell types.  相似文献   

11.
URT-43 is a mutant of Escherichia coli K-12 which gives a much larger number of survivors when ultraviolet (UV)-irradiated bacteria are incubated on agar medium at 30 C than when they are incubated on the medium at 41 C, although in both cases the number of survivors is fewer than that given by its wild-type ancestor. The UV sensitivity of this mutant was found to be markedly influenced by the presence of a high concentration of NaCl or sucrose in the plating medium. Thus, when irradiated bacteria were plated on agar medium containing 2% NaCl or 0.5 m sucrose at 30 C, they exhibited a resistance similar to that of their wild-type ancestor. At 30 C, there was also an extensive recovery in liquid M9 medium supplemented with all of the nutrients required for growth and NaCl or sucrose. At 41 C, however, the recovery was greatly inhibited. Direct chemical analysis of thymine dimers has revealed that no significant amount of the dimer was released from deoxyribonucleic acid during the period of extensive recovery. It was concluded, therefore, that the temperature-sensitive recovery of URT-43 does not accompany excision of the bulk of pyrimidine dimers. To learn the gene function involved in the recovery, double mutants carrying an additional mutation either in a uvr or a rec gene have been investigated for their UV sensitivities and recovery in liquid medium. It was found that recA(-) and recB(-) derivatives retain the ability of undergoing an efficient recovery at a low temperature, whereas uvrB(-) and uvrC(-) derivatives have completely lost this ability. For these reasons, it was concluded that the mechanism responsible for the recovery of URT-43 involves the function controlled by the uvr genes. The results of photoreactivation suggested that most of the entities dealt with during recovery were pyrimidine dimers.  相似文献   

12.
Mutants of Escherichia coli K-12 unable to excise pyrimidine dimers from their deoxyribonucleic acid (DNA) because of a uvr mutation show a higher survival when plated on a minimal salts medium after exposure to ultraviolet radiation than when plated on a complex medium such as nutrient agar containing yeast extract. This response has been called minimal medium recovery (MMR). Recovery of uvr mutants can take place in liquid as well as on solid medium, but not in buffer or under conditions of amino acid starvation that do not permit cell growth and normal DNA replication. MMR can thus be distinguished from the recovery of recombination-deficient (rec(-)uvr(+)) derivatives of K-12 which can occur under conditions where growth is not possible. Because MMR is characteristic of excision-defective mutants, it evidently reflects a type of repair independent of excision. We have obtained genetic evidence that MMR is determined by the rec genes, which also control recombination in K-12. Cells carrying a uvr mutation together with recA13, recA56, recB21, or recC22 failed to show MMR and were more sensitive to ultraviolet radiation than either their rec(+)uvr(-) or rec(-)uvr(+) parents. The rec(+)uvr(-) derivatives obtained from recA uvr(-) strains by transduction or by reversion regained the capacity for MMR. Our results indicate that inactivation of any one of the three genes, recA, recB, or recC, prevents cells from showing MMR.  相似文献   

13.
Ultraviolet irradiation of cells can induce a state of genomic instability that can persist for several cell generations after irradiation. However, questions regarding the time course of formation, relative abundance for different types of ultraviolet radiation, and mechanism of induction of delayed mutations remain to be answered. In this paper, we have tried to address these questions using the hypoxanthine phosphoribosyl transferase (HPRT) mutation assay in V79 Chinese hamster cells irradiated with ultraviolet A or B radiation. Delayed HPRT(-) mutations, which are indications of genomic instability, were detected by incubating the cells in medium containing aminopterin, selectively killing HPRT(-) mutants, and then treating the cells with medium containing 6-thioguanine, which selectively killed non-mutant cells. Remarkably, the delayed mutation frequencies found here were much higher than reported previously using a cloning method. Cloning of cells immediately after irradiation prevents contact between individual cell clones. In contrast, with the present method, the cells are in contact and are mixed several times during the experiment. Thus the higher delayed mutation frequency measured by the present method may be explained by a bystander effect. This hypothesis is supported by an experiment with an inhibitor of gap junctional intercellular communication, which reduced the delayed mutation frequency. In conclusion, the results suggest that a bystander effect is involved in ultraviolet-radiation-induced genomic instability and that it may be mediated in part by gap junctional intercellular communication.  相似文献   

14.
A sex-linked recessive lethal mutation assay was performed in Drosophila melanogaster using immature spermatocytes and spermatogonia irradiated with X rays at a high or low dose rate. The mutation frequency in the sperm irradiated with a low dose at a low dose rate was significantly lower than that in the sham-irradiated group, whereas irradiation with a high dose resulted in a significant increase in the mutation frequency. It was obvious that the dose-response relationship was not linear, but rather was U-shaped. When mutant germ cells defective in DNA excision repair were used instead of wild-type cells, low-dose irradiation at a low dose rate did not reduce the mutation frequency. These observations suggest that error-free DNA repair functions were activated by low dose of low-dose-rate radiation and that this repaired spontaneous DNA damage rather than the X-ray-induced damage, thus producing a practical threshold.  相似文献   

15.
The mitotic activity of regenerating liver cells after a single dose (430 r) of x-ray irradiation was studied. In every group of the experimental animals (white rats), the mitotic activity (mitotic index) and the number of abnormal mitotic figures were determined. The results indicated that resting cells irradiated a short time before mitotic activity showed reactions similar to those of cells irradiated during mitotic activity. The disturbances in the irradiated mitotically active cells were only quantitatively different from those in the irradiated resting cells. The disturbances in the irradiated resting cells depended upon the time interval between the irradiation and the beginning of mitotic activity stimulated by partial hepatectomy. It was found that the shorter the time interval, the more pronounced were the disturbances and the more similar they became to those of irradiated mitotically active cells. Conversely, the longer the time interval between the irradiation and the beginning of mitotic activity, the less pronounced were the disturbances and the more similar they became to those of the non-irradiated control cells. A discussion is presented as to whether or not the lesions of resting cells caused by a single medium dose of x-ray irradiation are reversible, and whether such lesions are only brought to light by the process of mitosis or whether the process of mitosis renders it possible for these lesions to develop.  相似文献   

16.
The effects of the radioprotector 2-[(aminopropyl)amino] ethanethiol (WR-1065) on radiation-induced cell killing and mutagenesis at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in V79 Chinese hamster cells under hypoxic or aerobic conditions were examined. Conditions of acute hypoxia were attained by gassing 10(6) cells in 1-ml volumes in individual glass ampoules for 2 min with nitrogen. Ampoules were then sealed and incubated at 37 degrees C for 60 min. Following this treatment, cell survival after irradiation as expected was significantly enhanced. The effect of acute hypoxia on the formation of HGPRT mutants by irradiation was also investigated. Mutation frequencies were determined with a 6-day expression time and corrected for the number of spontaneous background mutants. Although mutation induction was approximately linear as a function of radiation dose under most conditions tested, it was significantly reduced in cell populations made acutely hypoxic prior to irradiation. Protection against mutation induction was apparent and similar when cells were irradiated in the presence of the radioprotector, regardless of whether they were also hypoxic or aerated. If cells were irradiated in air and then made hypoxic, no significant protection was still observed. These results suggest that the antimutagenic effect of WR-1065 is not due solely to its ability to scavenge radiation-induced oxygen-free radicals, but rather that it may also modulate these effects through the scavenging of metabolically induced free radicals and/or the chemical repair of radiation-induced DNA lesions.  相似文献   

17.
The yield of induced mutations to streptomycin resistance (Str) in E. coli, UV-irradiated and temporarily incubated in liquid medium not permitting protein synthesis, depends upon the conditions of preirradiation growth and preirradiation treatment of the bacteria, i.e. on their physiological state at the moment of irradiation. This fact is not readily reconciled with a model postulating mutation production in the structural genes of E. coli during excision repair. A preferred explanation is offered, based on the assumption that the efficiency of mutagenesis at the rpsL (strA) locus is determined by interference of antimutagenic (generalized excision repair and MFD) and promutagenic (mutation fixation of excision repair) events. The participation of macromolecular syntheses in Str mutation fixation is suggested.  相似文献   

18.
Bacterial survival is significantly increased after ultraviolet irradiation in tif sfi cells, provided that the thermosensitive tif mutation has been expressed at 41 degrees C before irradiation. This tif-mediated "reactivation of ultraviolet irradiated bacteria" needs de novo protein synthesis, as is the case for the tif-mediated reactivation of ultraviolet-irradiated phage lambda. However, in striking contrast to the phage reactivation process, this tif-mediated reactivation is no longer associated with mutagenesis. It also requires the presence of the uvrA+ excision function. These results strongly suggest the existence in Escherichia coli K-12 of a repair pathway acting on bacterial deoxyribonucleic acid which is inducible, error free, and uvr dependent.  相似文献   

19.
The formation of colour mutations ofSerratia marcescens by the action of chloramphenicol was studied. Pink variants were the commonest; the proportion of white variants was much smaller. Almost 100% mutations were formed in a two-day culture containing 100 μg. chloramphenicol/ml. Comparative experiments showed that the change in pigment formation was hereditary, i.e. that actual mutation, and not selection of chloramphenicol-resistant mutants, occurred. Mutation occurred both in strain 151 and strain HY. The resultant mutations remained constant throughout ten passages on normal nutrient medium. The minimum chloramphenicol concentration which produced an increase in the mutation frequency was 5 μg./ml. The combined effect of X-ray irradiation and chloramphenicol treatment somewhat stimulated the increase in the frequency of mutation as compared with cells which were only irradiated. The increase in the frequency of mutation was much slower on solid medium containing chloramphenicol.  相似文献   

20.
Introduction of the su58 missense suppressor into the chromosome of the uvr502 mutant, either by mutation or by transduction, results in a marked increase of ultraviolet resistance of the uvr502 mutant. In the uvr(+) genetic background, the su58 suppressor causes some decrease of ultraviolet resistance and marked increase in the spontaneous mutation frequency. The presence of the su58 suppressor did not decrease the high frequency of spontaneous mutants in the population of the uvr502 strain. However, the significant increase in spontaneous mutant frequency in the uvr(+)su58 strain makes the difference between the uvr502 su58 and the uvr(+)su58 strains 18 times lower than that between the uvr502 and the uvr(+) suppressor-free strains. Since the missense suppressors act at the level of translation, the results suggest that the product of the uvr(502) gene is a protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号